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Abstract
The observation data of dam displacement can reflect the dam’s actual service behavior intuitively. Therefore, the establish-
ment of a precise data-driven model to realize accurate and reliable safety monitoring of dam deformation is necessary. 
This study proposes a novel probabilistic prediction approach for concrete dam displacement based on optimized relevance 
vector machine (ORVM). A practical optimization framework for parameters estimation using the parallel Jaya algorithm 
(PJA) is developed, and various simple kernel/multi-kernel functions of relevance vector machine (RVM) are tested to 
obtain the optimal selection. The proposed model is tested on radial displacement measurements of a concrete arch dam to 
mine the effect of hydrostatic, seasonal and irreversible time components on dam deformation. Four algorithms, including 
support vector regression (SVR), radial basis function neural network (RBF-NN), extreme learning machine (ELM) and the 
HST-based multiple linear regression (HST-MLR), are used for comparison with the ORVM model. The simulation results 
demonstrate that the proposed multi-kernel ORVM model has the best performance for predicting the displacement out of 
range of the used measurements dataset. Meanwhile, the ORVM model has the advantages of probabilistic output and can 
provide reasonable confidence interval (CI) for dam safety monitoring. This study lays the foundation for the application of 
RVM in the field of dam health monitoring.

Keywords  Optimized relevance vector machine · Multi-kernel · Jaya optimization algorithm · Dam health monitoring · 
Prediction model
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G-ORVM	� Gaussian kernel-based optimized relevance 
vector machine

GP-ORVM	� SumGP kernel-based optimized relevance 
vector machine

R2	� Coefficient of determination
RMSE	� Root mean square error
MAE	� Mean absolute error
ME	� Maximum absolute error
AWCI	� Average width of confidence interval
AVCI	� Average variance of confidence interval

1  Introduction

Dam engineering is an important kind of infrastructure that 
can bring significant benefits in the economic and social 
fields, such as flood control, power generation, water supply, 
and irrigation. The operation state of dams is very compli-
cated for its relations with the water level, ambient tem-
perature dam material properties and geo-mechanical factors 
[1]. The failure of dam engineering could pose uncontrolled 
flood and cause disaster to downstream areas. The past 
century has witnessed many severe accidents of dam engi-
neering failure worldwide such as China (Gouhou CRFD, 
1993), France (Malpasset Arch Dam, 1959), Italy (Gleno 
Multiple-Arch Dam, 1923; Vajont Arch Dam, 1963), Spain 
(Tous dam, 1982), USA (St. Francis Gravity Dam, 1928; 
Teton Earth Dam, 1976) [2].

Timely and effective detection of observational data 
anomalies according to the monitoring model may prevent 
hidden dangers and the occurrence of accidents. In the daily 
practice, the prediction models of dam displacement can 
be categorized into three groups: statistical model, hybrid 
model, and deterministic model, which are widely used dur-
ing the construction period, storage period and operation 
period of dam engineering [1, 3, 4].

The deterministic model, also called numerical models, 
is established based on the numerical methods, such as the 
finite element method and discrete element method [5, 6]. 
The deterministic model can interpret dam displacement in 
mechanics concept, the modeling is based on many numeri-
cal computations and structural simplifications. However, 
in this approach, modeling and calculations are time-con-
suming considering various geometries and operation condi-
tions [5]. Moreover, due to the limitation of computational 
techniques and parameter settings, some special monitoring 
effects (e.g. seepage, uplift pressure) are difficult to be pre-
dicted accurately using the deterministic model. Sometimes 
a deterministic model cannot be supplied with the thermal 
effects because of the lack of temperature measurements. 
In this case, the hybrid model is a good solution where the 
thermal effect is represented by periodic time functions and 
the other effects are the same as the deterministic model [1].

The statistical models are based on the previous data and 
basic mathematical functions. Very well-known statistical 
models in dam safety procedures are hydrostatic-season-time 
(HST) and hydrostatic-temperature-time (HTT) model [7], 
and the former one is widely used in the positive analysis 
and inverse analysis of dam health monitoring [5, 8, 9]. The 
unknown coefficients can be obtained by using different 
regression techniques, such as multiple linear regression 
(MLR) [10, 11], partial least squares regression (PLSR) [12] 
and stepwise regression [13].

However, linear regression-based models also contain 
some disadvantages. On the one hand, they are not well-
suited to model nonlinear interactions between input fac-
tors and dam displacement [6]. On the other hand, they are 
easily ill-conditioned [14]. The limitations of conventional 
statistical models have motivated dam engineers to work 
on new approaches for dam behavior modeling [6]. With 
the development of machine learning, a great number of 
application methods have been proposed recent years and 
applied in dam engineering, including dam health monitor-
ing [6], reliability analysis [15, 16], seismic evaluation [17], 
computational cost reduction [18] and uncertainty quanti-
fication [19]. Artificial neural network (ANN) [20] and 
support vector machine (SVM) [21] are the most popular 
methods, having good computing performance for solving 
nonlinear problems. There are various types of ANN mod-
els and most of the applications are based on the multilayer 
perceptron (MLP), where the major challenge is learning 
time requirement and structure selection. Single hidden layer 
feedforward neural networks (SLFNs), such as radial basis 
function neural network (RBF-NN) [22, 23] and extreme 
learning machine (ELM) [24], were tested for modeling in 
dam health monitoring due to the simple structure and effi-
cient algorithms. RBF-NN is an SLFN that utilizes radial 
basis functions as activation functions in the hidden layer 
where the output is a linear combination of the inputs and 
neuron parameters [20]. ELM was proposed by Huang et al 
[25]. Compared with other standard SLFNs, ELM decreases 
the required training time and has fewer parameters settings. 
Despite the poor stability of the output due to the stochastic 
untrained weights and biases in the input to the hidden layer, 
the average performance of ELM is verified to be superior to 
standard SLFNs, stepwise regression model and MLR model 
in the application of dam displacement prediction [24]. The 
SVM, a kernel-based technique, is currently the most popu-
lar machine learning method. SVM has a relatively good 
capability of solving nonlinear problems, especially for the 
data with fewer samples and high dimensions. In order to 
enable SVM to solve the regression problem, the insensi-
tive loss coefficient � was introduced into the SVM and 
support vector regression (SVR) was develop [21]. Some 
researchers have reported the superior performance of the 
SVR in dam structural monitoring [26–28]. Except for the 
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aforementioned models, adaptive neural fuzzy inference sys-
tem (ANFIS) [29], multivariate adaptive regression splines 
(MARS) [30] and Gaussian process regression (GPR) [31, 
32] are also competitive ML models used in dam health 
monitoring though with high computational cost and com-
plexity. A detailed literature review about ML models used 
in dam health monitoring can be referred to [5, 6].

Relevance vector machine (RVM) is a predictive machine 
learning model proposed by Tipping [33]. RVM is a flex-
ible and powerful tool that modifies the principal ideas 
behind the SVM with Bayesian theory and has a similar 
form to SVM. The advantage of RVM is its capacity to pro-
vide reasonable inferences at low computational cost and 
improves the inadequacy of SVM in many aspects, including 
the utilization of non-mercer kernels, reduced sensitivity to 
hyper-parameter settings and probabilistic output with fewer 
relevance vectors for a given dataset [33]. RVM is suita-
ble for dealing with complex regression and classification 
problems and has been verified in many practical problems. 
Imani et al. [34] examined the capability of relevance vec-
tor machine models for predicting sea-level variations and 
concluded that the RVM approach was superior to ELM in 
terms of accuracy during the test periods. Zhang et al. [35] 
utilized the relevance vector machine for stability inference 
of soil slopes. Wang et al. [36] used the multiclass relevance 
vector machine approach to classify faulty samples of multi-
level inverter system. Kong et al. [37] utilized the relevance 
vector machine to realize real-time monitoring of the tool 
wear in machining process. Most of the previous application 
studies of RVM were based on the Gaussian kernel, where 
trial-and-error or pilot calculation were often used to deter-
mine the hyper-parameter value. It should be noticed that 
trial-and-error and pilot calculation is time-consuming if the 
dataset is large and the iteration step is small [35]. In fact, 
kernel function and hyper-parameters value are important 
factors that have impacts on the sparsity and generalization 
performance of RVM.

Currently, there is no general consensus on the appropri-
ate setting of the kernel function and hyper-parameters. The 
determination of the kernel function and corresponding hyper-
parameter value of the RVM model under a given problem can 
be recognized as a constrained optimization problem. Evo-
lutionary algorithms and swarm intelligence algorithms are 
two important kinds of population-based heuristic algorithms 
[38], which have been widely used in a variety of engineer-
ing problems. Genetic algorithm [39] and artificial immune 
algorithm [40] are two typical evolutionary algorithms. Par-
ticle swarm optimization [41], artificial fish swarm algorithm 
[42], artificial bee colony algorithm [43] are popular swarm 
intelligence algorithms. In addition to the evolutionary and 
swarm intelligence-based algorithms, there are a variety of 
other algorithms that work on the principles of different natu-
ral phenomena. Jaya algorithm is a recently proposed novel 

global optimization method. Compared with other popular 
algorithms, it does not contain any algorithm-specific param-
eter to be tuned, which makes the algorithm convenient to 
implement in the practical application [37, 38, 44, 45].

The purpose of this paper is to develop a novel monitor-
ing model for the probabilistic prediction of concrete dam 
displacement. An efficient optimization framework for RVM 
parameters is developed based on the parallel Jaya algorithm 
(PJA). The proposed optimized relevance vector machine 
(ORVM) has a good performance on estimating the optimal 
hyper-parameter values of the RVM real-timely and is able 
to provide the reliable predicted results of concrete dam dis-
placement. In addition, this paper compares the nonlinear 
mapping capabilities of ORVM models with different ker-
nel functions (e.g. simple kernel functions and multi-kernel 
functions) and discuss the most suitable choice for given 
data. The developed ORVM model is performed on a super-
high concrete arch dam located in China and a discussion is 
conducted compared with equivalent SVR, RBF-NN, ELM, 
and HST-MLR models.

The rest of the paper is organized as follows. In Section 2, 
related methodologies, such as the statistical monitoring 
model of concrete dam displacement and description of the 
proposed ORVM, are illustrated in detail. Data collection, 
detailed analyses, and comparisons of predicted results are 
shown in Section 3. The conclusion and future work are 
summarized in Section 4.

2 � Methodologies

2.1 � Statistical model for concrete dam 
displacement monitoring

As a comprehensive response of dam structural behavior, 
dam displacement is a nonlinear function of hydrostatic 
pressure, temperature, time effect, and other unexpected 
unknown factors [1, 5]. According to the current research, 
the hydrostatic-seasonal-time (HST) model is one of the 
most popular statistical models for dam deformation moni-
toring [6]. HST model is based on the analysis of structure 
and mechanics theory, which can be quantitatively inter-
preted and approximated by the following expression:

where water pressure component �H(t) denotes reversible 
effect of static hydrostatic pressure, temperature component 
�T (t) denotes reversible effect influenced by seasonal thermal 
and ambient temperature, ��(t) denotes time component (also 
called aging component).

Under the action of water pressure, �H(t) can be described 
by a polynomial function consisting of reservoir water levels 

(1)� = �H(t) + �T (t) + ��(t)
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H and coefficients ai , which is given in Eq. (2). The value 
of h depends on the dam type. For gravity dam, h is set to 3; 
for arch dam, h is set to 4.

The temperature component �T (t) describes the displace-
ment caused by the temperature changes in bedrock and dam 
concrete. The calculation of �T (t) depends on the layouts 
of the thermometers. If the thermometers equipped in dam 
engineering is enough and the measured data is sufficient 
as well as continuous, these measurements can describe the 
dam temperature field very well and �T (t) can be calculated 
by Eq. (3). Otherwise, �T (t) can be calculated by a combina-
tion of harmonic function given in Eq. (4).

where bi , b1i and b2i are coefficients; Ti is the observation 
value of the ith thermometer, l1 denotes the number of ther-
mometers used for modeling; T̄i and �i denote the average 
value of the measured temperature at ith layer and tempera-
ture gradient, respectively; l2 denotes is the number of layers 
by where the thermometers are installed; d = 2�t∕365 ; t is 
the number of days from the observation date to the begin-
ning of the monitoring sequence.

The time component ��(t) reflects the irreversible defor-
mation of the dam body or dam foundation toward a certain 
direction over time. For a normal concrete dam, ��(t) rapidly 
changes at the initial service life and then stabilizes in the 
later stage. According to the current research [1], different 
and strictly monotone functions can be used for modeling 
the time effect ��(t) , as shown in Eq. (5)

where ci are coefficients; � = t∕100.

2.2 � Optimized relevance vector machine 
with multi‑kernel

2.2.1 � Theory of relevance vector machine

The RVM, originally proposed by Tipping [33], is a predic-
tive machine learning model and has the comparable form 
to SVM as shown in Eq.(6). RVM can be utilized for solving 
regression problems and provides probabilistic estimates, as 
opposed to the SVM’s point estimates. Given a set of input 

(2)�H(t) =

h∑

i=1

aiH
i

(3)𝛿T (t) =

l1∑

i=1

biTi or 𝛿T =

l2∑

i=1

b1iT̄i +

l2∑

i=1

b2i𝛽i

(4)
�T (t) = b1 sin (d) + b2 cos (d) + b3 sin (d) cos (d) + b4 sin

2 (d)

(5)��(t) = c1� + c2 ln (�) + c3
(
1 − e−�

)

vectors {xn, tn}Nn=1 , presume that tn = y
(
�n,�

)
+ �n , where 

�n ∼ �
(
0, �2

)
 and �

(
0, �2

)
 denotes the normal distribution 

with mean-zero with variance �2 . The output, combined with 
kernel function K

(
x, xn

)
 , can be written as

where wn denotes the weights vector which is to be adjusted 
for the training set, b denotes the bias.

The probabilistic formulation of RVM model can be 
defined as

where N  denotes the normal distribution over tn with mean 
of y(�n) and variance �2 . y(�) represents a linearly weighted 
sum of nonlinear fixed basis functions, which contains the 
same definition as Eq. (6). On account of the assumption of 
independence of the tn , the likelihood of the whole dataset 
can be defined as follows

w h e r e  � =
(
t1 … tN

)T  ,  � =
(
w0 …wN

)T  a n d 

�
(
xn
)
=
[
1,K

(
xn, x1

)
,K

(
xn, x2

)
,… ,K

(
xn, xN

)]T . There are 
several types of kernel functions could be used in � , such 
as simple kernel and multi-kernel. We will discuss them in 
detail in Section 2.2.2.

For the purpose of overcoming over-learning from imple-
ment of maximum-likelihood estimation for � and �2 , addi-
tional constraint on the parameters can be imposed by add-
ing a complexity penalty to the likelihood or error function. 
A zero-mean Gaussian prior probability distribution over � 
is shown in Eq. (9).

where � is a vector of N + 1 hyper-parameters.
By utilizing Bayesian posterior inference, the posterior 

distribution over � is given as follows.

Eq. (10) can be written as follows

Here, the posterior covariance 
∑

 and mean � are given 
as follows

(6)� = f (�) =

N∑

n=1

wnK
(
x, xn

)
+ b

(7)p
(
tn
||�

)
= N

(
tn
||y(�n), �

2
)

(8)p
�
���, �2

�
=
�
2��2

�−N∕2
exp

�
−

1

2�2
‖� −��‖2

�

(9)p(�|�) =
N∏

i=0

N
(
wi
||0, �

−1
i

)

(10)p
(
�|�,�, �2

)
=

p
(
�|�, �2

)
p(�|�)

p
(
�|�, �2

)

(11)

p
(
�|�,�, �2

)
= (2�)−(1+N)∕2

|||
∑|||

−1∕2
exp

[
−
1

2
(� − �)T

−1∑
(� − �)

]
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where � = diag
(
�0, �1,… , �N

)
.

For the uniform hyperpriors over �2 and � , the term 
p
(
�|�, �2

)
 needs to be maximized and we can get

Values of �2and �that maximize Eq. (14) can be obtained 
iteratively by using the following updating rules.

where �
i
 is the i th element of the estimated posterior weight 

w . Define the quantities �i ≡ 1 − �2
i
�iiand �ii denotes the 

i th diagonal element of the posterior covariance matrix 
∑

 
from Eq. (12).

The maximization of p
(
�|�, �2

)
 is known as the type-II 

maximum likelihood method [46] and evidence for hyper-
parameter [47]. Once the iterative procedure has converged 
to the most probable values �MP and �2

MP
 , the predictive 

results for a new set of inputs x∗ , can be written as follows

(12)
∑

=
(
�−2�T� + �

)−1

(13)� = �−2
∑

�T �

(14)

p
(
�|�, �2

)
=(2�)−N∕2

|||�
2� +��−1�T |||

−1∕2

exp
[
−
1

2
�T
(
�2� +��−1�T

)−1
�
]

(15)
(
�i
)New

=
�i

�2
i

,

(16)
�
�2
i

�New
=

‖� −��‖2

N −
∑

i �i

(17)

p
(
t∗
||�,�MP, �

2
MP

)

= ∫ p
(
t∗
||�, �

2
MP

)
p
(
�|�,�MP, �

2
MP

)
d�

= N
(
t∗
||y∗, �

2
∗

)

where y∗ = �T�(x∗) , �2
∗
= �2

MP
+ �(x∗)

T
∑

�(x∗) . The mean 
y∗ denotes the predicted value of RVM at the test point x∗ . 
The variance �2

∗
 can capture the uncertainty of the predicted 

distribution at the test point x∗ . For example, the 95% con-
fidence interval (CI) of the predicted results can be deter-
mined by 

[
y∗ − 1.96�∗, y∗ + 1.96�∗

]
.

2.2.2 � Multi‑kernel technique

In RVM modeling, there is no constraint over the type of 
kernel functions (e.g., the kernels do not have to satisfy 
Mercer condition) [33]. Meanwhile, it is necessary to select 
the suitable kernel function empirically and determine the 
appropriate values of hyper-parameters. However, the con-
struction of new kernel functions with high-performance is 
very complicated, requiring a lot of trials and computing 
resources. Therefore, using simple mathematical operations 
on the simple kernel functions to construct a new kernel is a 
simple and effective way. In this study, different kernel func-
tions are studied for modeling, including three simple kernel 
functions and three constructed multi-kernel functions using 
a weighted combination strategy. Gaussian kernel, Polyno-
mial kernel, and Laplace kernel are commonly-used kernel 
functions. Through the weighted combination of the simple 
kernel functions, three multi-kernel functions (SumGL ker-
nel, SumGP kernel, and SumLP kernel) are constructed. The 
kernel functions aforementioned are summarized in Table 1. 
Where r denotes the hyper-parameters, and the values of 
hyper-parameters need to be optimized to make sure that the 
kernel functions can map the data with high performance.

2.2.3 � Parallel Jaya algorithm

Jaya algorithm, a powerful and state-of-art optimization 
algorithm, was proposed by Rao [38]. The advantage of Jaya 
algorithm is that it contains only one control parameter. Jaya 

Table 1   The used simple 
kernels and the constructed 
multi-kernels

The multi-kernel function sumGL is constructed by combining Gaussian kernel with Laplace kernel lin-
early. The multi-kernel function sumGP is constructed by combining Gaussian kernel with Polynomial ker-
nel linearly. The multi-kernel function sumLP is constructed by combining Laplace kernel with Polynomial 
kernel linearly

Kernel function of 
RVM

Formula Hyper-parameters Number of 
hyper-param-
eter

Gaussian
KG = exp

(
−
‖‖‖xi − xj

‖‖‖
2

∕2r2
G

)
rG 1

Laplace KL = exp
(
−||xi − xj||∕rL

)
rL 1

Polynomial KP =
(
rP1

(
xi ⋅ xj

)
+ rP2

)rP3 rPi(i = 1, 2, 3) 3
SumGL KGL = �KG + (1 − �)KL rG, rL, � 3
SumGP KGP = �KG + (1 − �)KP rG, rPi, � (i = 1, 2, 3) 5
SumLP KLP = �KL + (1 − �)KP rL, rPi, � (i = 1, 2, 3) 5
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algorithm was developed based on the idea that the solution 
obtained (population) for a given problem should get away 
the worst solution and move towards the best solution. The 
description of the Jaya algorithm is as follows.

Let f (X) is the function to be optimized. The number of 
parameters to be determined is m , and the population size is 
n (population size k = 1,… , n.). Therefore, the total popu-
lation can be considered a matrix of dimension (m, n) . Let 
f (x)best is the best value of the objective function produced 
by the best candidate. The worst candidate can be defined 
as the worst objective value (i.e., f (x)worst ). The solution is 
updated according to the difference between the best can-
didate and the existing solution as well as the worst candi-
date. Xj,k,i denotes the value of the j th variable for the k th 
candidate during the i th iteration, then this value is updated 
by Eq. (6).

where r1j,i and r2j,i are two different random numbers, uni-
formly distributed in the range [0, 1] . Xj,best,i denotes the 
value of the j variable for the best candidate, and Xj,worst,i 
denotes the value of the j variable for the worst candidate. 
The detailed description of Jaya algorithm can be found in 
[48]. In order to improve the calculation efficiency, the con-
cept of multi-population is introduced to establish the paral-
lel Jaya algorithm (PJA) based on the static multi-population 
[49]. The population is divided into several sub-populations, 
and the sub-population structure is performed to parallelize 
the sequential algorithm. The flowchart of the multipopula-
tion-based PJA is shown in Fig. 1.

(18)
X�
j,k,i

= Xj,k,i + r1j,i

(
Xj,best,i −

|||Xj,k,i
|||
)
− r2j,i

(
Xj,worst,i −

|||Xj,k,i
|||
)

2.2.4 � Parameters optimization method for RVM using 
parallel Jaya algorithm

As mentioned above, the kernel function and its hyper-
parameter have significant impacts on the performance and 
sparsity of the RVM-based model. In general, the kernel 
function and hyper-parameter value are defined before model 
implementing. In order to obtain the optimal value of hyper-
parameter and prevent over-fitting in the validation dataset, 
the parameters of RVM to be optimized are encoded in the 
solutions of Jaya algorithm. The solution can be represented 
as s =

(
s1, s2,… , sr

)
 , where sr denote the parameters of the 

kernel function and r is the number of the parameters to 
be optimized. k-fold cross-validation is a popular way to 
estimate the model generalization performance. In k-fold 
cross-validation, the selected dataset is equally partitioned 
into k subsets. In these k subsets, a single subset is used 
for validation and the remaining k − 1 subsets are used for 
training. The cross-validation method is then carried out k 
times, with each of the k subsets used exactly once as the 
validation dataset.

The target function should be defined in a proper form. In 
this study, the root mean square error (RMSE) of the solu-
tion is chosen as the target function, as shown in Eq. (19).

where K is the number of subsets, and N is the number of 
validation samples. yi denotes the target value, and y(i)� 
denotes the predicted value using RVM model. In this paper, 

(19)FRMSE(s) =
1

K

K∑

k=1

√√√√ 1

N

N∑

i=1,k

(
yi − y(i)s

)2

Fig. 1   Flowchart of the multi-population-based parallel Jaya algorithm (PJA)
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5-fold cross-validation is carried out for model training. 
Therefore, K is set to 5.

The adaption of hyper-parameters using PJA contains the 
following steps:

(1)	 Set the population size in the Jaya algorithm, and ini-
tialize the kernel function. Calculate the initial solu-
tions by target function shown in Eq. (19).

(2)	 Split the population into P sub-populations and build 
parallel calculation structure. Find the best solution and 
worst solution in each population.

(3)	 In each sub-population, update each solution si as a can-
didate solution ci by Eq. (19). Calculate the value of the 
target function by carrying out 5-fold cross-validation.

(4)	 For each solution, if f
(
ci

)
< f

(
si

)
 , update si with ci ; 

else, do not update si.
(5)	 Repeat steps (3) ~ (4), until the maximum number of 

iterations is reached.
(6)	 Record the optimal solution in each sub-population.
(7)	 Record the best solution among the optimal solutions 

obtained in each sub-population. In this manner, the 
target function value reaches the minimal value.

Combined with the specific monitoring dataset, the opti-
mal hyper-parameter ropt as well as the fitted or predicted 
outputs can be obtained by performing the above steps.

2.3 � Procedure of ORVM for the prediction 
of concrete dam displacement

As mentioned in Section 2.1, water pressure component, 
temperature component and time component are selected 
as independent variables of the model. The displacement is 
adopted as the dependent variable. It is noted that the initial 
value should be deducted for the establishment of hydro-
static pressure factors and time factors. Therefore, the input 
x of the model can be denoted as a vector shown below.

where H0 denotes the water level on the initial monitoring 
day and t0 denotes the initial monitoring day. The other sym-
bols have the same meaning as the variables in Eq. (2) ~ 
Eq. (5).

To eliminate the influence of the dimension on the data-
set, the input data are normalized within a range of [0, 1] by

(20)

x =
{
H − H0,

(
H − H0

)2
,
(
H − H0

)3
,
(
H − H0

)4
,

sin (d), cos (d), sin (d) cos (d), sin2 (d), t − t0,(
e−t0 − e−t

)
, ln (t) − ln

(
t0
)}

(21)f
(
xi
)
=

xi − x
imin

ximax − x
imin

where xi represents the value to be normalized. ximax and 
x
imin denote the maximum and minimum value of the data 

to be normalized, respectively.
The flowchart of the proposed ORVM-based probabilis-

tic prediction model for dam displacement is illustrated in 
Fig. 2, and the main procedure is described as follows.

(1)	 Choose the influential components and determinate the 
displacement.

(2)	 Data preparation and normalization. Collect the moni-
toring data from the dam monitoring system and build 
the inputs of the model. All the data should be normal-
ized within a range of [0, 1].

(3)	 Dataset division. Based on the obtained data, establish 
the training set and testing test for modeling.

(4)	 Optimization of model parameters. Select specific 
kernel function and determine the value of the hyper-
parameters using the adaptive parameters selection 
method for RVM described in 2.3.3.

(5)	 Model establishment. The RVM-based model is built 
using the training data, the selected kernel function and 
the optimal value of the hyper-parameters.

(6)	 Performance verification. Utilize testing set to verify 
whether the trained ORVM model has good generaliza-
tion performance on unknown monitoring data.

In this study, six statistical metrics are used as the criteria 
to comprehensively evaluate the predictive performance of 
the models, including the coefficient of determination ( R2 ), 
the root mean square error (RMSE), the mean absolute error 
(MAE), the maximum absolute error (ME), the average 
width of confidence interval (AWCI) and the average vari-
ance of confidence interval (AVCI), which are expressed in 
Appendix A. It should be noted that a model is more precise 
if it contains not only lower RMSE, MAE and ME values, 
but also the higher R2 value in both training and testing data-
set. AWCI and AVCI reflect the stability and smoothness 
of the 95% CI obtained by ORVM, respectively. A smaller 
AWCI represents the more reliable predicted results of 
ORVM. The smaller AVCI is, the smoother and more stable 
the 95% CI of ORVM becomes.

3 � Application

3.1 � Dam engineering profile

Jinping-I hydropower station project is located in Sichuan 
Province, China. It is mainly composed of a double-curva-
ture concrete arch dam, underground power plant, and water 
conveyance structures. The dam crest elevation is at 1885m 
and the maximum height of the arch dam is 305m. The 
arch dam consists of 26 sections, with a dam crest length 
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of 552m. Jinping-I arch dam is the highest arch dam cur-
rently in the world. The dam is equipped with an advanced 
automatic monitoring system which composed of various 
instruments, including water level gauges, pendulums, ther-
mometers, strain gauges, osmometers, and piezometers. In 
this study, the radial displacement measured at the reading 
station PL13-3 of the central pendulum system is analyzed 
for modeling. The overlooking of the dam and location of 
the pendulum in the No. 13 dam section are shown in Fig. 3.

3.2 � Data collection and preparation

The radial displacement measurements of monitoring point 
PL13-3, which are the data implemented in this study, are 
measured from 1st September 2013 to 7th November 2016 
with 380 groups of data samples in total. Figs. 4 and 5 illus-
trate the time evolution of the measured radial displacement 
and reservoir water level, respectively. Since there’s no 
enough continued dam body temperature near PL13-3, the 
harmonic functions as given in Eq. (4) are used for modeling 
the temperature effect indirectly. Therefore, a total of 11 
factors are selected as independent variables of the models. 
The measured radial displacement value of monitoring point 
PL13-3 is selected as the dependent variable.

The first 320 samples that correspond to the period 
between 3rd September 2013 and 30th July 2016, are used 
for cross-validation and training. The remaining 60 samples 
which correspond to a period between 31st July 2016 and 7th 
October 2016, are utilized as the testing set for evaluating 
the model performance. The testing set is subdivided into 
six parts, with the samples of 10, 20, 30, 40, 50, and 60, 

Fig. 2   The flowchart of the 
ORVM predictive model of con-
crete dam displacement

Initialize the population size
and maximum iteration of PJA 

Data collection and preparation

Conduct RVM learning

Select the kernel function and set
the search space of parameters

Stop iteration?

Update the populations

Calculate target function 
           using            RMSEF s

Output the optimal hyper-parameters
Retrain the ORVM model

Yes

No

Prediction of concrete dam 
displacement using ORVM

Hydrostatic pressure

Seasonal thermal

Time effect

Dam displacement
Gaussian 

Polynomial

Laplace

SumGP

SumGL
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Fig. 3   The concrete arch dam: (a) downstream view; (b) Location of 
pendulums in No. 13 dam section
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respectively. The goal is to test the predictive performance 
and robustness of RVM for dam displacement. The detailed 
information on training and testing sets is listed in Table 2. 
It is noted that the deformation data are weekly recorded 
rather than daily recorded during the period from September 
2014 to March 2016 due to the instrument maintenance and 
debugging of the monitoring system.

3.3 � Performance evaluation of the ORVM models 
with different kernel functions

For the ORVM model, different simple kernel functions 
and multi-kernel functions are selected for testing and com-
parison. The hyper-parameter values of kernel functions 
are obtained by the optimization method introduced in Sec-
tion 2.2.4. For the PJA, the population size is set to 40 and 
the maximum iteration number is set to 150. In order to 

establish the parallel calculation structure, the population is 
divided into 4 parts equally in the multi-population structure 
and each sub-population has a size of 10.

The search space of the hyper-parameter values and the 
obtained optimal values of different ORVM models are 
listed in Table 3. The convergence process curves of simple 
kernel-based ORVM models and multi-kernel ORVM mod-
els are shown in Fig. 6. From the results shown in Fig. 6 and 
Table 3, it can be observed that PJA has good performance 
for parameters optimization of RVM as the fitness values of 
the six models remain stable after 100 iterations. The fitness 
value of Gaussian kernel-based optimized relevance vec-
tor machine model (G-ORVM) is the smallest among three 
simple kernel-based RVM models, with the fitness value is 
0.592. The fitness value of SumGP kernel-based optimized 
relevance vector machine (GP-ORVM) is 0.566, which is 
the smallest among the three multi-kernel ORVM models. 
On the whole, the fitness value of GP-ORVM is the smallest 
among the six models. Therefore, it could be inferred that 
the performance of GP-ORVM is the best to some degree. 

Take the testing set 3 as an example, four evaluation met-
rics of ORVM models with different kernel functions are 
listed in Table 4, and the statistically superior results are 
shown in boldface. In general, the six ORVM models with 
different kernel functions achieve satisfactory performance 
since the coefficients of determination in the training set 
and testing set are larger than 0.95. The three ORVM mod-
els with multi-kernel function also provide reasonably good 
results especially in the testing set, where the GP-ORVM 

Fig. 4   Measured radial dis-
placement

Fig. 5   The reservoir water level

Table 2   Training set and testing test

Dataset no. Number of samples Date range

Training set 320 2013.9.3~2016.7.30
Testing set 1 10 2016.7.31~2016.8.9
Testing set 2 20 2016.7.31~2016.8.19
Testing set 3 30 2016.7.31~2016.8.29
Testing set 4 40 2016.7.31~2016.9.8
Testing set 5 50 2016.7.31~2016.9.18
Testing set 6 60 2016.7.31~2016.10.7
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model has the smallest RMSE, MAE and ME values with 
the values are 0.2765, 0.2441 and 0.4726, respectively. As 
for the ORVM models with simple kernel function, the 
G-ORVM model provides the best predictive performance. 
Overall, it can be seen from Table 4 that the GP-ORVM 
model and the G-ORVM model perform better than the other 
four models considering the generalization and predictive 
accuracy.

Figs. 7 and 8 depict the advantage of probabilistic predic-
tion for concrete dam displacement using GP-ORVM and 
G-ORVM models, where the confidence level is set to 95% 

and the blue line denotes the measured displacement. In the 
training sets, the upper and lower bounds of 95% CI get 
closer to the measured displacement. Except for individual 
peak points, most of the measured displacement fall into 
the 95% CIs. In the testing sets, although all the measured 
displacement falls into the 95% CIs, the GP-ORVM seems 
to provide a narrower CI than G-ORVM. The relatively nar-
rower CI is significant since it is more sensitive and can 
capture the abnormal displacement data effectively.

To test the probabilistic prediction performance of GP-
ORVM and G-ORVM on different data, six testing sets are 
adopted for simulation and the calculated values of AWCI 
and AVCI on different testing sets are shown in Fig. 9. It 
can be seen that the AWCI values of the GP-ORVM model 
fluctuate around 1.5mm and are slightly smaller than those 
of the G-ORVM model, which means the predicted 95% CI 
using GP-ORVM get a certain degree of compression and 
the predicted results are more reliable. The AVCI values 
of both two ORVM models are small with values within 
the range from 0.08 to 0.24. However, the AVCI values of 
the GP-RVM model are significantly smaller than those of 
the G-RVM model, which reflects that the 95% CI of the 
GP-ORVM is more stable and smoother. The advantage 
of the smooth CI is that it can improve the reliability of 
anomaly recognition.

Table 3   Search space of the RVM hyper-parameters

Best fitness value is highlighted in boldface

Kernel function Search range of control parameters Obtained hyper-parameters Minimum 
fitness value

Gaussian rG ∈ [0.01, 50] rG = 2.87 0.592
Polynomial {rP1, rP2} ∈ [0.01, 50], rP3 ∈ [1, 5]

(
rP1, rP2, rP3

)
= (4.37, 25.56, 1.75) 0.633

Laplace rL ∈ [0.01, 50] rL = 1.90 0.615
SumGP {rG, rP1, rP2} ∈ [0.01, 50], rP3 ∈ [1, 5] , � ∈ (0, 1) (rG, rP1, rP2, rP3, �) = (2.43, 9.34, 6.16, 1.01, 0.97) 0.566
SumGL {rG, rL} ∈ [0.01, 50] , � ∈ (0, 1)

(
rG, rL, �

)
= (12.81, 1.99, 0.18) 0.606

SumLP {rL, rP1, rP2} ∈ [0.01, 50], rP3 ∈ [1, 5] , � ∈ (0, 1)
(
rL, rP1, rP2, rP3, �

)
= (1.63, 16.76, 15.21, 2.12, 0.32) 0.588

Fig. 6   Convergence characteristics of RVM with different kernels

Table 4   The performance of ORVM models based on different kernel functions

Kernel function Training set Testing set

R2 RMSE (mm) MAE (mm) ME (mm) R2 RMSE (mm) MAE (mm) ME (mm)

Gaussian 0.9986 0.3328 0.2457 1.1711 0.9874 0.3147 0.2668 0.6173
Polynomial 0.9984 0.3630 0.2661 1.4080 0.9661 0.4927 0.4169 0.8559
Laplace 0.9993 0.2119 0.1537 0.9331 0.9662 0.6238 0.5559 1.0245
SumGP 0.9990 0.2767 0.2042 1.0461 0.9891 0.2765 0.2441 0.4726
SumGL 0.9994 0.2271 0.1669 0.9626 0.9662 0.6048 0.5354 1.0391
SumLP 0.9990 0.1850 0.1327 0.8599 0.9697 0.6549 0.5957 0.9929
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3.4 � Performance comparison of the existing models

In this section, the RBF-NN, the SVR, ELM and the HST-
based multiple linear regression (MLR-HST) models are 
selected as benchmark models for performance comparison 

with the proposed ORVM models. For the MLR-HST model, 
the regression coefficients are computed by the least square 
method. For the RBF-NN, SVR and ELM models, the hyper-
parameters are determined in an optimal manner rigorously, 
where 5-fold cross-validation and PJA are performed to 
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Fig. 7   The output results of the GP-ORVM-based prediction model with 95% CI

100 200 300 400 500 600 700 800 900 1000

Date number

5

10

15

20

25

30

35

40

45

D
is

pl
ac

em
en

t (
m

m
)

95% CI
Measured value

1065 1070 1075 1080 1085 1090

Date number

26

27

28

29

30

31

32

33

D
is

pl
ac

em
en

t (
m

m
)

95% CI
Measured value

Fig. 8   The output results of the G-ORVM-based prediction model with 95% CI

(a)  Comparison on AWCI  (b)  Comparison on AVCI

Fig. 9   Performance evaluation of the 95% CIs obtained by GP-ORVM and G-ORVM
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estimate the hyper-parameters, and the target function is the 
same as Eq. (19).

In the RBF-NN model, the value of spread SR and the 
number of neurons NR in the hidden layer are parameters 
to be optimized. The training objective of the mean square 
error is set to 10-4. The value of spread SR is selected in the 
interval of [0.01, 100], and the number of hidden layer nodes 
NR is selected in the interval of [11, 50]. The optimal values 
of the spread and number of hidden layer nodes obtained are 
7.99 and 14, respectively.

For the ELM model, the sigmoidal function is chosen 
as activation function. The number of hidden layer nodes 
NE is selected in the interval of [11, 50] and the calculated 
optimal value is 14. Note that the result is obtained based 
on the average performance from fifty continuous training 
to reduce the uncertainty.

As for the SVR model, the penalty factor C , kernel 
parameter �′ and insensitive loss function � are three con-
trol parameters. The penalty factor is selected in the interval 
of [0.01, 100]. The Gaussian kernel is selected as the ker-
nel function of the SVR model, and the value of the kernel 
parameter is selected in the interval of [0.01, 50]. The insen-
sitive loss function is selected in the interval of [0.001, 0.1]. 
The optimal values of the penalty factor, the kernel param-
eter and the insensitive loss function obtained are 2.82, 0.09 
and 0.038, respectively.

The search range of the control parameters and the 
obtained optimal parameter values of the G-ORVM, GP-
ORVM, SVR, RBF-NN and ELM models are summarized 
in Table 5.

In the same manner, take the testing set 3 as an example, 
a detailed comparison on the prediction performance of the 
six models is carried out. Evaluation metrics of the fitted and 
predicted results are listed in Table 6 and the best results are 
shown in boldface. The fitted and predicted results of these 
six models are shown in Fig. 10. It can be observed that the 
R2 values of the fitted results computed by six models are all 
approximate to 1.0, which reflects that these six models have 
satisfactory fitting performance. The RMSE, MAE and ME 
values of predictive results using GP-ORVM model is the 
smallest, which indicates the perfect predictive performance 
of the GP-ORVM model. From Fig. 10 it can be seen that 
the residual of the predicted results using GP-ORVM and 
HST-MLR models at peak value (e.g. data on 2016-8-10) is 
significantly smaller than other models.

In the training period, the GP-ORVM model utilizes 6.56 
% of training data as relevance vectors while the G-ORVM 
model uses 5.94 % of training data as relevance vectors. 
Compared with the RVM models, the number of support 
vectors required is near the size of the training set. The 
developed RVM models can obtain a more sparse solution 
with very few relevant vectors, namely, most of the �i tend 
to infinity and corresponding wi = 0 . Therefore, the pos-
sibility of overtraining as well as the computational time is 
minimized.

In order to evaluate the performance of the proposed 
ORVM models objectively, a detailed comparison using 
different unknown testing data is made. Bar charts of the 
predictive performance for these models under six testing 
sets are shown in Fig. 11, and the evaluation metrics are 
listed in Table 7. It is noticeable that the performance of 

Table 5   Search range of the control parameters and the obtained optimal values of different models

Model Search range of control parameters Optimal parameters

G-ORVM rG ∈ [0.01, 50] rG = 2.87

GP-ORVM {rG, rP1, rP2} ∈ [0.01, 50] , rP3 ∈ [1, 5] , � ∈ (0, 1) (rG, rP1, rP2, rP3, �) = (2.43, 9.34, 6.16, 1.01, 0.97)

SVR C ∈ [1, 100] , �� ∈ [0.01, 50] , � ∈ [0.001, 0.1] (C, ��, �) = (2.82, 0.09, 0.038)

RBF-NN SR ∈ [0.01, 100] , NR ∈ [11, 50] (SR,NR) = (7.99, 14)

ELM NE ∈ [11, 50] NE = 14

Table 6   Performance of 
different models using the 
testing set 3

Model Training set Testing set

R2 RMSE MAE ME R2 RMSE MAE ME

GP-ORVM 0.9990 0.2767 0.2042 1.0461 0.9891 0.2765 0.2441 0.4726
G-ORVM 0.9986 0.3328 0.2457 1.1711 0.9874 0.3147 0.2668 0.6173
RBF-NN 0.9970 0.4919 0.3570 1.9685 0.9749 0.4195 0.3608 0.6094
SVR 0.9994 0.2200 0.1248 1.0576 0.9588 0.7718 0.6988 1.0902
ELM 0.9974 0.4669 0.3528 1.9568 0.9816 0.3099 0.2791 0.4814
MLR-HST 0.9964 0.5372 0.4225 1.9611 0.9796 0.2874 0.2515 0.6146
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GP-ORVM and G-ORVM models are more robust and reli-
able than the other models regardless of the size of testing 
sets. The GP-ORVM model has the smallest RMSE among 
the models on testing set 1 and testing set 3~6, which are 
0.165, 0.277,0.329, 0.466, 0.501, respectively. In testing set 
2, the RMSE value of GP-ORVM is 0.267, which is the 
second lowest and only slightly higher than the 0.248 and 
0.259 values for the MLR-HST and G-ORVM models. The 
GP-ORVM model has the smallest MAE value on testing 
set 1 and testing set 3~5 with the values are 0.129, 0.203, 
0.244, 0.286, 378, respectively. In testing set 2, the MAE 
value of GP-ORVM is the second lowest with the value is 
0.202. It could not be neglected that with the increase of the 
testing samples, the predictive precision of the MLR-HST 
model decreases obviously, even if it has good performance 
in small test samples (e.g. testing set 1~ testing set 3). For 
SVR and RBF-NN models, the variation trend of the predic-
tive performance does not have the characteristics of monot-
onous, however, the model performance is not satisfactory 
in the short-term prediction of concrete dam displacement.

Overall, the predictive performance of the two ORVM-
based models is satisfactory. The GP-ORVM model has the 
minimum values of average RMSE and MAE, which indi-
cates that the GP-ORVM is the most effective model among 
the listed models. The G-ORVM model has the similar 
performance to that of the GP-ORVM model as its average 
RMSE and MAE values of different testing data are only 
slightly higher than those of the GP-ORVM model.

4 � Conclusion and future work

In this study, a novel probabilistic prediction model of 
concrete dam displacement is presented to build the struc-
tural health monitoring framework and mine the effects 
of hydrostatic, seasonal and irreversible time components 
on dam deformation. The model is combined with RVM, 
multi-kernel technique, HST statistical model and PJA using 
initial service life monitoring measurements collected from 
a super-high concrete arch dam. The proposed parameters 
optimization method is verified to be effective for RVM to 
achieve accurate and robust predictions. Different kernel 
functions, such as Gaussian kernel, Laplace kernel, Polyno-
mial kernel, and the multi-kernels of their weighted combi-
nation are also exploited to build the ORVM to verify their 
impact on predictive performance. The main conclusions 
and contributions are summarized as follows:

•	 The developed ORVM model is suitable for the predic-
tion of non-stationary and nonlinear concrete dam dis-
placement since it provides satisfactory performance 
both on training and testing sets. The proposed optimi-
zation framework for parameters estimation using PJA 

can optimize the hyper-parameters of RVM effectively 
and avoid falling into local optimum, which improves the 
model predictive performance and robustness.

•	 The kernel functions and hyper-parameters have signifi-
cant impacts on the performance of the RVM model. The 
results suggest that the weighted combination strategy 
for multi-kernel construction is feasible, and the multi-
kernel ORVM models have superior performance than 
the simple kernel ORVM models.

•	 Compared with the listed benchmark models, the ORVM 
is proved to be robust and effective for establishing the 
dam health monitoring model in predicting the concrete 
dam displacement. The developed ORVM models with 
SumGP kernel and Gaussian kernel perform superior to 
the optimized SVR, RBF-NN, ELM and HST-MLR mod-
els in most of the testing sets, reducing the residual. In 
addition, the developed ORVM is sparser than SVM.

•	 The developed ORVM model not only obtains the most 
accurate results in the single point prediction of dam 
displacement measurements, but also provides probabil-
istic CIs, which can be used to quantify the uncertainty 
and identify the abnormal value of dam displacement. 
In addition, the multi-kernel ORVM can compress and 
smooth the CI to polish up the reliability of displacement 
anomaly recognition.

For the future work, the proposed model can be adopted 
for analysis and prediction of other monitoring measure-
ments in concrete dam engineering, such as tangential dis-
placement, settlement, and seepage. Besides, future studies 
should involve analyzing and developing the multi-output 
ORVM model in order to solve the high dimensional regres-
sion task and provide more reliable prediction and identifica-
tion of dam spatial deformation.
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(a) GP-ORVM model 

(b) G-ORVM model 

(c) RBF-NN model 

(d) SVR model 

Fig. 10   Performance comparison of the six models
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)2 (A.3)MAE =
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||yS(i) − y(i)||
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(e) ELM model 

(f) MLR-HST model  

Fig. 10   (continued)

(a) Comparison on RMSE (b) Comparison on MAE 

Fig. 11   Performance evaluation of the six models for dam displacement prediction
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where yS(i) and y(i) denote the model output and meas-
ured values of the radial displacement, respectively 
( i = 1, 2,… ,N ); ȳS and ȳ represent the average of the model 
output and measured values, respectively; N represents the 
number of observations. �

i
 is the predicted variance of 

ORVM-based prediction model at output point yS(i).

References

	 1.	 Wu ZR (2003) Safety monitoring theory and its application of 
hydraulic structures. Higher Education, Beijing

	 2.	 Zhao EF (2018) Dam Safety Monitoring Data Analysis Theory & 
Assessment Methods. Hohai University Press,

	 3.	 Shi YQ, Yang JJ, Wu JL, He JP (2018) A statistical model of 
deformation during the construction of a concrete face rock-
fill dam. Structural Control & Health Monitoring. https​://doi.
org/10.1002/stc.2074

	 4.	 Gu CS, Wu ZR (2006) Safety monitoring of dams and dam foun-
dations-theories & methods and their application. Hohai Univer-
sity Press,

	 5.	 Salazar F, Toledo MA, Onate E, Moran R (2015) An empirical 
comparison of machine learning techniques for dam behaviour 
modelling. Struct Saf 56:9–17. https​://doi.org/10.1016/j.strus​
afe.2015.05.001

	 6.	 Salazar F, Morán R, Toledo MA, Oñate E (2015) Data-Based 
Models for the Prediction of Dam Behaviour: A Review and 
Some Methodological Considerations. Archives of Computational 
Methods in Engineering 24(1):1–21. https​://doi.org/10.1007/
s1183​1-015-9157-9

(A.5)AWCI =
1

N

N∑

i=1

2 × 1.96 ×

√
�2
i

(A.6)AVCI =
1

N

N∑

i=1

||||
2 × 1.96 ×

√
�2
i
− AWCI

||||

	 7.	 Mata J, de Castro AT, da Costa JS (2014) Constructing statistical 
models for arch dam deformation. Structural Control & Health 
Monitoring 21(3):423–437. https​://doi.org/10.1002/stc.1575

	 8.	 Lin CN, Li TC, Liu XQ, Zhao LH, Chen SY, Qi HJ (2019) A 
deformation separation method for gravity dam body and founda-
tion based on the observed displacements. Structural Control & 
Health Monitoring. https​://doi.org/10.1002/stc.2304

	 9.	 Sun PM, Bao TF, Gu CS, Jiang M, Wang T, Shi ZW (2016) 
Parameter sensitivity and inversion analysis of a concrete faced 
rock-fill dam based on HS-BPNN algorithm. Science China-
Technological Sciences 59(9):1442–1451. https​://doi.org/10.1007/
s1143​1-016-0213-y

	10.	 Mata J (2011) Interpretation of concrete dam behaviour with 
artificial neural network and multiple linear regression models. 
Engineering Structures 33(3):903–910. https​://doi.org/10.1016/j.
engst​ruct.2010.12.011

	11.	 Stojanovic B, Milivojevic M, Ivanovic M, Milivojevic N, Divac 
D (2013) Adaptive system for dam behavior modeling based on 
linear regression and genetic algorithms. Advances in Engineer-
ing Software 65:182–190. https​://doi.org/10.1016/j.adven​gsoft​
.2013.06.019

	12.	 Gu CS, Li B, Xu GL, Yu H (2010) Back analysis of mechanical 
parameters of roller compacted concrete dam. Science China-
Technological Sciences 53(3):848–853. https​://doi.org/10.1007/
s1143​1-010-0053-0

	13.	 Xi GY, Yue JP, Zhou BX, Tang P (2011) Application of an artifi-
cial immune algorithm on a statistical model of dam displacement. 
Computers & Mathematics with Applications 62(10):3980–3986. 
https​://doi.org/10.1016/j.camwa​.2011.09.057

	14.	 Gu CS, Wang YC, Peng Y, Xu BS (2011) Ill-conditioned problems 
of dam safety monitoring models and their processing methods. 
Science China-Technological Sciences 54(12):3275–3280. https​
://doi.org/10.1007/s1143​1-011-4573-z

	15.	 Hariri-Ardebili MA, Pourkamali-Anaraki F (2018) Simplified reli-
ability analysis of multi hazard risk in gravity dams via machine 
learning techniques. Arch Civ Mech Eng 18(2):592–610. https​://
doi.org/10.1016/j.acme.2017.09.003

	16.	 Hariri-Ardebili MA, Pourkamali-Anaraki F (2018) Support vec-
tor machine based reliability analysis of concrete dams. Soil 
Dynamics and Earthquake Engineering 104:276–295. https​://doi.
org/10.1016/j.soild​yn.2017.09.016

Table 7   Comparison of the 
RMSE and MAE values in six 
testing sets

Testing set no. 1 2 3 4 5 6 Average

Model
RMSE
 GP-ORVM 0.165 0.267 0.277 0.329 0.446 0.501 0.331
 G-ORVM 0.180 0.259 0.315 0.377 0.523 0.624 0.380
 RBF-NN 0.231 0.449 0.419 0.475 0.549 0.509 0.439
 SVR 0.475 0.809 0.772 0.680 0.677 0.877 0.715
 ELM 0.174 0.342 0.310 0.521 0.771 0.736 0.476
 MLR-HST 0.178 0.248 0.287 0.589 0.928 1.206 0.572

MAE
 GP-ORVM 0.129 0.203 0.244 0.286 0.378 0.433 0.279
 G-ORVM 0.138 0.202 0.267 0.335 0.439 0.528 0.318
 RBF-NN 0.210 0.401 0.361 0.407 0.478 0.431 0.381
 SVR 0.409 0.725 0.699 0.584 0.596 0.749 0.627
 ELM 0.163 0.308 0.279 0.421 0.611 0.615 0.400
 MLR-HST 0.151 0.225 0.251 0.449 0.699 0.932 0.451

https://doi.org/10.1002/stc.2074
https://doi.org/10.1002/stc.2074
https://doi.org/10.1016/j.strusafe.2015.05.001
https://doi.org/10.1016/j.strusafe.2015.05.001
https://doi.org/10.1007/s11831-015-9157-9
https://doi.org/10.1007/s11831-015-9157-9
https://doi.org/10.1002/stc.1575
https://doi.org/10.1002/stc.2304
https://doi.org/10.1007/s11431-016-0213-y
https://doi.org/10.1007/s11431-016-0213-y
https://doi.org/10.1016/j.engstruct.2010.12.011
https://doi.org/10.1016/j.engstruct.2010.12.011
https://doi.org/10.1016/j.advengsoft.2013.06.019
https://doi.org/10.1016/j.advengsoft.2013.06.019
https://doi.org/10.1007/s11431-010-0053-0
https://doi.org/10.1007/s11431-010-0053-0
https://doi.org/10.1016/j.camwa.2011.09.057
https://doi.org/10.1007/s11431-011-4573-z
https://doi.org/10.1007/s11431-011-4573-z
https://doi.org/10.1016/j.acme.2017.09.003
https://doi.org/10.1016/j.acme.2017.09.003
https://doi.org/10.1016/j.soildyn.2017.09.016
https://doi.org/10.1016/j.soildyn.2017.09.016


1959Engineering with Computers (2021) 37:1943–1959	

1 3

	17.	 Hariri-Ardebili MA, Barak S (2019) A series of forecasting mod-
els for seismic evaluation of dams based on ground motion meta-
features. Engineering Structures. https​://doi.org/10.1016/j.engst​
ruct.2019.10965​7

	18.	 Hariri-Ardebili MA, Pourkamali-Anaraki F (2019) Matrix com-
pletion for cost reduction in finite element simulations under 
hybrid uncertainties. Applied Mathematical Modelling 69:164–
180. https​://doi.org/10.1016/j.apm.2018.12.014

	19.	 Hariri-Ardebili MA, Sudret B (2019) Polynomial chaos expansion 
for uncertainty quantification of dam engineering problems. Engi-
neering Structures. https​://doi.org/10.1016/j.engst​ruct.2019.10963​
1

	20.	 Moody J, Darken CJ (1989) Fast Learning in Networks of Locally-
Tuned Processing Units. Neural Computation 1(2):281–294. https​
://doi.org/10.1162/neco.1989.1.2.281

	21.	 Vapnik V, Golowich SE, Smola A (1997) Support vector method 
for function approximation, regression estimation, and signal pro-
cessing. Adv Neur In 9:281–287

	22.	 Chen SY, Gu CS, Lin CN, Zhao EF, Song JT (2018) Safety Moni-
toring Model of a Super-High Concrete Dam by Using RBF Neu-
ral Network Coupled with Kernel Principal Component Analysis. 
Mathematical Problems in Engineering 2018:1–13. https​://doi.
org/10.1155/2018/17126​53

	23.	 Kang F, Li JJ, Zhao SZ, Wang YJ (2019) Structural health moni-
toring of concrete dams using long-term air temperature for ther-
mal effect simulation. Engineering Structures 180:642–653. https​
://doi.org/10.1016/j.engst​ruct.2018.11.065

	24.	 Kang F, Liu J, Li JJ, Li SJ (2017) Concrete dam deformation 
prediction model for health monitoring based on extreme learn-
ing machine. Structural Control & Health Monitoring. https​://doi.
org/10.1002/stc.1997

	25.	 Huang GB, Zhu QY, Siew CK (2006) Extreme learning machine: 
Theory and applications. Neurocomputing 70(1–3):489–501. https​
://doi.org/10.1016/j.neuco​m.2005.12.126

	26.	 Liu CG, Gu CS, Chen B (2017) Zoned elasticity modulus inver-
sion analysis method of a high arch dam based on unconstrained 
Lagrange support vector regression (support vector regression 
arch dam). Engineering with Computers 33(3):443–456. https​://
doi.org/10.1007/s0036​6-016-0483-9

	27.	 Su HZ, Chen ZX, Wen ZP (2016) Performance improvement 
method of support vector machine-based model monitoring dam 
safety. Structural Control & Health Monitoring 23(2):252–266. 
https​://doi.org/10.1002/stc.1767

	28.	 Rankovic V, Grujovic N, Divac D, Milivojevic N (2014) Develop-
ment of support vector regression identification model for predic-
tion of dam structural behaviour. Struct Saf 48:33–39. https​://doi.
org/10.1016/j.strus​afe.2014.02.004

	29.	 Bui K-TT, Tien Bui D, Zou J, Van Doan C, Revhaug I (2016) A 
novel hybrid artificial intelligent approach based on neural fuzzy 
inference model and particle swarm optimization for horizontal 
displacement modeling of hydropower dam. Neural Computing 
and Applications 29(12):1495–1506. https​://doi.org/10.1007/
s0052​1-016-2666-0

	30.	 Kang F, Liu X, Li J (2019) Concrete Dam Behavior Prediction 
Using Multivariate Adaptive Regression Splines with Measured 
Air Temperature. Arabian Journal for Science and Engineering. 
https​://doi.org/10.1007/s1336​9-019-04095​-z

	31.	 Lin CN, Li TC, Chen SY, Liu XQ, Lin C, Liang SL (2019) Gauss-
ian process regression-based forecasting model of dam defor-
mation. Neural Comput Appl 31(12):8503–8518. https​://doi.
org/10.1007/s0052​1-019-04375​-7

	32.	 Kang F, Li JJ (2019) Displacement Model for Concrete Dam 
Safety Monitoring via Gaussian Process Regression Consider-
ing Extreme Air Temperature. Journal of Structural Engineering 
146(1):05019001

	33.	 Tipping ME (2001) Sparse Bayesian learning and the relevance 
vector machine. Journal of Machine Learning Research 1(3):211–
244. https​://doi.org/10.1162/15324​43015​27482​36

	34.	 Imani M, Kao HC, Lan WH, Kuo CY (2018) Daily sea level pre-
diction at Chiayi coast, Taiwan using extreme learning machine 
and relevance vector machine. Global Planet Change 161:211–
221. https​://doi.org/10.1016/j.glopl​acha.2017.12.018

	35.	 Zhang ZF, Liu ZB, Zheng LF, Zhang Y (2014) Development of 
an adaptive relevance vector machine approach for slope stability 
inference. Neural Comput Appl 25(7–8):2025–2035. https​://doi.
org/10.1007/s0052​1-014-1690-1

	36.	 Wang TZ, Xu H, Han JG, Elbouchikhi E, Benbouzid MEH (2015) 
Cascaded H-Bridge Multilevel Inverter System Fault Diag-
nosis Using a PCA and Multiclass Relevance Vector Machine 
Approach. Ieee T Power Electr 30(12):7006–7018. https​://doi.
org/10.1109/Tpel.2015.23933​73

	37.	 Kong DD, Chen YJ, Li N, Duan CQ, Lu LX, Chen DX (2019) 
Relevance vector machine for tool wear prediction. Mechani-
cal Systems and Signal Processing 127:573–594. https​://doi.
org/10.1016/j.ymssp​.2019.03.023

	38.	 Rao R (2016) Jaya: A simple and new optimization algorithm 
for solving constrained and unconstrained optimization problems. 
International Journal of Industrial Engineering Computations 
7(1):19–34

	39.	 Holland JH (1975) Adaptation in natural and artificial systems : 
an introductory analysis with applications to biology, control, and 
artificial intelligence. University of Michigan Press, Ann Arbor

	40.	 Farmer JD, Packard NH, Perelson AS (1986) The Immune-Sys-
tem, Adaptation, and Machine Learning. Physica D 22(1–3):187–
204. https​://doi.org/10.1016/0167-2789(86)90240​-X

	41.	 Eberhart R, Kennedy J A new optimizer using particle swarm 
theory. In: MHS’95. Proceedings of the Sixth International Sym-
posium on Micro Machine and Human Science, 1995. Ieee, pp 
39-43

	42.	 Li XL (2003) A new intelligent optimization-artificial fish swarm 
algorithm. PhD Dissertation, Zhejiang University

	43.	 Karaboga D, Basturk B (2007) A powerful and efficient algorithm 
for numerical function optimization: artificial bee colony (ABC) 
algorithm. Journal of global optimization 39(3):459–471

	44.	 Ding ZH, Li J, Hao H (2019) Structural damage identification 
using improved Jaya algorithm based on sparse regularization and 
Bayesian inference. Mechanical Systems and Signal Processing 
132:211–231. https​://doi.org/10.1016/j.ymssp​.2019.06.029

	45.	 Abhishek K, Kumar VR, Datta S, Mahapatra SS (2017) Applica-
tion of JAYA algorithm for the optimization of machining per-
formance characteristics during the turning of CFRP (epoxy) 
composites: comparison with TLBO, GA, and ICA. Engineering 
with Computers 33(3):457–475. https​://doi.org/10.1007/s0036​
6-016-0484-8

	46.	 Berger JO (2013) Statistical decision theory and Bayesian analy-
sis. Springer Science & Business Media,

	47.	 MacKay DJJNc (1992) Bayesian interpolation. 4 (3):415-447
	48.	 Rao R, Waghmare GG (2017) A new optimization algorithm for 

solving complex constrained design optimization problems. Engi-
neering Optimization 49(1):60–83

	49.	 Migallon H, Jimeno-Morenilla A, Sanchez-Romero JL, Rico 
H, Rao RV (2019) Multipopulation-based multi-level parallel 
enhanced Jaya algorithms. J Supercomput 75(3):1697–1716. https​
://doi.org/10.1007/s1122​7-019-02759​-z

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1016/j.engstruct.2019.109657
https://doi.org/10.1016/j.engstruct.2019.109657
https://doi.org/10.1016/j.apm.2018.12.014
https://doi.org/10.1016/j.engstruct.2019.109631
https://doi.org/10.1016/j.engstruct.2019.109631
https://doi.org/10.1162/neco.1989.1.2.281
https://doi.org/10.1162/neco.1989.1.2.281
https://doi.org/10.1155/2018/1712653
https://doi.org/10.1155/2018/1712653
https://doi.org/10.1016/j.engstruct.2018.11.065
https://doi.org/10.1016/j.engstruct.2018.11.065
https://doi.org/10.1002/stc.1997
https://doi.org/10.1002/stc.1997
https://doi.org/10.1016/j.neucom.2005.12.126
https://doi.org/10.1016/j.neucom.2005.12.126
https://doi.org/10.1007/s00366-016-0483-9
https://doi.org/10.1007/s00366-016-0483-9
https://doi.org/10.1002/stc.1767
https://doi.org/10.1016/j.strusafe.2014.02.004
https://doi.org/10.1016/j.strusafe.2014.02.004
https://doi.org/10.1007/s00521-016-2666-0
https://doi.org/10.1007/s00521-016-2666-0
https://doi.org/10.1007/s13369-019-04095-z
https://doi.org/10.1007/s00521-019-04375-7
https://doi.org/10.1007/s00521-019-04375-7
https://doi.org/10.1162/15324430152748236
https://doi.org/10.1016/j.gloplacha.2017.12.018
https://doi.org/10.1007/s00521-014-1690-1
https://doi.org/10.1007/s00521-014-1690-1
https://doi.org/10.1109/Tpel.2015.2393373
https://doi.org/10.1109/Tpel.2015.2393373
https://doi.org/10.1016/j.ymssp.2019.03.023
https://doi.org/10.1016/j.ymssp.2019.03.023
https://doi.org/10.1016/0167-2789(86)90240-X
https://doi.org/10.1016/j.ymssp.2019.06.029
https://doi.org/10.1007/s00366-016-0484-8
https://doi.org/10.1007/s00366-016-0484-8
https://doi.org/10.1007/s11227-019-02759-z
https://doi.org/10.1007/s11227-019-02759-z

	Multi-kernel optimized relevance vector machine for probabilistic prediction of concrete dam displacement
	Abstract
	1 Introduction
	2 Methodologies
	2.1 Statistical model for concrete dam displacement monitoring
	2.2 Optimized relevance vector machine with multi-kernel
	2.2.1 Theory of relevance vector machine
	2.2.2 Multi-kernel technique
	2.2.3 Parallel Jaya algorithm
	2.2.4 Parameters optimization method for RVM using parallel Jaya algorithm

	2.3 Procedure of ORVM for the prediction of concrete dam displacement

	3 Application
	3.1 Dam engineering profile
	3.2 Data collection and preparation
	3.3 Performance evaluation of the ORVM models with different kernel functions
	3.4 Performance comparison of the existing models

	4 Conclusion and future work
	Acknowledgements 
	References




