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Abstract
The implementation of periodic boundary conditions (PBCs) is one of the most important and difficult steps in the computa‑
tional analysis of structures and materials. This is especially true in cases such as mechanical metamaterials which typically 
possess intricate geometries and designs which makes finding and implementing the correct PBCs a difficult challenge. 
In this work, we analyze one of the most common PBCs implementation technique, as well as implement and validate an 
alternative generic method which is suitable to simulate any possible 2D microstructural geometry with a quadrilateral unit 
cell regardless of symmetry and mode of deformation. A detailed schematic of how both these methods can be employed 
to study 3D systems is also presented.

Keywords Finite element analysis · Mechanical metamaterials · Periodic boundary conditions · Auxetics · Mechanical 
properties

1 Introduction

Mechanical metamaterials are systems whose mechanical 
properties are governed primarily by their structural frame‑
work rather than material composition. In recent years, there 
have been numerous studies on these materials, which rep‑
resent a novel class of systems in the field of material sci‑
ence. This interest has arisen mainly due to their versatility 
and ability to exhibit a wide range of mechanical properties, 
particularly negative properties such as negative Poisson’s 
ratio (auxeticity) [1–7], negative stiffness [8] and negative 
compressibility [9–11], which are not commonly found in 
conventional materials.

The finite element (FE) method is one of the most com‑
mon techniques used to study these systems. Mechanical 

metamaterials typically possess intricate geometries which 
are repeated multiple times to form a sheet or block of mate‑
rial. The standard modus operandi used to study these sys‑
tems takes advantage of this, by employing the use of the 
representative area or volume elements (RVEs) with periodic 
boundary conditions to simulate the deformation behaviour 
of these systems [12–23]. This allows one to study stress 
and strain fields and distributions as well as investigate the 
mechanical properties of these systems. These representative 
elements typically consist of one or multiple repeating units, 
depending on the type of analysis required. The periodic 
boundary conditions (PBCs) method entails the simulation 
of a structure as an infinite system with all pairs of opposing 
boundaries (two or three depending on whether the system 
is 2D or 3D, respectively) deforming in an identical manner, 
thus creating a scenario where edge or boundary effects are 
completely eliminated. Although it is well known that in 
real life all materials have boundaries and, thus, in reality 
edge effects will always play some role on the deformation 
of the system, one may also argue that should a finite system 
possess a sufficiently large number of repeating units then it 
will deform similarly to an infinite system. This reasoning 
is based upon the assumption that in a system with a very 
large number of repeating units, the ratio of boundary units 
to internal units is extremely low and therefore the overall 
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deformation behaviour and, hence, mechanical properties 
of the system will be determined by the deformation of the 
internal units forming the bulk material. This approach is 
considered as an ideal method to investigate large patterned 
systems with periodic representative elements using minimal 
computational resources and time.

However, the validity of the PBCs method hinges upon 
the proper implementation of the boundary conditions at the 
edges of the representative area element or unit cell of, as 
well as the constraints used to avoid rigid body motion and 
applied loads. Here it is important to note that the imple‑
mentation of periodicity to a system or structure does not 
necessarily entail a resultant accurate picture of the actual 
deformation of the unit cell in a large finite system, i.e. a 
system may deform periodically but be still deforming in 
an incorrect manner. Improper boundary conditions which 
overly constrain the system or inhibit it from deforming in 
its natural manner would result in unrealistic deformations 
which do not reflect in any way the actual behaviour of the 
system in real life. Also, while certain boundary conditions 
which may be sufficient to simulate certain geometries, they 
may not be suited to other systems which deform in a more 
complex manner and systems with asymmetric repeating 
unit geometries [24–26]. In these cases, finding or devis‑
ing the correct method to simulate these systems can be an 
arduous undertaking, especially if the system in question is 
a novel design which has never been studied before. This 
problem is particularly pertinent in the case of mechanical 
metamaterials, which due to their intricate and often highly 
porous geometries, present a considerable challenge in this 
regard.

In view of this, in this paper, we present a PBCs method 
which may be used to simulate any 2D mechanical meta‑
material based on a quadrilateral unit cell, regardless of 
geometry. This method was validated on a number of aux‑
etic mechanical metamaterial geometries with well‑known 
mechanical properties and deformation mechanisms. In 
addition, we also discuss how the same reasoning and meth‑
odology may be applied to simulate 3D systems. We also 
investigate how the characteristics and symmetry conditions 
of certain geometries may allow them to be successfully 
simulated using other PBCs methods which are relatively 
easier to implement.

2  Periodic boundary conditions

2.1  Periodicity

Before discussing the methods through which PBCs can be 
applied to simulate mechanical metamaterial geometries, it 
is important to first define what constitutes a periodic unit 

cell with correct PBCs. The two main criteria employed to 
define a periodic unit cell are:

1. The relative displacement of elements at the boundaries 
of the simulated cell following loading are identical to 
those on the corresponding opposing boundaries and;

2. Regardless of the number of repeating units/unit cells 
used to define the simulated cell, the deformation profile 
and mechanical properties of the system must remain 
unchanged.

The first criterion ensures that the geometry of the system 
remains periodic throughout deformation. The second con‑
dition, on the other hand, ensures the validity of the PBCs 
for simulating the system. If the PBCs are imposing any 
artificial constraints on the system then the repeating units 
on the edges of the simulated cell would deform differently 
than those at the centre and thus the mechanical properties of 
the system would be influenced by the number of repeating 
units. However, if the PBCs are correctly applied, then the 
number of repeating units in the simulated cell should have 
no bearing on its deformation, and thus the simulated cell’s 
behaviour represents that of a corresponding infinite system.

2.2  Periodic boundary conditions applied 
through fixes and strains (Method 1)

There are several methods which one can use to ensure that 
the boundaries of a simulated cell deform in an identical 
manner. One of the most commonly employed methods 
in FE analysis is to use fixes and strains to constrain the 
simulated cell to retain its original shape. This is typically 
done in the manner shown in Fig. 1, where a system with a 
rectangular unit cell is simply supported from the nodes at 
one of the horizontal and vertical edges of the cell, a fixed 
displacement is applied on the side from which the system is 
loaded and the displacements in the y direction of the nodes 
on the remaining edge Xb are coupled in order to ensure that 
it remains straight. Therefore, the allowed displacement of 
the nodes at the two horizontal and vertical edges of the cell 
(Xa, Xb and Ya, Yb, respectively) in the x‑ and y‑directions 
(UX and UY, respectively) may be defined as follows:

Xa  UX = Free, UY = 0
Ya  UX = 0, UY = Free
Xb  UX = Free, UY of all nodes on this edge is equal but the 

overall magnitude and direction of UY is unrestricted
Yb  UX = δlx where δlx = lxεx, with lx represents the original 

length of sides Xa and Xb and εx is the applied strain 
on the unit cell in the x‑direction, UY = Free

This method for applying PBCs allows the simulated 
cell two degrees of freedom during deformation, δlx and 
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δly, with the former being defined by the applied strain 
εx, for loading in the x‑direction. On the other hand, the 
internal angles of the simulated cell, γ (see Fig. 1), are 
fixed at 90° throughout deformation. This means that the 
only allowed changes in simulated cell dimensions are the 
lengths of the sides.

Extracting the Young’s modulus, Ex, and Poisson’s 
ratio, νxy, of this system is very straightforward. For the 
former, first the reaction forces in the x direction, RFx, 
on all the nodes on the loaded edge (Yb) are summed up 
and divided by ly to obtain the stress, σx, (assuming unit 
thickness) which is then divided by the applied strain, εx, 
to obtain the Young’s modulus (see Eq. 1). For the latter, 
first, the displacement of one node on the unfixed trans‑
verse edge (Xb), UY, is divided by ly to obtain the strain 
in the transverse direction, εy. This calculated param‑
eter is then divided by − εx to obtain the Poisson’s ratio 
(see Eq. 2). The final equations based on the parameters 
obtained directly from the post‑processing of the simula‑
tion (RFx and UY) and initial and loading variables (ly and 
εx) are shown in Eqs. 1 and 2.

This approach has been used by many researchers in the 
literature to simulate a number of auxetic metamaterial 
systems, with the most prominent examples being rotating 
square systems [14, 22, 27, 28], anti‑tetrachiral honey‑
combs [13, 14, 29] and re‑entrant hexagonal honeycombs 
[12, 14, 20]. However, the validity of this method appears 
to hinge on the type of representative unit cell chosen. 
Figure 2 shows two sets of simulated cells which may be 

(1)Ex =

∑
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(2)Vxy = −
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used to simulate a rotating square [30] (A) and re‑entrant 
honeycomb [31–33] (B) system made up of (i) 1 × 1, 
(ii) 1 × 2 and (iii) 2 × 2 repeating units. Using  ANSYS® 
Release 13.0 [34] FE software, each of these systems was 
modelled and simulated under uni‑axial loading using the 
same boundary conditions shown in Fig. 1. The following 
parameters (see Fig. 2 A1(i), B1(i)) were used: the lengths 
of the rotating squares, a = b = 1, the angle between the 
squares, φ = 60° and the amount of horizontal overlap 
between squares, o = 0.1 while for the re‑entrant honey‑
comb, the lengths of the ribs, l = 1, h = 1.5, the angle of the 
inclined rib, θ = 30° and the thickness of the ribs, t = 0.1. 
In both cases, the joints were also rounded in order to 
avoid the use of sharp corners which could result in unre‑
alistic stress distribution at the joint regions. Following 
mesh convergence testing, the re‑entrant honeycombs were 
meshed using a uniform mesh size of t/2, while a smart 
sizing option was used for the rotating unit systems (with 
additional refinement at the joint regions) coupled with 
mesh mapping of the outer edges of the cell using a mesh 
size of o/2. A linear static analysis was used to find the 
mechanical properties of each system. The intrinsic mate‑
rial properties used were νmat = 0.3 and Emat = 200 GPa.

The resultant mechanical properties obtained from these 
simulations are shown in Fig. 3a. As one can observe, the 
Poisson’s ratios and Young’s moduli of the A1 and B1 
simulations sets are consistent at values of ca. νxy = − 0.96, 
Ex = 1135 MPa and νxy = − 0.97, Ex = 704 MPa, respectively, 
regardless of the number of repeating units present in the 
simulated cell. However, in the case of sets A2 and B2, the 
mechanical properties of these systems vary significantly, 
indicating that the boundary conditions used are constrain‑
ing the system and preventing it from deforming in its 
natural manner and thus are not suitable to model periodic 
boundary conditions.

This anomalous behaviour may be explained if one exam‑
ines closely the deformation mechanism of these systems. 

y

x
Undeformed Deformed

Key:

Fixed UY = 0, Free UX

Fixed UX = 0, Free UY

Fixed UX = δlx (i.e. 
Strain in x-direction), 
Free UY
Coupled Nodes with 
identical UY

Ya Yb

Xa

Xb

γ γ

Fig. 1  Diagram depicting the application of PBCs and loading in the 
x‑direction of a system with a quadratic unit cell through the use of 
fixed displacement and strains. Both fixes and strains control the dis‑
placement of the edge nodes in the x‑ (UX) and y‑ (UY) directions, 

with the blue rollers denoting nodes with a fixed displacement UY or 
UX equal to 0 and the red arrows nodes with a predefined applied dis‑
placement which is greater or less than zero (depending on whether a 
tensile or compressive load is applied)
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The rotating square system, as its name implies, deforms 
primarily through rotation of the square units (see Fig. 4), 
with each square pushing the neighbouring one to achieve 
an overall negative Poisson’s ratio. As one can observe 
from Fig. 4a, in the case of the simulated cell shown in 
Fig. 2A1(i), the nodes at the boundaries of the cell (marked 
in blue) remain parallel to each other and the cell edges 

throughout deformation. On the other hand, in the case of 
the simulated cell shown in Fig. 4b, the boundary nodes 
on the same edge do not remain parallel to each other and 
the simulated cell edges during this form of deformation; 
hence the applied PBCs using strains and fixes are pre‑
venting the system from deforming in its natural manner 
resulting in an artificial constraint. This is clearly evident 

Fig. 2  Depictions of two sets of 
representative cells (1 and 2) of 
a rotating square system (A) and 
re‑entrant honeycomb (B) sys‑
tem using (i) 1 × 1, (ii) 1 × 2 and 
(iii) 2 × 2 repeating unit cells

Rotating 
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Re-entrant 
Honeycomb
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(B1)

(B2)

1×2 2×21×1

(i) (ii) (iii)

(i) (ii) (iii)
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(i) (ii) (iii)

b
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Fig. 3  a Plots showing the Poisson’s ratios (i, ii) and Young’s moduli (iii, iv) of the systems shown in Fig. 2 using Method 1 PBCs. b Diagrams 
showing the deformed and undeformed states of the rotating square systems shown in i) Fig. 2A1(iii) and ii) Fig. 2A2(iii)

Fig. 4  Diagrams depicting the 
deformation of rotating square 
systems through the idealized 
rotating rigid unit mechanism. 
As one may observe while the 
first (a) representative unit 
cell retains its boundary shape 
throughout deformation, the 
other one (b) does not, hence 
rendering the PBCs used invalid 
for this type of unit cell

Unit Cell with 2 Lines 
of Symmetry

Unit Cell with No Lines 
of Symmetry

Undeformed Undeformed

Deformed Deformed(a) (b)
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from Fig. 3b(i), where while the deformation of the system 
shown in Fig. 2A1(iii) is symmetric, i.e. all pores retain their 
rhombic shape during deformation, that of the correspond‑
ing system with the simulated cell shown in Fig. 2A2(iii) is 
far less symmetric with the pores near the boundary losing 
their rhombic shape to a greater extent than those in the 
central positions, indicating that rotation of squares on the 
boundaries is significantly more inhibited than that of those 
at the centre (see Fig. 3b(ii)).

To predict the suitability of this PBCs method to simulate 
on‑axis loading of mechanical metamaterials, one must look 
at the symmetry of the representative unit cell geometry. 
The designs of the cells illustrated in Fig. 2A1 and B1 pos‑
sess two lines of symmetry, with both lines being parallel 
to the on‑axis loading directions. In addition, as one can 
observe from Fig. 3b, the deformation of these systems is 
also symmetric along the same lines of symmetry. On the 
other hand, the systems in Fig. 2A2 and B2 all lack this sym‑
metry order, both in geometry and deformation mechanism. 
This proves that these PBCs are appropriate only to model 
unit cell geometries which possess these symmetry charac‑
teristics and are not suitable for cells which have an internal 
structure which lacks them. For this reason, these PBCs have 
been shown in previous works to accurately simulate sys‑
tems such as anti‑tetrachiral honeycombs [23, 29, 35] and 
Type I rotating rectangles [36], which can also possess the 
same symmetry order if modelled using the proper simula‑
tion cell, i.e. a cell which possesses the necessary symmetry 
requirements. We also predict that these PBCs are appropri‑
ate for investigating the on‑axis mechanical properties of 
Type β rotating rhombi [37–40], Type Iβ parallelograms [39, 
40], cases of specialized rotating triangle systems with two 
lines of symmetry [41], 4‑Star re‑entrant systems [42] and 
their corresponding fractal/hierarchical geometries [43–46].

The two cases investigated here highlight the main 
advantages and disadvantages of this PBCs method. 
Although in the two cases shown above it is possible to 

circumvent the symmetry problems by employing the 
appropriate unit cell geometry, in other cases such as 
hexachiral honeycombs [47] or generic rotating parallelo‑
grams [40], it is geometrically impossible to employ a rec‑
tangular unit cell which possesses the necessary symmetry 
requirements. Moreover, these PBCs are also unsuitable 
to simulate disordered or defective systems, since these 
involve the introduction of perturbations in the geometry 
which almost invariably result in a loss of symmetry. Thus, 
it is of essential importance to use an alternative PBCs 
technique which is suitable for all mechanical metamate‑
rial geometries, regardless of the symmetry characteristics 
of the design in question.

2.3  Periodic boundary conditions applied 
through constraint equations (Method 2)

The alternative PBCs presented here are implemented 
through the use of constraint equations. Constraint equa‑
tions are used to force the displacement of the nodes on 
one boundary onto the corresponding nodes on the opposite 
periodic boundary. This method does not enforce the edge 
nodes to retain their original alignment with adjacent nodes 
(similar to how particles are constrained to retain periodic‑
ity in molecular dynamics [48] and Mone Carlo simulations 
[49, 50]). The constraint equations, which are described 
by the displacement relationships derived by Suquet [51] 
require that, first, pairs of nodes are identified such that 
each node lies on a periodic boundary opposite each other 
occupying the same position along the respective boundary. 
This requirement implies that the number and position of 
nodes on opposing periodic boundaries are identical. Once 
the node pairs are identified, the periodic boundary condi‑
tions can be implemented by ensuring that the difference 
in displacement in the x and y directions is identical for all 
these node pairs [52] (see Fig. 5).

1

2

3

4

1 2

43

Ya Yb

Xa

Xb

Fig. 5  Diagram showing how the edge nodes denoted by the blue line and those by the red lines are paired separately with each other
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The constraint equations may be formulated in the fol‑
lowing manner (Eqs. 3 and 4) for the displacements of 
every boundary node in the x‑ and y‑directions:

where UX1/UY1 and UX2/UY2 denote the displacements of 
two nodes on the same edge and UX3/UY3 and UX4/UY4 
signify the displacements of the two nodes directly opposite 
them on the other edge (see Fig. 5).

However, here it must be noted, that although the 
boundary conditions of the system have been defined, in 
order to simulate loading, the system must still be fixed 
from a point and loaded. The ideal way to fix a system in 
such a manner so as to not produce artificial constrains 
such as those identified for the PBCs in the previous sec‑
tion is to pin it from one point only. However, pinning 
the system from one point would still result in rigid body 
motion, which would make attaining a solution impossible. 
In order to get around this problem, the system is fixed 
from one point at the boundary (UX = 0 and UY = 0) and 
also fixed from the corresponding opposing edge node in 
the direction perpendicular to the line between these two 
nodes. Four examples of this are shown in Fig. 6. Although 

(3)UX1 − UX3 = UX2 − UX4

(4)UY1 − UY3 = UY2 − UY4

technically with this method the system is ‘fixed’ from two 
points, under the conditions imposed by periodicity, the 
edge nodes on opposing boundaries are for all ends and 
purposes of the simulation ‘identical’ and thus represent 
a single point in an infinite system. Furthermore, besides 
preventing rigid body motion and not imposing any addi‑
tional constraints on the system, this also ensures that the 
system remains aligned with either the x‑ or y‑axis dur‑
ing deformation. The final step is to apply a load on the 
system. Rather than using the direct application of strain 
through imposed displacements, the system is loaded 
through the application of a force on one set of nodes at 
the two opposing edges of the unit cell normal to the load‑
ing direction (see Fig. 6). The force is then distributed 
along the edges of the unit cell through the previously 
defined constraint equations in order to induce deforma‑
tion of the unit cell. This is extremely important, since 
force loading, unlike strain loading, does not impose any 
constraints on the displacement of the nodes and thus, if 
need be, an edge node may actually move in the direction 
opposite to that of the applied force.

As one may observe from Fig. 6, Method 2 is not lim‑
ited solely to rectangular unit cells, like Method 1, and 
may also be applied to parallelogramic unit cells. How‑
ever, special care must be taken when a parallelogramic 
unit cell is used since this type of unit cell may only be 

y

x
Aligned along x-axis Aligned along y-axis

y

x
Aligned along x-axis Aligned along y-axis

Key:

Fixed UY = 0, Free UX

Fixed UX = 0, Free UY

Fixed UX = 0, UY = 0

Applied Force

Paired Horizontal Edges 
through Constraint 
Equations

Paired Vertical Edges 
through Constraint 
Equations

(a)

i) ii)

(b)

i) ii)

Fig. 6  Diagram showing the PBCs as applied for tensile loading of a 
a rectangular and b parallelogramic unit cell in the x‑direction with 
the entire system aligned along the i x‑ and ii y‑axis. Note that in 
the case of the system with the parallelogramic unit cell, a different 
unit cell must be used in order to align the geometry with the x‑ and 

y‑axes since the system can only be aligned along the axis which is 
parallel to one set of sides of the unit cell. Also, note that it is imma‑
terial on which point on the surface the force is applied, provided that 
it is applied on two corresponding boundary nodes in opposite direc‑
tions
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aligned with one axis. Therefore, if one wishes to align 
the system with the x‑axis, then a unit cell which has one 
set of sides aligned with the x‑axis must be chosen such 
as the one shown in Fig. 6b(i), while if the system is to be 
aligned with the y‑axis, a unit cell such as the one shown 
in Fig. 6b(ii) must be used. Once the system is aligned 
with an axis it may be loaded in either the x‑ and y‑direc‑
tions in the same manner as a rectangular unit cell, i.e. by 
applying a force on the edge nodes. Here it is important 
to note that changing the unit cell does not mean rotating 
the unit cell to align it with a particular axis, but rather 
that a different representative unit cell is used to simulate 
the same geometry.

In this case, the calculation of the Poisson’s ratio and 
Young’s modulus is done differently since the known load‑
ing parameter is Fx, the force applied at the loading bound‑
aries, rather than the strain, εx. The stress applied to the 
system, σx, can be calculated by dividing Fx by the length 
of this boundary, ly (assuming unit thickness). In order to 
calculate εx and εy, the displacements at all boundaries 
have to be considered. Due to the applied constraint equa‑
tions (see Eqs. 3 and 4), the total displacement between 
each paired set of opposing boundary nodes is identical. 
Therefore, the resultant displacement following deforma‑
tion may be extracted from one pair of nodes each on the 
vertical (UXYa and UXYb) and horizontal (UYXa and UYXb) 
boundaries. The Poisson’s ratio and Young’s modulus may 
be calculated as:

In order to validate this PBCs method, a similar approach 
to that adopted in the previous section was employed. The 
systems shown in Fig. 2 were all simulated using the same 
parameters as in the previous chapter, with the exception 
that the PBCs described in Fig. 6 were used. The systems 
were aligned along the y‑axis (as in Fig. 6a(ii)) and loaded 
in the x‑direction.

The mechanical properties obtained from these simula‑
tions are plotted in Fig. 7a below. As one may observe, all 
unit cells of the rotating square and re‑entrant system have 
almost exactly the same mechanical properties regardless of 
the number of repeating units in the simulated cell or type 
used. In fact, as shown in Fig. 7b, the deformation profile 
of the systems shown in Fig. 2A1(iii) and A2(iii) are almost 
identical to each other and those shown in Fig. 4 (note that 
the pores retain their rhombic shape in both cases).

These results highlight the advantages of this PBCs 
method over the previous one employed to model the same 
geometries. Since this method does not impose any fixed 
displacement constraints on the boundary nodes, there are 
no symmetry requirements for the internal geometry of the 
unit cell for it to function properly. In addition, these PBCs 

(5)Ex =
Fx

ly

lx
(

UXYb − UXYa

)

(6)Vxy =

(

UYXb − UYXa
)

ly

lx
(

UXYb − UXYa

)

Fig. 7  a Plots showing the (i) Poisson’s ratios and (ii) Young’s mod‑
uli of the systems shown in Fig. 2 using Method 2 PBCs. b Diagrams 
showing the deformed and undeformed states of the rotating square 

systems shown in (i) Fig. 2A1(iii) and (ii) Fig. 2A2(iii). Note that all 
the results are almost exactly identical regardless of unit cell size or 
type of repeating unit
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can also be implemented to study systems with parallelo‑
gramic unit cells such as the schematics shown in Fig. 6b as 
well as geometries which possess non‑zero shear coupling 
coefficients. The internal angle of the unit cell, γ, is not fixed 

through this method, and thus shearing deformation is per‑
missible through this approach.

In order to check the validity of this approach on more 
complex geometries, we implemented these PBCs on two 

Fig. 8  a A depiction of a 1 × 1 unit cell of a (i) three‑pointed star 
perforated system and (ii) an alternating straight line slit perforated 
system indicating the parameters used to define the metamaterial 
geometries. b Plots showing the (i) Poisson’s ratios and (ii) Young’s 
Moduli obtained for loading these systems in the x‑direction. c Fig‑

ures showing the deformed and undeformed state of the 2 × 2 systems 
simulated here. Note that displacement scaling was used to generate 
these diagrams since a linear geometric solution was used to obtain 
the mechanical properties
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examples of auxetic mechanical metamaterial geometries 
recently proposed by the same authors; namely the (a) three‑
pointed star perforated system [15] and (b) slit perforated 
system [14] (see Fig. 8a). Both of these designs have geo‑
metric characteristics which make them particularly chal‑
lenging to simulate. As shown in Fig. 8, the former system 
has a ‘fragmented’ representative geometry while the lat‑
ter is based on the rotating parallelogram mechanism [40], 
which is known to undergo shear deformations during uni‑
axial loading. In analogy with the approach employed previ‑
ously, both these systems were modelled as 1 × 1, 1 × 2 and 
2 × 2 simulation cells aligned along the y‑axis and loaded in 
the x‑direction. For the star perforated system, the param‑
eters (see Fig. 8a(i)) were set at b = 1, h = 6 and s = 0.4 while 
for the slit perforated system (see Fig. 8a(ii)) l1 = 1, l2 = 2, 
κ = 40°, s = 0.3 and t = 0.01 were used.

As shown in Fig. 8b, both systems were successfully 
simulated for loading using these PBCs with each unit cell 
giving the same resultant mechanical properties regardless 
of the number of repeating units inside it. In the case of the 
three‑pointed star perforated system, although the system 
may appear to be made up of three disjointed fragments, in 
reality these pieces are connected to each other through the 
constraint equations at the boundary nodes and thus rigid 
body motion is not observed. For the slit perforated system, 
as one may observe from Fig. 8c(ii), the internal angle of 
the unit cell, γ, changed during deformation, indicating that 
the system has successfully undergone shear deformation. 
All this indicates that this PBCs method is also suitable to 
investigate complex systems with ‘fragmented’ parallelo‑
gramic unit cells, as well as systems with the potential to 
undergo shear deformation. This includes mechanisms and 
geometries such as rotating triangles [36, 53–57], rotating 
parallelograms [39, 40], chiral honeycombs such as hex‑
achiral, tetrachiral, metachiral and trichiral systems [23, 47, 
58–64] and other geometries [65–69] which do not meet the 
symmetry requirements for the Method 1 PBCs.

Here it should be noted that although force loading was 
implemented in the Method 2 examples provided here, 
in certain cases direct displacement loading can also be 
applied. In cases where the loading is in the same direc‑
tion as the axis along which the system is aligned, one has 
to simply apply a fixed displacement on the aligned node 
only, the rest will follow due to the imposed constraint equa‑
tions. The reaction force required to calculate the force may 
be obtained directly from the node upon which the force is 
applied. However, in cases where loading in any of the on‑
axis directions other than that of the desired alignment of the 
unit cell is required, care must be taken to ensure that addi‑
tional artificial constraints are not imposed on the system 
when applying a fixed displacement since this will require 
the imposition of a deformation constraint on an additional 
point of the periodic system besides the one used to maintain 

the unit cell alignment. Therefore, if one desires certainty 
that the implemented methodology is correct in such cases, 
it is recommended to use force loading rather than displace‑
ment loading.

3  Discussion

In the previous section, two PBCs methods which may be 
used to simulate 2D mechanical metamaterial geometries 
were presented. At this point, it is important to reiterate that 
both Methods 1 and 2 are strictly speaking computation‑
ally and mathematically correct for any geometry; in the 
sense that both methods produce a system which deforms 
in a periodic manner. However, as shown in the previous 
sections, in order to simulate the deformation of a realistic 
system without artificial constraints imposed as a result of 
the PBCs used, certain conditions and criteria must be met. 
The main differences between these two methods are sum‑
marized in Table 1 below.

It is clear that the second method presents a number of 
obvious advantages over the first, with the most important 
being that it is completely generalized and may be used to 
simulate any 2D geometry. Besides being ideal to model 
complex geometries, this also makes it suitable to investigate 
disordered systems. For the study of disordered systems, 
typically, a unit cell made up of a large number of repeating 
units is used. Disorder is then introduced within the system 
through the use of geometric perturbations which disrupt 
the symmetry of the system. Although the notion of using 
PBCs to study disordered systems may sound paradoxical 
at first glance, since periodic ‘disorder’ is essentially order 
with a lower degree of symmetry than periodic order, it is 
well known that boundary or edge effects have a consider‑
able influence on the deformation of the system. Thus, if 
one wishes to completely isolate the effect of disorder from 

Table 1  Table highlighting the main differences between the two 
PBCs methods presented in this work

PBCs Method 1 PBCs Method 2

Unit cell shape Rectangular only Rectangular 
or parallelo‑
gramic

Symmetry requirements Two lines of sym‑
metry aligned with 
the x‑ and y‑axis

None

Boundary mesh mapping Not required Essential
Loading type Displacement or 

force loading may 
be used

Force loading

‘Fragmented’ unit cell Not allowed Allowed
Shear deformation Not allowed Allowed
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that of the edge effect, the PBCs method is the only possible 
way to do this. This approach has been used by a number of 
researchers in literature [70–76] to investigate the intrinsic 
effect of disorder and defects on the mechanical properties 
of mechanical metamaterials and the PBCs discussed in 
Method 2 would be ideal for this purpose since they are 
symmetry independent.

However, the PBCs Method 2 presented here is also 
relatively more difficult to implement than Method 1. The 
validity of Method 2 depends completely on the condition 
that all paired nodes on opposing edges correspond exactly 
with each other with respect to the initial position. This 
means that the mesh at the boundaries of the unit cell must 
be mapped in order to ensure that the correct nodal positions 
are achieved and thus one cannot simply employ a uniform 
smart sizing or similar options which are typically found in 
commercial FE software to mesh these systems. On the other 
hand, this is not a problem in Method 1. Although having an 
unequal number of nodes at the boundaries is not considered 
ideal (due to the introduction of minute asymmetry within 
the system), having slightly different mesh geometries at 
the boundaries does not normally have a significant adverse 
effect on the deformation of the system when using the 
strains and fixes method to employ PBCs. This means that 
for Method 2 to be used, a more thorough mesh convergence 
testing must be conducted first to ensure the validity of the 
simulations than in the case of Method 1.

The methodologies presented here have only been applied 
to 2D geometries. However, the same approach may also 
be extended to include 3D systems. For Method 1, the 
PBCs may be implemented as shown in Fig. 9 for load‑
ing in the x‑direction. Again, this method suffers from the 
same drawbacks as its 2D variant: shearing deformations 

are not allowed; a cuboidal, non‑‘fragmented’ internal unit 
cell geometry must be used; and the system must now have 
three planes of symmetry aligned along each of the three 
main Cartesian planes, xy, yz and xz in order for the PBCs 
to impose no additional constraints on the system.

In the case of Method 2, the same methodology can also 
be applied. Constraint equations are used to pair oppos‑
ing nodes together on each face of the unit cell boundary 
using the relationships defined in Eqs. 3 and 4 as well as the 
additional equation defined in Eq. 7 below, which enforces 
periodicity in displacements in the z‑direction, UZ, as well.

In this case, rather than along an axis, the unit cell is 
aligned relative to a plane instead. Thus, as shown in Fig. 10 
below, there are three options when aligning the unit cell, the 
xy‑, xz‑ or yz‑plane, which is one more than that available 
for the 2D system (either along x‑ or y‑axis). Similarly to the 
2D method, the unit cell is also allowed to undergo shearing 
deformations in any of the three planes and a parallelepiped 
and/or ‘fragmented’ unit cell is permitted. Obviously, when 
using a parallelepiped unit cell, the same limitations and 
conditions indicated for choosing the appropriate unit cell 
based on the desired alignment indicated for 2D systems 
hold as well. The unit cell surfaces must also be meshed 
using mapped elements, in this case with area, rather than 
line mapping.

To summarize, both methods investigated here have been 
shown to be valid and suitable for simulating on‑axis load‑
ing of 2D and 3D mechanical metamaterials, provided that 
the appropriate conditions are met. In the case of Method 
1, although it is easier and computationally more efficient 
to implement than Method 2, the symmetry requirements 

(7)UZ1 − UZ3 = UZ2 − UZ4

Fig. 9  Schematic showing how the PBCs used in Method 1 may be 
implemented in a cuboidal unit cell. One unit cell side boundary 
aligned with each Cartesian axis is fixed in the direction normal to 

its plane, the side upon which the strain is applied is given a fixed 
displacement in the x‑direction, UX, and the nodes on the remain two 
faces of the unit cell are coupled to retain their planar shape
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and deformation mechanism within the unit cell indicate 
that this method should only be applied to systems where 
some degree of prior knowledge of deformation modes 
and behaviour is available. On the other hand, Method 2, 
while being more computationally demanding and complex 
to implement, it was shown to be extremely more versatile 
and can be employed to study any system with a quadratic 
unit cell, regardless of symmetry or internal angle of the 
cell. This makes this method particularly suitable to study 
novel mechanical metamaterial geometries and disordered 
systems.

At this point, it is important to emphasize that the meth‑
ods consider only the simulation of on‑axis tensile and 
compressive loading in the x‑ and y‑directions (and z in the 
case of 3D systems) of periodic systems. Obviously, the 
periodic boundary conditions stipulated in Eqs. 3, 4 and 7 
would still be valid for maintaining periodicity throughout 
deformation in cases of pure shear deformation and off‑axis 
loading, however, different loading and fixing conditions are 
required in order to correctly implement and simulate these 
conditions. Moreover, it should be highlighted that although 
both Method 1 and 2 were validated on systems which were 
simulated under linear conditions, the same assumptions 
and methods are also valid for conducting simulations under 
high strain, nonlinear conditions. Finally, before concluding, 
it is important to highlight that using PBCs to investigate the 
mechanical properties and deformation behaviour of a sys‑
tem should always be considered to be merely the first step in 
the analysis of a novel metamaterial structure. This is due to 
the fact that, although a system simulated under PBCs pro‑
vides significant insights into the deformation behaviour of 
the structure, it gives no information about the influence of 

boundary effects on the metamaterial geometry in question 
and other derived characteristics of this factor such as the 
propagation of deformation throughout a finite system made 
up of multiple unit cells. As shown in a recent study on a 
range of finite perforated metamaterial geometries [77], each 
metamaterial system shows a distinct deformation propaga‑
tion profile. These profiles and other boundary effects cannot 
be investigated through the use of infinite systems, and thus, 
in addition to the preliminary, less computationally inten‑
sive FE simulations using PBCs on a single repeating unit, 
further FE analysis on large finite systems and experimental 
samples containing multiple RVEs are still required in order 
to obtain a complete picture of the actual deformation and 
load response of a real‑life metamaterial system.

4  Conclusion

In this work, we have examined a commonly known PBCs 
method (Method 1) and presented another alternative 
(Method 2), which may be used to simulate on‑axis load‑
ing of complex mechanical metamaterial geometries using 
PBCs. The first method is relatively easy to implement but 
is only suitable for a limited number of geometries and unit 
cell types which meet a restrictive set of criteria defined in 
this paper. On the other hand, the second method is more 
generalized and has no symmetry limitations meaning that 
it may be used for any mechanical metamaterial geometry 
or otherwise, as well as for the study of disordered systems 
or systems with defects. Both these PBCs methods may 
also be applied to 3D systems. It is envisaged that the work 
presented here will be of great importance to materials 

y

xz

Aligned along yz-planeAligned along xy-plane Aligned along xz-plane

(a) (b) (c)

Key: Fixed UX = 0, Free UY, Free UZ Fixed UY = 0, Free UX, Free UZ

Fixed UZ = 0, Free UX, Free UY Fixed UY = 0, UX = 0, UZ = 0

Fig. 10  Schematic showing how the PBCs used in Method 2 may 
be implemented in a cuboidal unit cell aligned along the a xy‑, b xz‑ 
and c yz‑plane. The coloured faces of the unit cell indicated surfaces 

where the nodes are paired using constraint equations (blue, red and 
green), while the black dotted line denotes the plane along which the 
unit cell is aligned
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scientists and structural engineers, particularly those whose 
work is centered on the development and study of mechani‑
cal metamaterials. Defining periodicity and applying the 
correct loading conditions is typically one of the most dif‑
ficult steps encountered when simulating systems with com‑
plex topologies, particularly in the case of novel systems, 
and it is hoped that the insights and methods presented in 
this work will considerably aid researchers at this stage of 
their research and advance their endeavors in discovering 
and studying new materials and systems.
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