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Abstract
This paper proposes a new iterative integration regularization method for robust solution of ill-posed inverse problems. The 
proposed method is motivated from the fact that inversion of a positive definite matrix can be expressed in an integral form. 
Then, the development of the proposed method is mainly twofold. Firstly, two ways—including the linear iteration and the 
exponential ( 2j ) iteration—are invoked to compute the integral, of which the exponential iteration is often preferred due to 
its fast convergence. Secondly, after stability analysis, the proposed method is shown able to filter out the undesired effect 
of relatively small singular values, while preserving the desired terms of relatively large singular values, i.e., the proposed 
method has the guaranteed regularization effect. Numerical examples on three typical ill-posed problems are conducted with 
detailed comparison to some usual direct and iterative regularization methods. Final results have highlighted the proposed 
method: (a) due to the iterative nature, the proposed method often turns out to be more efficient than the conventional direct 
regularization methods including the Tikhonov regularization and the truncated singular value decomposition (TSVD), (b) 
the proposed method converges much faster than the Landweber method and (c) the regularization effect is guaranteed in 
the proposed method, while may not be in the conjugate gradient method for least squares problem (CGLS).

Keywords  Ill-posed problem · Iterative integration regularization · Filter function · Direct and iterative regularization 
methods · Force reconstruction · Cauchy problem

1  Introduction

Many engineering and scientific problems require the 
determination of the unknown input and/or the unknown 
system parameters of a prescribed system from the known, 
but generally contaminated, output. To mention a few, 
inverse reconstruction of the external excitations such as 
the unsteady aerodynamic forces [1], the ocean wave loads 
[2] etc from the measured dynamic responses [3, 4] is criti-
cal to ensuring the reliability and safety of engineering 
structures; finite element model updating [5–7] that aims to 
correct the finite element model parameters using vibration 
measurements is a prerequisite for finite element analysis 
of real structures; the classic Cauchy problem [8, 9] that is 
devoted to reconstruct the field in a certain domain from the 

measured data on a part of the boundary typically arises in 
many physical applications, e.g., acoustic cavity detection, 
steady-state inverse heat conduction and electro-cardiology. 
Such problems are referred as inverse problems and are often 
ill-posed, that is, small contamination errors in the measure-
ment would give rise to large perturbations (or errors) in the 
solution. For a more comprehensive survey on the ill-posed 
and inverse problems, refer to Ref. [10].

A great deal of researches have been long focused on 
robust and efficient solution of the ill-posed problems and a 
common way to circumvent the ill-posedness is to introduce 
additional priori knowledge on the solution; this leads to 
the so-called regularization methods [11]. As Benning and 
Burger stated at the beginning of their work [11], regulari-
zation methods are used to introduce priori knowledge and 
allow a robust approximation of ill-posed (pseudo-)inverses. 
In principle, different priori knowledge on the solution cor-
responds to different regularization methods and according 
to the classification of priori knowledge, three widely recog-
nized classes of regularization methods have been developed 
in the literature,
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•	 the continuity/smoothing and bounding properties of the 
solution are naturally implicated in the �2 regularization, 
e.g., the Tikhonov regularization [11–13].

•	 the sparsity (or specifically the number of non-zeros) 
constraint of the solution is easily enforced by the �1 
regularization (or called the sparse regularization/com-
pressed sensing) [14–16].

•	 the edge-preserving and scale-dependent properties of 
a field solution shall be fulfilled by the total variation 
regularization [17].

In this paper, the class of �2 regularization methods is fol-
lowed up for further investigations. Such class of regulariza-
tion methods tries to filter out the influence of the noise by 
introducing singular-value-dependent filter factors that keep 
approaching 1 for relatively large singular values and tend 
to 0 for relatively small singular values [18]. Regularization 
methods in this class are further categorized into [19]:

•	 Direct regularization methods Well-known methods are 
the truncated singular value decomposition (TSVD) [20] 
and the Tikhonov regularization [12]. The TSVD seems 
simple in the analysis; however, due to the requirement 
for singular value decomposition (SVD) of the matrix, 
the computation cost involved for the TSVD is often high 
especially for large-scale problems. On the other hand, 
the Tikhonov regularization additionally introduces the 
�2 penalty term as regularization and then, the solutions 
under a number of candidate regularization parameters 
should be obtained, each of which requires solving a 
linear algebraic equation. The Tikhonov regularization 
is often more efficient than the TSVD; however, efforts 
should be made to determine a proper set of candidate 
regularization parameters.

•	 Iterative regularization methods For large-scale prob-
lems, the above direct regularization methods often 
involve the SVD algorithm or solving a number of alge-
braic equations and as a result, the computation often 
becomes prohibitive; this essentially calls for more effi-
cient iterative regularization methods [21, 22]. Among 
the iterative regularization methods, the Landweber itera-
tion [23] is the classical stationary method. The Landwe-
ber iteration is effective because its filter factors resemble 
those for the Tikhonov regularization; however, it often 
admits slow convergence [21]. To get faster conver-
gence, the conjugate gradient iteration for least squares 
problems (CGLS) [19] is naturally invoked. The CGLS 
is a nonstationary method because its iteration matrix 
depends not only on the iteration number but also on the 
right-hand side and there is no analytical expressions of 
the filter factors. Fortunately, it was shown [21, 24] that 
under some mild conditions, the CGLS is indeed a regu-
larization method. Nevertheless, the mild conditions may 

not be guaranteed and consequently, the CGLS may not 
work well in some cases [25].

A common feature of the regularization methods is that their 
performance depends on some regularization parameters, 
e.g., the truncation order of the TSVD, the Tikhonov regu-
larization parameter and the iteration number of iterative 
regularization methods. By this way, the key issue in con-
nection with the regularization methods is to find a proper 
regularization parameter that balances the trade-off between 
filtering out enough noise (or eliminating the terms corre-
sponding to relatively small singular values) and not losing 
too much information (or keeping the terms corresponding 
to relatively large singular values) in the solution [18]. To 
this end, several regularization selection rules including the 
discrepancy principle [26], generalized cross-validation 
(GCV) [27] and the L-curve rule [18] have been available 
and well recognized. Among them, the discrepancy princi-
ple seems to be the simplest rule where the regularization 
parameter is selected upon the prescribed upper bound of the 
residual norm; however, the upper bound is often unknown 
and the eventual solution may be over-smoothed [13]; the 
GCV has been shown as a promising rule in many applica-
tions (see Ref. [28] for instance), but may not give satisfac-
tory results if the errors in the right-hand side are highly 
correlated; the L-curve rule that locates the regularization 
parameter at the log–log scale L-corner of the residual norm 
versus the solution norm curve is, nowadays, a widely used 
rule due to its theoretically guaranteed performance [13, 
18] in the class of �2 regularization methods and its easy 
generalization to deal with other classes of regularization 
methods, e.g., the �1 regularization [29].

In this paper, a novel iterative integration regularization 
method is proposed for robust solution of ill-posed prob-
lems with the �2 regularization. The key idea behind is that 
inversion of a positive definite matrix can be alternatively 
obtained by integration over a exponential matrix func-
tion. Along this line, an iterative procedure is developed to 
compute the integral and further analysis reveals that such 
iterative integration procedure can indeed pose the regulari-
zation/filtering effect, indicating that the proposed iterative 
integration is a regularization method. The proposed method 
is expected to have the following features:

•	 It belongs to the iterative regularization methods and 
therefore, shall be efficient for large-scale problems.

•	 Unlike the conventional CGLS, the filter factors of the 
proposed method can be explicitly derived and are of 
the same trend to those of the Tikhonov regularization, 
that is, the filter factors, lying in the interval [0,1] and 
increasing monotonically with the singular values, tend 
to 1 for relatively large singular values and decay to 0 as 
the singular values approach 0. This to some extent guar-
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antees the effectiveness and performance of the proposed 
method.

•	 It is shown in the later analysis that the proposed method 
can degenerate to the Landweber method [23] under the 
linear expansion of the exponential matrix function and 
the linear iteration. Notwithstanding, using the expo-
nential ( 2j ) iteration would accelerate the convergence 
speed. In this way, the Landweber method can be seen as 
a particular case of the proposed method, nevertheless, 
the proposed method can possess faster convergence.

As regards the selection of the regularization parameter 
(or the number of iteration) for the proposed method, the 
well-recognized L-curve rule is adopted. As is noteworthy, 
the proposed method is designated for linear ill-posed prob-
lems, of which the known right-hand side is a linear func-
tion of the unknowns; nevertheless, there is no constraint to 
extend the proposed method to nonlinear ill-posed problems 
because a nonlinear ill-posed problem is often solved itera-
tively by proper linearization and then, in each iteration, a 
linear ill-posed problem arises which can be tackled by the 
proposed method. The similar idea on how to solve the non-
linear ill-posed problems by regularization methods can be 
found in Ref. [30].

The remainder of this paper is organized as follows. 
In Sect. 2, the filter function is introduced to describe the 
behavior of �2 regularization methods and then, some usual 
direct and iterative regularization methods are revisited from 
the perspective of the filter function. In Sect. 3, a new itera-
tive integration regularization method is developed upon an 
integral form for inversion of a positive definite matrix. In 
doing so, two ways—the linear iteration and the exponential 
( 2j ) iteration–are invoked to iteratively compute the integral 
and elaborate analysis on the stability and convergence of 
the proposed method is presented. It is eventually shown 
that the proposed method has the guaranteed regularization 
effect. Section 4 accounts for some typical ill-posed prob-
lems, by which the performance of the proposed method as 
well as the comparison to some usual regularization methods 
is specifically investigated. Final conclusions are drawn in 
Sect. 5.

2 � Ill‑posed problem and regularization

2.1 � Ill‑posed problem with �2 regularization

Many inverse problems involve solution of the discrete linear 
equation

(1)�x = b,

where the system matrix � ∈ ℝ
m×n is of full column rank, 

i.e., m ≥ n and � is injective, b ∈ ℝ
m is the known output 

vector and x ∈ ℝ
n is to be determined. Linear equation (1) 

is said to be ill-posed if the singular values of � cluster at 
zero giving rise to huge condition numbers [31]. Note that 
the output vector is always contaminated with noise, that is,

where xtrue is the true solution and e denotes noise. Under 
this circumstance, large errors into the solution x would be 
induced by the noise e for the ill-posed problem (1).

A usual way to circumvent the ill-posedness is to introduce 
priori knowledge on the smoothness/continuity of the solution, 
which involves addition of the �2 penalty term ||�x||2

2
 and 

then, the �2 regularized formulation can be established for the 
ill-posed problem (1),

where the regularization matrix � ∈ ℝ
l×n is often obtained 

through discretization of some differential operator, and 
� ≥ 0 is a positive scalar called the regularization param-
eter. In actual, the formulation (3) is just the well-known 
Tikhonov regularization [12].

Usually, the regularization matrix � is of full row rank, 
that is, l ≤ n and � is surjective. For instance, to enforce the 
Hs-continuity/smoothness of the uniformly discretized one-
dimensional solution, where Hs, s = 0, 1, 2 denotes the usual 
Sobolev spaces, the regularization matrix � is often defined 
as [32],

In case when � is a identity matrix � , the �2 regularization 
(3) is of the standard form; while in other cases, a simple 
transformation can be invoked to transform (3) into the 
standard form and the procedure is briefly given as follows. 
To arrive at the standard form, let �x = y ∈ ℝ

l and then, due 
to the surjectivity of � , the following would hold

(2)b = btrue + e, btrue = �xtrue,

(3)x� = argmin
x

{||�x − b||2
2
+ �2||�x||2

2

}
,

(4)

� =

⎛⎜⎜⎜⎝

1 0 ⋯ 0

0 1 ⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯ 1

⎞⎟⎟⎟⎠
∈ ℝ

n×n, for s = 0,

� =

⎛
⎜⎜⎜⎝

−1 1 0 ⋯ 0

0 − 1 1 ⋯ 0

⋮ ⋮ ⋱ ⋱ ⋮

0 0 ⋯ − 1 1

⎞⎟⎟⎟⎠
∈ ℝ

(n−1)×n, for s = 1,

� =

⎛
⎜⎜⎜⎝

1 − 2 1 0 ⋯ 0

0 1 − 2 1 ⋯ 0

⋮ ⋮ ⋱ ⋱ ⋱ ⋮

0 0 ⋯ 1 − 2 1

⎞
⎟⎟⎟⎠
∈ ℝ

(n−2)×n, for s = 2.

(5)x = �+y +�oz,
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where �+ ∈ ℝ
n×l is the pseudo-inverse of � , i.e., ��+ = � , 

�o ∈ ℝ
n×(n−l) represents the null space of � verifying 

rank(�o) = n − l,��o = � , and z ∈ ℝ
n−l can be arbitrary. 

The details on how to get the matrices �+,�o can be found 
in Ref. [19]. Then, substitution of Eq. (5) into the regular-
ized formulation (3) yields

Minimization over z leads to z = [(��
o
)T(��

o
)]−1(��

o
)T

(b − ��+y) and then, the standard form problem is obtained

where �̄ = ���+
, b̄ = �b,� = � − (��

o
)[(��

o
)T(��

o
)]−1

(��
o
)T.

Above all, the regularization problem (3) can always be 
transformed into the standard form and therefore, without loss 
of generality and for brevity, the analysis will be restricted onto 
the standard-form regularization problem from here on,

2.2 � Regularization with filter function

To proceed further, consider the singular value decomposition 
(SVD) of the matrix �,

where the left and right singular vectors � and � are ortho-
normal, and the singular values in the diagonal matrix � are 
nonnegative and nonincreasing, i.e., 𝜎1 ≥ 𝜎2 ≥ ⋯ ≥ 𝜎n > 0 . 
Then, direct solution of problem (1) in the least-squares 
sense results in

where the notations in Eq. (2) are used. Due to the ill-pos-
edness, there exist some singular values �n, �n−1,… , �n−q 
clustering at zero with q an integer and the contamination 
er ror  cor responding to these singular  values 

��xLSQ − xtrue��2 ≥
�∑n

i=n−q

(uT
i
e)2

�2
i

 is dramatically magnified 

and even overwhelms the true solution xtrue . Practical regu-
larization methods should, therefore, introduce filter factors 
0 ≤ fi ≤ 1 [18] into the regularized solution,

(6)min
y,z

{||�(�+y +�oz) − b||2
2
+ �2||y||2

2

}
.

(7)y𝜆 = argmin
y

{||�̄y − b̄||2
2
+ 𝜆2||y||2

2

}
.

(8)x� = argmin
x

{||�x − b||2
2
+ �2||x||2

2

}
.

(9)� = ���T =

n∑
i=1

�iuiv
T
i
,

(10)

xLSQ =

n∑
i=1

(uT
i
b)

�i
vi =

n∑
i=1

{
(uT

i
btrue)

�i
vi +

(uT
i
e)

�i
vi

}

= xtrue +

n∑
i=1

(uT
i
e)

�i
vi,

For �2 regularization, the filter factors are often of the fol-
lowing forms,

where f() is called the filter function, � denotes some regu-
larization parameter and A is the space containing all rea-
sonable regularization parameters. Then, the error of the 
regularized solution is obtained as

Aiming to minimize the error (13), several conditions for the 
filter function f (�2, �) should be invoked, 

P1	� The portion 
∑n

i=1
fi
(uT

i
e)

�i
vi of the error (13) is mainly 

controlled by the information corresponding to rela-
tively small singular values �n, �n−1,… , �n−q and to 
r e d u c e  t h i s  p o r t i o n  o f  t h e  e r r o r , 
fi, i ∈ [n, n − 1,… , n − q] should tend to zero so that 
fi∕�i is also approaching zero. In other words, there 
should hold, 

P2	� As with the other por tion of the er ror ∑n

i=1
(fi − 1)

(uT
i
btrue)

�i
vi , it can be divided into two parts: 

the first 
∑n

i=n−q
(fi − 1)

(uT
i
btrue)

�i
vi ≈

∑n

i=n−q
(−1)

(uT
i
btrue)

�i
vi 

and the second 
∑n−q−1

i=1
(fi − 1)

(uT
i
btrue)

�i
vi where the 

approximation in the first part holds due to the condi-
tion P1. On the one hand, to reduce the first part of 
the error, the discrete Picard condition should be sat-
isfied [13], i.e., the coefficients |uT

i
btrue| on average 

decay to zero faster than the singular values �i , or 
|uT

i
btrue|∕�i tends to 0 for some i ∈ [n, n − 1,… , n − q] . 

On the other hand, reducing the second part of the 
error requires fi → 1 for relatively large singular val-
ues. In this way, the filter function should verify, 

P3	� The filter function should be able to degenerate into 
the original solution (10) for well-conditioned prob-
lems. To achieve so, there should exist a critical regu-
larization parameter �cr so that 

(11)xreg =

n∑
i=1

fi

(uT
i
b)

�i
vi.

(12)fi = f (�2
i
, �), � ∈ A,

(13)xreg − xtrue =

n∑
i=1

fi

(uT
i
e)

�i
vi +

n∑
i=1

(fi − 1)
(uT

i
btrue)

�i
vi.

(14)f (0, �) = 0, lim
�→0+

f (�2, �)

�
= 0, ∀� ∈ A.

(15)
lim

�→+∞
f (�2, �) = 1,∀� ∈ A,

or weakly, f (�2
1
, �) → 1, for some �.
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P4	� The filter function should verify f (�2, �) ∈ [0, 1].
*P5	� In particular, if f (�2, �) is continuous with respect 

to both � and � , the regularized solution (11) can be 
alternatively expressed by 

 Note that the condition *P5 is only optional and is not nec-
essary in terms of the regularization performance. In what 
follows, some common direct and iterative �2 regularization 
methods are briefly revisited from the viewpoint of the filter 
function.

2.3 � Revisit of some direct and iterative 
regularization methods

To begin with, the Tikhonov regularization requires exact solu-
tion of Eq. (8), giving rise to

In this way, the filter function for the Tikhonov regulariza-
tion is found to be

which obviously satisfies the four conditions P1–P5 in 
Sect. 2.2 with A = {𝜆 > 0} and the critical regularization 
parameter �cr = 0 . Another popular regularization method 
is the truncated singular value decomposition (TSVD), by 
which the solution is simply obtained as

where the truncation order k is just the regularization param-
eter and then, the filter function for the TSVD turns out to be

where t(k, n) = min([k], n) with [k] denoting the integer part 
of k and the regularization parameter space is A = {k ≥ 1} . 
The filter function fTSVD(�2, k) for the TSVD clearly satis-
fies the conditions P1–P4 with the critical regularization 
parameter kcr = n , but does not verify the optional condition 
*P5. That is to say, the TSVD solution can not be obtained 
by simple multiplication or inversion on matrix � , rather 
the singular value decomposition (SVD) algorithm must be 
called.

(16)f (𝜎2, 𝛼cr) = lim
𝛼→𝛼cr

f (𝜎2, 𝛼) = 1,∀0 < 𝜎 ≤ 𝜎1.

(17)xreg = f (�T�, �) ⋅ (�T�)−1�Tb.

(18)xTik = (�T� + �2�)−1�Tb =

n∑
i=1

�2
i

�2
i
+ �2

(uT
i
b)

�i
vi.

(19)fTik(�
2, �) =

�2

�2 + �2
,

(20)xTSVD =

k∑
i=1

(uT
i
b)

�i
vi, k ≤ n,

(21)fTSVD(𝜎
2, k) =

{
0, if 𝜎 < 𝜎t(k,n)
1, otherwise,

The above two regularization methods—the Tikhonov 
regularization and the TSVD—belong to the direct regu-
larization methods. As it is well known, the SVD algo-
rithm [33] which is often computationally expensive is 
required for the TSVD; while for the Tikhonov regulariza-
tion, the inversion (�T� + �2�)−1�Tb should be computed 
under a number of candidate regularization parameters. 
In total, the computation cost for the direct regulariza-
tion methods is found expensive, especially for large-scale 
problems. This essentially calls for more efficient iterative 
regularization methods [34].

The Landweber method [23] is the classical stationary 
iterative regularization method and its procedure is simply 
described as follows:

•	 Landweber method

–	 set the initial vector x0 = 0,
–	 do the stationary iteration to get the solution 

 where � is a real positive constant and controls the 
behavior of the iteration.

To analyze the filter function for the Landweber method, 
insert the SVD of � into Eq. (22) and then, the kth itera-
tion is found to be

from which the convergence of the Landweber method 
requires 0 < 𝜏 < 2∕𝜎2

1
 . It is easily seen from Eq. (23) that 

the filter function for the Landweber method is

where the regularization parameter as the iteration number 
verifies k ∈ A = {k ≥ 1} . Obviously, this filter function (23) 
satisfies the five conditions P1–*P5 with the critical regu-
larization parameter kcr = +∞ . In practice, �1 can be well 
and easily estimated, e.g., through the subspace iteration, 
and then, a proper � can be determined. Note that during 
the Landweber iteration (22), only matrix–vector multipli-
cation is involved and thus, the Landweber method would 
be very efficient for large-scale problems if the number of 
iteration k is reasonably finite. However, the Landweber 
method often converges slowly [21] so that k may be a large 
number. To further accelerate the convergence, the conjugate 
gradient (CG) algorithm to solve the least-squares equation 
�T�x = �Tb is naturally invoked, which is designated as 
the CGLS:

(22)
xk = xk−1 + ��T(b − �xk−1), k = 1, 2, 3,… ,

(23)xLand =

n∑
i=1

(1 − (1 − ��2
i
)k)

(uT
i
b)

�i
vi

(24)fLand(�
2, k) = 1 − (1 − ��2)k,
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•	 Conjugate gradient algorithm for least squares prob-
lem (CGLS)

–	 Let x0 denote the initial vector that often equals to 
0 , and define two auxiliary vectors r0 = b − �x0 and 
d0 = �Tr0,

–	 do the CG iteration for k = 1, 2,…

The CGLS is a non-stationary method and the filter function 
is of the following form [35],

where (�(k)
j
)2 are the k eigenvalues of �T� restricted to the 

K r y l o v  s u b s p a c e 
Kk(�

T�,�Tb) = span(�Tb, (�T�)�Tb,… , (�T�)k−1�Tb) . 
The CGLS often possesses faster convergence (or less k) 
than the Landweber method. As k increases, the eigenvalues 
converge to some of the eigenvalues of �T� , i.e., �(k)

j
≈ �i 

for selected i, j. By Eq. (26), the filter function for the CGLS 
is also dependent on the right-hand side b . Turning to the 
conditions in Sect. 2.2, fCGLS(�2, k) obviously verifies condi-
tions P1, P2, *P5 with kcr = n and approximately satisfies 
condition P3, but does not verify the condition P4 because 
fCGLS(�

2, k) may be greater than 1 [25]. As a consequence, 
the regularization effect of the CGLS is not always guaran-
teed [25].

In the next section, a new iterative integration regulariza-
tion method is to be developed. It is iterative and stationary 
and would, therefore, be efficient and possess the guaranteed 
regularization effect.

3 � The iterative integration regularization 
method

3.1 � Inversion by iterative integration

To start with, an alternative integral formulation for 
inversion of the matrix �T� is presented in the following 
theorem.

(25)

�k =
||�Trk−1||22
||�dk−1||22

,

xk = xk−1 + �kdk−1,

rk = rk−1 − �k�dk−1,

�k =
||�Trk||22
||�Trk−1||22

,

dk = �Trk + �kdk−1.

(26)fCGLS(�
2, k) = 1 − Πk

j=1

(�
(k)

j
)2 − �2

(�
(k)

j
)2

, k ≤ n,

Theorem 1  Let � ∈ ℝ
m×n be a matrix with full column rank, 

i.e., rank(�) = n and then, an integral form for inversion of 
�T� holds true,

Proof  Considering the full column rank property of � and 
the SVD as in equation (9), it is easily obtained that

where �,� are as illustrated below (9). By Eq. (28), one 
can get

from which the equality (27) follows trivially.

Now turn to the ill-posed problem (1), and the least-
squares solution requires solving �T�x = �Tb . By Theo-
rem 1, the solution is found to be

In this way, the solution shall be approximately obtained by 
introducing some finite (and often large) number T0 > 0,

and how to practically compute the integral (31) in an itera-
tive manner will be elaborated below.

Let 𝜏 > 0 be small enough and then, by Taylor expan-
sion, it is obtained that

and then,

where p denotes the truncation order of Taylor expansion. 
To go further, set

(27)(�T�)−1 = ∫
+∞

0

e−(�
T�)tdt.

(28)(�T�) = ��2�T

(29)∫
+∞

0

e−(�
T�)tdt = �∫

+∞

0

e−�
2tdt�T = ��−2�T

(30)x = ∫
+∞

0

e−(�
T�)t�Tbdt.

(31)xint = ∫
T0

0

e−(�
T�)t�Tbdt.

(32)

e−(�
T�)� ≈ �p,� ∶= � − (�T�)� +

(�T�)2�2

2!

−
(�T�)3�3

3!
+⋯ + (−1)p

(�T�)p�p

p!

(33)

∫
�

0

e−(�
T�)tdt = (�T�)−1(� − e−(�

T�)�)

≈ �p,� ∶= (�T�)−1(� − �p,� )

= �� −
(�T�)�2

2!
+

(�T�)2�3

3!

−
(�T�)3�4

4!
+⋯ + (−1)p−1

(�T�)p−1�p

p!
,
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and then, two ways can be invoked to get the solution itera-
tively with the help of the two approximations (32) and (33):

•	 Iterative integration-linear(IIL) At first, a simple 
equality is obtained, 

 Then, by the equality (35), the iterative procedure to get 
the solution (34) can be established with x0 = 0 and for 
k = 1, 2,…

 where the matrix �p,� is defined in Eq. (33), p ≥ 1 is an 
integer and � is a proper parameter; both p and � gov-
ern the performance of the iteration. The IIL is named 
after the fact that the number T0 = k� in the iteration (36) 
increases linearly with the number of iterations.

•	 Iterative integration-exponential (IIE) Distinct to the 
linear iteration in IIL, the number T0 = 2j� is expected to 
increase exponentially herein. This follows the 2j algo-
rithm that has been well used in the precise integration 
method [36]. To do so, set �j = e−(�

T�)2j� − � and simple 
analysis gives rise to 

 Then, the iterative procedure is given as: initially set 
�0 = �p,� − � and x20 = �p,��

Tb , and then, proceed for 
j = 1, 2,… , 

Note that both the IIL and the IIE are stationary and are 
derived as approximations of (34), and their performance 
is dependent on two parameters p, � . In the following the-
orem, the condition on p, � such that the two iterations—
the IIL (36) and the IIE (38) give convergent solutions to 
(�T�)−1�Tb is presented.

(34)xk = ∫
k�

0

e−(�
T�)t�Tbdt

(35)
x
k
= (�T�)−1(� − e

−(�T�)k�)�T
b ⇒ e

−(�T�)k��T
b

= �T
b − �T�x

k
.

(36)

xk = xk−1 + ∫
k�

(k−1)�

e−(�
T�)t�Tbdt

= xk−1 + ∫
�

0

e−(�
T�)tdt ⋅ e−(�

T�)(k−1)��Tb

= xk−1 + ∫
�

0

e−(�
T�)tdt ⋅ (�Tb − �T�xk−1)

= xk−1 + �p,��
T(b − �xk−1),

(37)x2j = (� + e−(�
T�)2j−1�)∫

2j−1�

0

e−(�
T�)tdt�Tb.

(38)
x2j = (2� + �j−1)x2j−1 ,

�j = 2�j−1 + �j−1 ⋅ �j−1.

Theorem 2  If p ≥ 1, 𝜏 > 0 are selected to verify

with �p,� defined in Eq. (32) and �(⋅) denoting the spectral 
radius of a matrix, the two iterations—the IIL (36) and the 
IIE (38) would give convergent solutions to (�T�)−1�Tb.

Proof  At first, it is easily found from Eq. (33) that

where p ≥ 1 is an integer. Then, further analysis on the IIL 
(36) yields

and under the condition (39), it is naturally deduced that

On the other hand, for the IIE (38), simple manipulations 
give rise to

which certainly tends to (�T�)−1�Tb as j → +∞ under the 
condition (39).

Remark 1  Paying attention to the IIL (36), if the linear 
Taylor truncation order is adopted in Eqs. (32) or (33), i.e., 
p = 1 , there is �p,� = �� and then, the IIL (36) turns out to be 
xk = xk−1 + ��T(b − �xk−1) , which coincides perfectly with 
the Landweber method (22). Clearly, the proposed iterative 
integration method degenerates to the Landweber method 
under the linear Taylor expansion and the linear iteration. In 
other words, the proposed method can to some extent viewed 
as the extension of the Landweber method.

Remark 2  Comparing (41) with (43), the final results by the 
IIL and the IIE are of the same form, except that the ways to 
do iterations are different: the IIL is the linear (k) iteration, 
while the IIE is the exponential ( 2j ) iteration. In a single iter-
ation, the computation cost for the IIL is much less than that 
for the IIE, because the IIL only involves the matrix–vec-
tor multiplication, while the IIE requires the matrix–matrix 

(39)𝜌(�p,𝜏) < 1

(40)�p,� = � − (�T�)�p,� ,

(41)

xk = �p,��
Tb + �p,�xk−1

= [� + �p,� +⋯ + (�p,� )
k−1]�p,��

Tb

= (� − (�p,� )
k)(� − �p,�)

−1�p,��
Tb

= (� − (�p,� )
k)(�T�)−1�Tb

(42)lim
k→+∞

(� − (�p,� )
k)(�T�)−1�Tb = (�T�)−1�Tb.

(43)

� + �j = (� + �j−1)
2 = (� + �0)

2j = (�p,� )
2j ,

x2j = (� + (�p,�)
2j−1)x2j−1 = [Π

j−1

s=0
(� + (�p,� )

2s)]x20

= [� + (�p,�) + (�p,�)
2 +⋯ + (�p,� )

2j−1]�p,��
Tb

= (� − (�p,�)
2j )(�T�)−1�Tb
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multiplication. However, the IIE converges much faster than 
the IIL especially for the large-scale ill-posed problems. 
Specifically, if the iteration number k is finite and quite less 
than n, the IIL would be much efficient than the IIE; while 
if too many iterations are required ( k > n ln k ), the IIE is 
often preferred.

Remark 3  Focusing on the condition (39), it is easily 
obtained that for p ≥ 0

where gp(t) is the pth order Taylor expansion of e−t . To go 
further, set rp(t) = e−t − gp(t) and the following hold

Then, for t ≥ 0 , one can have r0(t) ≤ 0 and then, recursively 
for k = 1, 2,…

This gives rise to,

Based on the results in Eq. (47), there are

indicating that for t ∈ [0, ��2
1
] , g2k−1(t) is a monotonically 

decreasing function and g2k(t) is a strictly convex function. 

(44)
�(�p,�) = max{|gp(��2)|, � ∈ {�1, �2,… , �n}};

gp(t) = 1 − t +
t2

2!
+⋯ + (−1)p

tp

p!
,

(45)rp(0) = 0, r�
p
(t) = −rp−1(t).

(46)

r2k−2(t) ≤ 0;

r�
2k−1

(t) = −r2k−2(t) ≥ 0 ⇒ r2k−1(t) ≥ 0;

r�
2k
(t) = −r2k−1(t) ≤ 0 ⇒ r2k(t) ≤ 0.

(47)g2k−1(t) ≤ e−t ≤ g2k(t), g2k(t) > 0.

(48)g�
2k+1

(t) = −g2k(t) < 0;g��
2k+2

(t) = g2k(t) > 0

Along with the fact g2k−1(0) = g2k(0) = 1 and Eqs. (44) and 
(48), the condition (39) turns into

For brevity, let the real solution of gp(t) = z, t > 0 under 
some proper z be denoted by sp,z and for a schematic view of 
these solutions, refer to Fig. 1. Consequently, the condition 
(39) is simplified to

and the greater p is, the larger upper bound �Upperp  would be. 
In this paper, it is set � = 0.8�

Upper
p .

Up till now, the iterative integration method with two var-
iants—the IIL and the IIE—has been developed for inverse 
solution of the ill-posed problem (1). In what follows, the 
iterative integration method will be shown to pose the regu-
larization effect.

3.2 � Regularization effect

This section starts with the ideal case (31) of the integration 
method with T0 = k�,

and then, the filter function for the ideal case is found to be

(49)|gp(𝜏𝜎2
1
)| < 1 ⇔

{
gp(𝜏𝜎

2
1
) > −1, if p = 2k − 1,

gp(𝜏𝜎
2
1
) < 1, if p = 2k.

(50)0 < 𝜏 < 𝜏Upper
p

∶=

{ sp,−1

𝜎2
1

, for p odd,
sp,1

𝜎2
1

, for p even,

(51)xint = [� − e−(�
T�)k�](�T�)−1�Tb

(52)fint(�
2, k) = 1 − e−�

2k� .

Fig. 1   Schematic of function 
gp(t)
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While turning to equations (41) and (43), the filter func-
tions for the two practical variants of the iterative integration 
method—the IIL and the IIE are

where the function gp(⋅) has been defined in Eq.  (44). 
Clearly, fint(�2, k) satisfies the five conditions in Sect. 2.2, 
indicating that the ideal case is indeed a regularization 
method.

As with the two practical variants—the IIL and the 
IIE, they have nearly the same filter functions, except for 
the different exponentials k and 2j . Thus, without loss of 
generality, the focus is on the analysis of the filter func-
tion fIIL(�2, k) of the IIL. At first, considering the fact that 
gp(0) = 1, g�

p
(0) = −1 , there is

meaning that the condition P1 is satisfied. Secondly, under 
the condition (50), there is |gp(𝜏𝜎2)| < 1,∀𝜎 ∈ [𝜎n, 𝜎1] and 
then, the condition P2 is verified under some large k. Other 
conditions P3, P4, *P5 are obviously fulfilled by fIIL(�2, �) 
with the critical parameter kcr = +∞ . To conclude, the itera-
tive integration method with two variants has been shown to 
satisfy the five conditions in Sect. 2.2 and as a result, it is a 
strict regularization method.

At the closure of this sub-section, the filter functions for 
the six regularization methods involved in this work—the 
Tikhonov regularization, the TSVD, the Landweber method, 
the CGLS, and the proposed IIL and IIE are summarized in 
Table 1 for comparison. In the next section, how to select the 
regularization parameter for the iterative integration method 
is elaborated.

(53)
fIIL(�

2, k) = 1 − (gp(��
2))k,

fIIE(�
2, j) = 1 − (gp(��

2))2
j

,

(54)
fIIL(0, k) = 0, lim

�→0

fIIL(�
2, �)

�
= lim

�→0

−k(gp(��
2))k−1g�

p
(��2)2��

1
= 0

3.3 � Selection of regularization parameter using 
the L‑curve

In the above, the iterative integration method has been 
shown to pose the regularization effect and the iteration 
number k for the IIL (resp. j for the IIE) is just the regulari-
zation parameter, that remains to be determined.

The L-curve has been well recognized as an effective way 
to select the regularization parameter [18]. To do so, for the 
IIL, the norm of the regularized solution and the norm of the 
residual should be calculated at each iteration k,

Then, plot the log–log scale curve

and the optimal k is chosen at the L-corner of the curve. As 
with how to find the L-corner, the cubic spline curve fitting 
[18] or the triangle method [37] can be used. The above 
procedure can work for the IIE by simply replacing xk in 
(55) with x2j . Note that the iteration should go a few itera-
tions too far from the optimal choice in order to determine 
the L-corner of the curve.

4 � Numerical examples and applications

In this section, three typical ill-posed problems arising from 
some real applications are investigated to see the effective-
ness and efficiency of the proposed iterative integration 
regularization method including the IIL and the IIE. Other 
regularization methods as listed in Table 1 will also be con-
sidered for comparison. The root-mean-square (RMS) noise 
is added to the data as follows

where RMS(b) =
√

(b2
1
+ b2

2
+⋯ + b2

m
)∕m , e is the noise 

level (e.g., = 1%), and r is a random vector having the same 

(55)�2(k) = ||�xk − b||2
2
, �2(k) = ||xk||22.

(56)(log �(k), log �(k))

(57)b = btrue + e ⋅ RMS(btrue) ⋅ r,

Table 1   The filter functions for 
various regularization methods

Method Abbreviation Filter function

Tikhonov Tik fTik(�
2, �) =

�2

�2+�2

Truncated singular value decomposition TSVD
fTSVD(𝜎

2, k) =

{
0, if 𝜎 < 𝜎t(k,n)
1, otherwise

Landweber method Land fLand(�
2, k) = 1 − (1 − ��2)k

CG algorithm for least squares problem CGLS
fCGLS(�

2, k) = 1 − Πk
j=1

(�
(k)

j
)2−�2

(�
(k)

j
)2

Iterative integration method-Linear IIL fIIL(�
2, k) = 1 − (gp(��

2))k

Iterative integration method-Exponential IIE fIIE(�
2, j) = 1 − (gp(��

2))2
j
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size with b and pertaining to the standard normal 
distribution.

4.1 � Fredholm integral equation of the first kind

Consider the Fredholm integral equation of the first kind 
[38]:

where K(s, t) is the kernel function, g(s), c ≤ s ≤ d is the 
known right-hand side and f (t), a ≤ t ≤ b is the unknown 
solution remaining to be determined. The Fredholm 
integral equation is widely encountered in many appli-
cations, including image reconstruction [39], inverse 
Laplace transformation and so on. Usually, this equa-
tion is solved through the following discretization: let 
a = t1 < t2 < ⋯ < tn = b, c = s1 < s2 < ⋯ < sm = d be the  
(usually uniform) discretization of the intervals [a,  b] 
and [c,  d]. Then, set x = [f (t1); f (t2);… ; f (tn)] and 
b = [g(s1); g(s2);… ; g(sm)] , and by the Trapezoid integra-
tion rule, a discrete equation of the form (1) is naturally 
invoked for the Fredholm integral Eq. (58) with

Herein, the particular case is a one-dimensional problem 
in image reconstruction [13] where the image is blurred by 
a known point-spread function. The kernel function is the 
point-spread function of an infinitely long slit, given by

with sinc(x) = sin�x

�x
 , while the desired solution is set to

For discretization, m = n = 64 equally spaced points in 
[−�∕2,�∕2] are used for both t and s and then, the system 
matrix � is obtained as in Eq. (59). To see more into the sys-
tem matrix � , the singular values of � are depicted in Fig. 2. 
As it is observed, there are many singular values being less 
than 1 × 10−15 , that is, clustering at zero. The condition num-
ber as the ratio of the largest singular value to the smallest 
�1∕�n = 4.6 × 1016 is huge, indicating that the problem is 
indeed ill-posed. In this example, the true solution xtrue can 
be obtained based on (61) and then, the right-hand side is 
obtained by adding noise with level e = 1% to the true one 
btrue = �xtrue in the form of (57). For simplicity, it is taken 

(58)�
b

a

K(s, t)f (t)dt = g(s), c ≤ s ≤ d,

(59)

� =
�
aij ∶= K(si, tj)Δtj

�
m×n

,Δtj

=

⎧⎪⎨⎪⎩

(t2 − t1)∕2, j = 1,

(tj+1 − tj−1)∕2, j = 2,… , n − 1,

(tn − tn−1)∕2, j = n.

(60)
K(s, t) = [(cos s + cos t) ⋅ sinc(sin s + sin t)]2,−�∕2 ≤ s ≤ �∕2

(61)
f (t) = exp(−4(t − 0.5)2) + exp(−4(t + 0.5)2),−�∕2 ≤ t ≤ �∕2.

� = � , the identity matrix in the regularization formulation 
(3).

The six regularization methods abbreviated as listed in 
Table 1 are adopted to solve the ill-posed problem. Note that 
the Taylor truncation order for the proposed two variants of 
the iterative integration method—the IIL and the IIE, is fixed 
at p = 3 (refer to Eq. (32)) at first. The L-curve rule is used 
to select a proper regularization parameter and the detailed 
L-curves for the six regularization methods are displayed in 
Fig. 3 where the selected regularization parameters at the 
L-corner are highlighted in red. As it is seen, among the iter-
ative regularization methods, both the Landweber method 
and the IIL ( p = 3 ) require over 2500 iterations to reach the 
L-corner, while the CGLS and the IIE ( p = 3 ) arrives at the 
L-corner within only 12 iterations. Note that the Landwe-
ber method is a particular case of the IIL but with Taylor 
truncation order being p = 1 and the slow convergence of 
the IIL for this ill-posed problem is observed. In contrast, 
fast convergence is seen by the CGLS and the IIE ( p = 3 ). 
Except for the Landweber method and the IIL ( p = 3 ), the 
L-shape of the residual norm vs. the solution norm curve for 
other regularization methods is quite clear and the selection 
at the L-corner seems straightforward.

With the regularization parameters selected at the 
L-corner, the solutions by the six regularization methods 
are obtained as graphically shown in Fig. 4. Clearly, all the 
six regularization methods have led to satisfactory solu-
tion of the Fredholm integral equation. To further quan-
tify the performance of the six regularization methods for 
the Fredholm integral equation, the relative error (RE) is 
calculated as

with xreg denoting the solution by some regularization 
method, and the computation time is also counted; detailed 
results are presented in Table 2. The relative errors for the 

(62)RE =
||xreg − xtrue||2

||xtrue||2 × 100%,
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Fig. 2   Schematic of the singular values of the system matrix for Fred-
holm integral equation problem
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six regularization methods approaching to each other are all 
less than 8%, meaning that this Fredholm integral equation 
is well solved. Among them, the proposed IIE ( p = 3 ) gives 
rise to least relative error (RE = 5.88%); the effectiveness 
of the proposed iterative integration regularization method 
(including the IIE and the IIL) for the ill-posed Fredholm 
integral equation is verified. As with the computation time, 
the cost for the six regularization methods is at the same 

cheap level due to the fact the system matrix � is only of 
small size m = n = 64 , nonetheless, the iterative methods 
including the CGLS and the IIE turn out to be slightly more 
efficient. To further visual the regularization effect of the 
six regularization methods, the filter factors (see Table 1) 
under different singular values are plotted in Fig. 5. Except 
for the CGLS, other five methods share the same trend of 
the filter factors: the filter factors tend to zero for relatively 
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Fig. 3   L-curves of different regularization methods for Fredholm integral equation problem: a Tik, b TSVD, c Land, d CGLS, e IIL ( p = 3 ) and 
f IIE ( p = 3)
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small singular values ( �i ≤ 1 × 10−3 ) to filter out undesired 
noise effect, the filter factors tend to one for relatively large 
singular values ( 𝜎j > 0.1 ) to keep the terms of the true solu-
tion and the filter factors lie almost monotonically between 
[0, 1]. Particular attention should be paid to the filter fac-
tors of the CGLS where the filter factor reaches 1.8 at the 
4th singular value, being undesirably greater than 1 and this 
indicates that the CGLS is not a strict regularization method. 
Despite of the undesirable trend in the filter function of the 
CGLS, the CGLS still performs well for this Fredholm 

integral equation and the reason may reside at that the term 
corresponding to the 4th singular value is negligible in the 
true solution.

To conclude, for the proposed iterative integration 
regularization method, the IIL admits slow convergence, 
while fast convergence is often reached by the IIE. In this 
way, the exponential iteration (IIE) is often preferred to 
carry out the proposed integration regularization. The IIE 
is found to give the solution with least relative error, and 
due to iterative nature, the IIE and the CGLS are slightly 
more efficient in this example than the direct regularization 

Fig. 4   Plot of the solutions by 
the six regularization methods 
for Fredholm integral equation 
problem
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Table 2   Results on relative error (RE), selected regularization parameter at the L-corner (Reg-Para) and time consumption (in second) by the six 
regularization methods for Fredholm integral equation problem

Method Tik TSVD Land CGLS IIL ( p = 3) IIE ( p = 3)

RE 7.62% 7.55% 6.26% 7.00% 6.26% 5.88%
Reg-Para � = 0.02535 k = 5 k = 3242 k = 5 k = 2583 j = 12

Time 0.27 s 0.20 s 0.27 s 0.16 s 0.20 s 0.19 s

Fig. 5   Filter factors of the six 
regularization methods under 
different singular values for 
Fredholm integral equation 
problem
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methods including the Tikhonov regularization and the 
TSVD. Also noteworthy is that the regularization effect is 
guaranteed for the IIE, but may be deviated for the CGLS.

In the above, the IIE is shown to perform well under the 
prescribed Taylor truncation order p = 3 . At the closure 
of this example, the dependence of the performance of the 
IIE on different Taylor truncation orders p is explored. The 
detailed results are summarized in Table 3. It is observed 
that under different truncation orders p, the performance is 
similar: the relative error is within [5.86%, 6.98%] mean-
ing that all cases give satisfactory solution to the Fredholm 
integral equation, the time for computation is all near 0.20 
s and the number of iterations to arrive at the L-corner is 
also no more than 13; this is to say, the effect of the order 
p on the performance of the IIE is not-so-obvious in this 
example.

4.2 � Dynamic force reconstruction of a shear 
structure

Dynamic force reconstruction of a ten-storey shear struc-
ture from the measured acceleration data is considered in 
this example. The shear structure model is presented in 
Fig. 6 and the model parameters are taken as: the shear 
stiffness of every storey k1 = k2 = ⋯ = k10 = 1500 kN/m 
and the mass of every floor m1 = m2 = ⋯ = m10 = 3500 
kg. In this way, the stiffness matrix � and the mass matrix 
� are obtained as

The Rayleigh damping � = a1� + a2� is assumed with the 
first two damping ratios being 1% so that there is a1 = 0.0463 
s −1 and a2 = 1.625 × 10−3 s. The structure is initially at rest 
and a dynamic force with the following expression

is enforced at the first floor.

� =

⎛⎜⎜⎜⎝

m1 0 ⋯ 0

0 m2 ⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯ m10

⎞⎟⎟⎟⎠
,� =

⎛⎜⎜⎜⎝

k1 + k2 − k2 ⋯ 0

−k2 k2 + k3 ⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯ k10

⎞⎟⎟⎟⎠
.

(63)F(t) = (0.5 + 3e−2t cos(20t) + sin(10t)) × 3500 N

Herein, the dynamic force is to be inversely recon-
structed from the acceleration measurements at the 2nd, 
6th and 10th floors. The acceleration data are firstly 
obtained from numerical simulation at the sampling ratio 
of 500 Hz within the time duration [0, 2]s and then, the 
noise of level e = 2% is added to get the measured data; 
for a schematic view of the measured data, refer to Fig. 7. 
Clearly, this force reconstruction problem falls into the 
general form [40, 41] of Eq. (1): the measured data consti-
tute the right-hand side b , the force discretized at the same 
sampling frequency 500 Hz forms the unknown solution x 
and the system matrix � of sizes ( m = 3003, n = 1001 ) can 
be obtained as in the Appendix. Note that it has been sug-
gested from Refs. [40, 41] that for continuous force recon-
struction, the matrix � (see Eq.  (3)) for regularization 
would better be the one in Eq. (4) with s = 1 ; such a choice 
can enhance the continuity of the solution and is there-
fore the case in this example. Under this circumstance, the 
regularization (3) is not in the standard form, nevertheless, 
the standard form can be easily obtained following the 
manipulations in Eqs. (5)–(7) with the transformed sys-
tem matrix �̄ (of size 3003 × 1000 ). Note that the condi-
tioning of the force reconstruction problem is determined 
by the singular values of �̄ and therefore, these singular 
values are depicted in Fig. 8. It is seen that except for the 
smallest singular value �1000 = 2.75 × 10−14 , other singular 
values lie in the interval [�999 = 5.47 × 10−7, �1 = 63.34] . 
As a result, �̄ is approximately rank-1 deficient and the 
condition number of �̄ is 2.35 × 1015 , indicating that force 
reconstruction herein is an ill-posed problem.

The six regularization methods in Table 1 are used to 
solve this force reconstruction problem where the trun-
cation order takes p = 3 for the IIL to differ from the 
Landweber method, while it is set p = 1 for the IIE at first. 

Table 3   Results on relative error (RE), time consumption (in second) 
and the number of iterations at L-corner by the IIE with different 
truncation orders p for Fredholm integral equation problem

Truncation order p = 1 p = 2 p = 3 p = 5 p = 7

RE 6.98% 6.98% 5.88% 5.86% 5.87%
Time 0.21 s 0.17 s 0.19 s 0.15 s 0.21 s
j at L-corner j = 13 j = 13 j = 12 j = 12 j = 12

Fig. 6   A ten-storey shear model with dynamic force exerted on the 
first floor
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The L-curve rule is adopted to determine the regulari-
zation parameters and the details are exhibited in Fig. 9. 
Then, under the selected regularization parameters at the 
L-corner, the force can be identified and the identifica-
tion results are displayed in Fig. 10. To further quantify 
the performance, the relative error (RE) and the computa-
tion cost for the six regularization methods are given in 
Table 4. The above results and further analysis show that

•	 The L-shape for the log–log scale residual norm vs. solu-
tion norm curve is quite apparent (see Fig. 9) especially 
for the Tikhonov regularization, the TSVD, the CGLS 
and the the IIE. As a result, the selection of the regulari-
zation parameter at the L-corner is very straightforward.

•	 The Landweber method takes 116.33 s to solve the ill-
posed problem and the IIL ( p = 3 ) takes 39.80 s. These 
two methods turn out to be much more expensive than 
other four regularization methods in terms of computa-
tion cost. This is mainly because the iterations required to 
arrive at the L-corner exceed 1000 for the two methods, 
indicating that very slow convergence is invoked by the 
Landweber method and the IIL for the ill-posed problem. 
Thus, the Landweber method and the IIL are often not 
recommended to solve the ill-posed problem, except that 
proper preconditioning of the system matrix is introduced 
to dramatically reduce the condition number; this, how-
ever, is beyond the scope of this paper.

•	 The solution given by the Tikhonov regularization 
admits the greatest relative error 14.66% so that the 

Fig. 7   Acceleration data with 
2% noise for force reconstruc-
tion problem
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reconstructed force by the Tikhonov regularization devi-
ates most from the true force (see Fig. 10). This may be 
caused by the not-so-proper selection of the candidate 
regularization parameters. In this way, the Tikhonov 
regularization seems to be more cumbersome than other 
regularization methods because efforts should be made 
to determine a proper set of candidate regularization 
parameters so as to proceed the L-curve selection rule. 
While for other regularization methods, the number of 
iterations or the truncation order of the SVD is naturally 
the regularization parameter.

•	 Except for prohibitive computation cost for the Landwe-
ber method and the IIL, the computation cost for other 
four regularization methods is almost at the same level 
with the time consumption taken between [3.17 s, 8.67 
s]. Among them, the cost for the CGLS and the IIE is 
less than the cost for the Tikhonov regularization and the 
TSVD; this shall be benefit from the advantage of itera-
tive regularization methods over the direct regularization 
methods. It is also seen that the proposed IIE takes less 
time than the CGLS and the reason may lie in that the 
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convergence by the IIE is faster (in only j = 11 iterations) 
than by the CGLS (in k = 31 iterations).

•	 Except for the Tikhonov regularization, other five regu-
larization methods have led to satisfactory solution of 
the force reconstruction problem because the relative 
errors are all less than 9%, among which the proposed 
IIE performs best.

•	 To see the filter effect of the six regularization meth-
ods, the filter factors under different singular values are 

presented in Fig. 11. All well verify the conditions P1–
P4 in Sect. 2.2, indicating that these six methods can 
indeed pose the regularization effect for this example.

•	 To further see the effect of the Taylor truncation order 
p on the proposed IIE, different ps are selected for the 
IIE and then, the results are presented in Table 5. It is 
observed that for different p’s, the number of iterations 
at the L-corner are the same and the computation cost 
as well as the relative error is quite near to each other. 

Fig. 10   Identified dynamic 
forces by the six regularization 
methods for force reconstruc-
tion problem
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Table 4   Results on relative error (RE), selected regularization parameter at the L-corner (Reg-Para) and time consumption (in second) by the six 
regularization methods for force reconstruction problem

Method Tik TSVD Land CGLS IIL ( p = 3) IIE ( p = 1)

RE 14.66% 7.98% 8.91% 7.06% 8.92% 5.98%
Reg-Para � = 0.669 k = 37 k = 1225 k = 31 k = 1116 j = 11

Time 6.82 s 8.67 s 116.33 s 6.14 s 39.80 s 3.17 s

Fig. 11   Filter factors of the six 
regularization methods under 
different singular values for 
force reconstruction problem
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The performance of the proposed iterative integration 
method including the IIE is almost independent of the 
choice of the Taylor truncation order p. The reason for 
this approximate independence on p is given as fol-
lows. The �2 regularization attempts to filter out the 
effect of relatively small singular values and to preserve 
the effect of relatively large singular values. Let the 
smallest one of the relatively large singular values be 
�s and then, to keep the effect of �s , there should hold 
1 − (gp(��

2
s
))2

j

→ 1 or (gp(��2
s
))2

j

→ 0 for some proper j 
by referring to the filter functions in Table 1. Note that 
�s is often very small with respect to �1 , i.e., 𝜎s∕𝜎1 ≪ 1 , 
and then, by selecting � in the way of Remark 3, there is 
0 < 𝜏𝜎2

s
≪ 1 and gp(��2

s
) → 1 . Under this circumstance, 

the higher order terms in gp(��2
s
) become negligible 

and there is gp(��2
s
) ≈ g1(��

2
s
), p ≤ 2 ; this just explains 

why different choices of p often lead to similar regu-
larization performance.

•	 Fo l lowing  the  above  po in t ,  1 − gp(��
2
s
) → 0 

and  t hen ,  (gp(��
2
s
))k ≈ 1 − k(1 − gp(��

2
s
)) wh i l e 

(gp(��
2
s
))2

j

≈ 1 − 2j(1 − gp(��
2
s
)) for some proper k,  j. 

This to some extent implies that the IIL admits linear 
(with respect to k) convergence while the IIE admits 
exponential (with respect to j) convergence. The pro-
posed IIE is reasonably deduced to converge very fast, 
e.g., only in 11 iterations for this force reconstruction 
problem.

4.3 � Cauchy problem for steady‑state heat 
conduction

Consider the steady-state heat conduction in a 2D circular 
domain Ω (see Fig. 12). The conductivity coefficient for 
this domain is set to unity for simplicity and there is no 
heat source inside the domain. In this way, the governing 
equation for steady-state heat conduction is found to be

where y = [x, y] ∈ Ω and u = u(y) denotes the temperature 
field. Let Γ be a portion of the whole boundary, i.e., Γ ⊂ 𝜕Ω 

(64)−Δu = 0, in Ω

and then, the Cauchy problem is described as: given the 
Dirichlet/temperature and Neumann/heat-flux data on the 
known boundary Γ with n being the outward normal vector

determine the boundary condition (or temperaure) on the 
unknown boundary Γun = �Ω ⧵ Γ.

A usual way to solve the Cauchy problem is to use 
the method of fundamental solutions (MFS) [8]. The 
basic idea is that, when there is no heat source inside the 
domain, the temperature inside the domain can be approxi-
mately generated by a series of n point heat sources prop-
erly locating at z1, z2,… , zn outside the domain. For a sin-
gle point heat source at zj with unit strength, the resulting 
temperature is just the fundamental solution (or Green 
function)

Assume that the strengthes of the n point heat sources are 
f1, f2,… , fn or x = [f1;f2;… ; fn] and this can lead to the fol-
lowing temperature solution

To get the eventual temperature, the strengths x of the 
hear sources are to be determined from the temperature 
and flux data on the known boundary Γ . To go further, 

(65)u|Γ = �,
�u

�n
|Γ = � ,

(66)G(y, zj) =
1

2�
ln ||y − zj||.

(67)u(y) =

n∑
j=1

G(y, zj)fj.

Table 5   Results on relative error (RE), time consumption (in second) 
and the number of iterations at L-corner by the IIE with different 
truncation orders p for force reconstruction problem

Truncation order p = 1 p = 2 p = 3 p = 5 p = 7

RE 5.98% 5.98% 5.01% 6.08% 5.77%
Time 3.17 s 2.92 s 3.35 s 3.28 s 3.49 s
j at L-corner j = 11 j = 11 j = 11 j = 11 j = 11

Fig. 12   Cauchy problem for steady-state heat conduction on a circu-
lar domain Ω
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the known boundary data (65) are collected on m points 
y1, y2,… , ym ∈ Γ , yielding for i = 1, 2,… ,m

and this completely coincides with the linear form in Eq. (1):

where the system matrix � is of size 2m × n.
Herein, the Cauchy problem is specified as follows (refer 

to Fig. 12): the circular domain Ω is of radius r = 1 , the 
known boundary Γ is set as the part of the boundary corre-
sponding to the angle � ∈ [0,�] , where m = 101 points are 
uniformly selected on this boundary to collect the tempera-
ture and flux data, while n = 100 source points are uniformly 
chosen on a circle outside the domain with radius R = 2 ; by 
these settings, the system matrix � can be obtained. In this 
example, the true temperature field is given as

so that the right-hand side b is obtainable with the noise level 
e = 1% (see Eq. (57)). To get more sights into this Cauchy 
problem, the singular values of the matrix � are plotted in 
Fig. 13. It is seen that many singular values approaching 
1 × 10−15 cluster at zero and the condition number being 
3.04 × 1016 is very huge; this means that the Cauchy prob-
lem herein is indeed an ill-posed problem. The four regulari-
zation methods including the Tikhonov regularization, the 
TSVD, the CGLS and the proposed IIE are used to solve this 
ill-posed Cauchy problem, while other two methods—the 
Landweber method and the IIL, are excluded because they 
suffer from very slow convergence. For the IIE, the Taylor 
truncation order is simply fixed to p = 1 due to the fact that 
the performance of the IIE is shown nearly independent on p. 
Again, the L-curve rule is applied to determine the regulari-
zation parameters where the details are depicted in Fig. 14 
and then, after selecting the regularization parameters at the 
L-corners, the regularized solutions can be obtained.

Note that with the regularized solution obtained, the 
temperature field over the whole domain Ω is acquired 
by resorting to Eq. (67), and thereafter, the temperature 
on the unknown boundary Γun corresponding to the angle 
� ∈ [�, 2�] is reconstructed; to get a schematic impression 

(68)

u(yi) =

n∑
j=1

G(yi, zj)fj = �(yi),

�u(yi)

�n
=

n∑
j=1

�G(yi, zj)

�n
fj = �(yi)

(69)

�x = b,

� =

(
�(1)

�(2)

)
,�(1) =

(
G(yi, zj)

)
m×n

,�(2) =

(
�G(yi, zj)

�n

)

m×n

,

b =

(
b(1)

b(2)

)
, b(1) =

(
�(yi)

)
m
, b(2) =

(
�(yi)

)
m
,

(70)u(x, y) = x3 − 3xy2 + e2y sin(2x) − ex cos(y)

on the identified temperature on Γun , refer to Figure 15. 
As it is observed, all four regularization methods have 
led to satisfactory reconstruction of the temperature on 
Γun and thereof, good solution of the Cauchy problem. To 
quantify the performance of the four regularization meth-
ods, the relative error (RE) between the identified and true 
temperatures at the 101 uniformly distributed points on 
Γun and the time consumption are calculated and listed 
in Table 6. Though all being satisfactory, the proposed 
IIE is shown to give most accurate reconstruction of the 
temperature on Γun because the RE of the IIE equaling to 
3.98% is smallest. As regards the computation cost, the 
TSVD is found to take least computation time while the 
Tikhonov regularization takes the most. This is mainly 
caused by the fact that for this problem, the number of the 
candidate regularization parameters for the Tikhonov reg-
ularization is much greater than the required order k = 15 
for the TSVD. As with the two iterative regularization 
methods—the CGLS and the IIE, the consumption time is 
quite near to each other and the convergence is very fast 
within k = 23 iterations for the CGLS and j = 19 iterations 
for the IIE. Consequently, the effectiveness and efficiency 
of the proposed IIE for solution of the ill-posed Cauchy 
problem are verified.

5 � Conclusions

A novel iterative integration regularization method has 
been proposed for robust and efficient solution of ill-posed 
problems in this paper. It is mainly motivated by the fact 
that inversion of a positive definite matrix can be alterna-
tively represented in an integral form. Two practical vari-
ants—the IIL and the IIE—to compute the integral using 
the respective linear and exponential iterations are devel-
oped. Detailed analysis reveals that the proposed method 
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Fig. 13   Schematic of the singular values of the system matrix for 
Cauchy problem
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possesses the guaranteed regularization effect, i.e., it can 
filter out the undesired effect of the relatively small sin-
gular values, while keep the effect of the relatively large 
singular values. To verify the performance of the proposed 
method, three typical ill-posed problems including the 
Fredholm integral equation, the force reconstruction and 
the Cauchy problem are studied along with comparison 

to some usual direct and iterative regularization methods, 
and results show that

•	 For the proposed iterative integration regularization 
method, the exponential iteration (the IIE) is shown in 
Table 4 to admit much faster convergence and more effi-
cient computaiton than the linear iteration (the IIL) and 
therefore, the IIE is preferred in the proposed iterative inte-
gration method.

•	 The proposed IIE is found able to effectively and efficiently 
solve all the three ill-posed problems.

•	 Compared to general direct regularization methods includ-
ing the Tikhonov regularization and the TSVD, the pro-
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Fig. 14   L-curves of different regularization methods for Cauchy problem: a Tik, b TSVD, c CGLS and d IIE ( p = 1)
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Fig. 15   Identified temperature on the unknown boundary Γun by dif-
ferent regularization methods for Cauchy problem

Table 6   Results on relative error (RE), selected regularization param-
eter at the L-corner (Reg-Para) and time consumption (in second) by 
different regularization methods for Cauchy problem

Method Tik TSVD CGLS IIE ( p = 1)

RE 5.09% 7.27% 6.77% 3.98%
Reg-Para � = 0.00528 k = 15 k = 23 j = 19

Time 0.296 s 0.078 s 0.140 s 0.109 s
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posed IIE usually turns out to be more efficient by referring 
to the results in Table 4; this is mainly due to the iterative 
nature of the proposed IIE.

•	 The Landweber method, as an iterative regularization 
method and a particular case of the IIL, is shown to admit 
very slow convergence and thereof, prohibitively high com-
putation cost for ill-posed problems. In other words, the 
proposed IIE is much more efficient than the Landweber 
method.

•	 Focusing on the proposed IIE and the CGLS, both methods 
are iterative; however, the IIE is stationary while the CGLS 
is non-stationary whose filter factors depend on the right-
hand side. In all the three examples, the relative error and 
the computation cost for the CGLS and the IIE are at the 
same level, that is to say, the IIE can perform as well as the 
CGLS. Nevertheless, the main advantage of the proposed 
IIE over the CGLS resides at that the IIE has the guaran-
teed regularization effect, while the CGLS may not [25].
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manipulations on Eq.  (71) can yield the following state 
equation

with

where � denotes the identity matrix, Δt = tk+1 − tk . The 
measured data d(tk),∀k are often of the form

where �,� are observation matrices. Setting the initial 
states u(t1) = u̇(t1) = 0 and combining (72) with (74), it is 
acquired that
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.

Appendix

To get the matrix � for force reconstruction in structural 
systems, the Newmark method for solution of the dynamic 
equation is called for k = 1, 2,… ,NT,

where � = 1∕2, � = 1∕4 are fixed in this paper, �,�,� 
are the mass, damping and stiffness matrices, u(t) denotes 
the displacements, f (t) collects all independent forces and 
� describes the spatial distributions of the forces. Simple 
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u(tk+1) = u(tk) + u̇(tk)Δt + [𝛽ü(tk+1) + (1∕2 − 𝛽)ü(tk)]Δt
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