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Abstract
The stable convergence and efficiency of reliability-based design optimization (RBDO) using performance measure approach 
(PMA) are the major issue to develop the reliability methods based on modified chaos control (MCC), hybrid chaos control 
(HCC) and finite-step length adjustment (FSL). However, these methods may be inefficient for RBDO problems with con-
vex and concave probabilistic constraints. In this paper, an adaptive modified chaos control (AMC) is proposed to provide 
the robust and efficient results in RBDO. The proposed AMC is adjusted using dynamical chaos control factor, which is 
extracted using sufficient descent condition for PMA. Using sufficient criterion, the proposed AMC is adaptively combined 
with advanced mean value (AMV) to improve the performance of PMA, named as hybrid adaptive modified chaos control 
(HAMC). Considering the robustness and efficiency, the proposed HAMC is compared with several existing reliability 
methods by three nonlinear structural/mathematical performance functions and two RBDO problems. The results indicate 
that the proposed HAMC with sufficient descent condition provides superior convergences in terms of both robustness and 
efficiency, compared to existing PMA methods using AMV, MCC, HCC and FSL.

Keywords Reliability-based design optimization · Sufficient criterion · Hybrid adaptive modified chaos control · 
Performance measure approach

1 Introduction

The practical engineering problems such as mechanical 
and structural systems involve uncertainties in geometrical 
dimensions, material property, and load [1–3]. The optimi-
zation design of structures described by the probabilistic 
constraints can be applied to consider these uncertainties 
in the optimization process. The optimization-based proba-
bilistic constraints are provided the safe design domains 
which are evaluated using a reliability method. Commonly, 
the most probable point (MPP) search such as the first-order 
reliability method (FORM) [4–7] or second-order reliabil-
ity method [8–10] is used for the reliability analysis and 
reliability-based design optimization (RBDO) problems. The 
FORM iterative formula can be provided the suitable perfor-
mances for a compromise optimal design between efficient 
computational burden and structural safety. The efficiency 
and robustness of the FORM-based MPP search in the reli-
ability loop are main capabilities for the RBDO methods.

The RBDO is generally classified as decoupled 
approaches (DA) [11–14], single-loop approaches (SLA) 
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[15–19] and double-loop approaches (DLA) [20–23]. Du 
and Chen [12] proposed the sequential optimization and 
reliability assessment (SORA) for RBDO problems using 
sequential deterministic optimization and reliability analy-
sis to evaluate the MPP that the boundaries of probabilistic 
constraints are shifted into the safe region based on the MPP 
obtained for reliability loop. A decoupling approached was 
proposed by Cheng et al. [24] based on applied sequential 
sub-programming for approximating optimum models as 
objective probabilistic constraints. An incremental shift-
ing process-based MPP for probabilistic constant was pro-
posed to enhance the SORA by Huang et al. [25]. For mul-
tiphase interval and probabilistic uncertainties, Huang et al. 
[26] developed the decoupling strategy-based RBDO. For 
improving the accuracy of DA-based SORA, Li et al. [27] 
applied the sequential sampling scheme with probabilistic 
and convex set in reliability loop of RBDO problems.

The single loop single vector was proposed by Liang et al. 
[18]; while Shan and Wang [19] proposed a reliable design 
space in SLA. Adaptive methods for dynamical selection of 
SLA or DLA have been developed to increase the accuracy 
of SLA and to improve the efficiency of DLA [28, 29]. The 
dynamical chaos control method was applied in DLA for 
improving the RBDO efficiency by Keshtegar and Hao [17]. 
The conjugate gradient search direction-based MPP search 
was utilized in SLA [30]; while the adaptive conjugate sen-
sitivity vector is used to improve the robustness of SLA [31]. 
Meng et al. [32] proposed a stability transformation method 
with dynamical chaos control to improve the robustness of 
SLA; while Li et al. [33] applied the self-adjusted chaos 
control to improve the efficiency of SLA.

For DLA-based RBDO, Youn et al. [22] proposed hybrid 
reliability method by AMV combined with conjugate mean 
value (CMV) to improve the stability of performance meas-
ure approach (PMA)-based DLA. The MPP search-based 
reliability method is improved using angle information 
between successive iterations by Du et al. [34]. Yang [35] 
applied the chaos control (CC) using stability transformation 
method (STM) to improve the instability of the FORM in 
the reliability loop of DLA-based RBDO. Using the STM 
formulation, the search direction of MPP search formula 
using chaos control factor was improved using directional 
sensitivity vector by in modified chaos control (MCC) 
hybrid by AMV to enhance its efficiency [36]; while the 
adaptive chaos control factor was implemented for DLA-
based RBDO by [28]. Self-adaptive modified chaos control 
was proposed using an adaptive directional sensitivity vector 
in DLA-based PMA [37]. Enhanced CC was formulated to 
improve the efficiency of reliability loop-based STM and 
was applied in the RBDO-based PMA [23]. The accelerate 
chaos control with dynamical formulation was proposed to 
solve the RBDO problems with PMA [38]. The argument 
step size by applying a directional sensitivity vector with 

two terms and adaptive step size was proposed to improve 
the efficiency of RBDO-based PMA [20]. The enhanced 
CC-based MPP search is combined by isogeometric anal-
ysis to solve the complex engineering RBDO problems 
[39]. The stability and computational burden of PMA were 
improved based on the modified FORM in reliability loop of 
the RBDO-based DLA as active stagey-based formulation 
[29], self-adjusted step size [40], enriched formulation-based 
self-adjusted mean value [41], hybrid descent step size com-
bined by AMV [40], a dynamical modified search direction-
based AMV [21], relaxed formulation by the adaptive step 
size [42]. Recently, the MPP-based reliability method using 
conjugate gradient method was developed for RBDO-based 
PMA to provide the stable results in reliability loop [37] 
while Zhu et al. [43] enhanced the efficiency of the conju-
gate sensitivity vector based on the hybrid formulation. The 
main effort in SLA is to provide the accurate results with sta-
ble convergence. Therefore, the modified reliability method 
in SLA should provide the stable results at every iteration 
for highly nonlinear probabilistic constraints. However, the 
DLA and DA are formulated based on the MPP-based search 
using the reliability method. Therefore, the robust iterative 
MPP search algorithm is strongly impotent in the reliability 
loop of these RBDO schemes to provide the stable results. 
Another challenge in RBDO-based DLA is to develop a 
reliability method with low computational formulation and 
simple application.

For reliability loop in DLA-based PMA, the first-order 
inverse reliability problem is used due to its efficiency and 
simplicity compared to reliability method in the reliability 
index approaches [44]. The inverse reliability method-based 
MPP search is divided into two main categories by the sen-
sitivity vector as conjugate MPP search [45–47] (e.g., con-
jugate mean value (CMV) [22], conjugate gradient analysis 
(CGA) [30] and self-adaptive conjugate method [37]) and 
gradient-based MPP search (e.g., modified chaos control 
(MCC) [36], finite step-length adjustment (FSL) [5], and 
limited decent method [48]). The computational burdens 
of improved versions-based MPP search including CMV, 
MCC, CGA and FSL may be increased for some convex 
problems. Therefore, the efficiency and robustness are the 
main challenges of reliability analysis-based MPP in PMA. 
Consequently, the popular MPP search method is to establish 
a robust and efficient reliability method which is formulated 
with simple relation. Consequently, selecting an appropri-
ate step size to compute the sensitivity vector to develop an 
iterative formula-based MPP search in RBDO using PMA 
is more important to reduce the computational burden with 
the stable results.

The adaptive strategy to compute the step size can be 
provided a dynamical relation with adjusted sensitively vec-
tor to improve the efficiency of FORM in reliability loop-
based PMA. The sufficient descent criterion is applied to 
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compute the adaptive step size which is utilized to improve 
the robustness of the directional sensitivity vector in PMA-
based MPP search. A hybrid algorithm is proposed using 
sufficient descent criterion to enhance the efficiency and 
robustness of inverse reliability method named hybrid adap-
tive modified chaos control (HAMC). The adjusted MCC 
and AMV methods are adaptively combined in the proposed 
reliability method-based PMA. This paper is structured to 
illustrate the performances of HAMC in several sections as: 
The RBDO methodology is presented in Sect. 2, while the 
MPP search-based reliability method is described in Sect. 3. 
The reliability method-based PMA using proposed HAMC 
is formulated in Sect. 4. The ability of the proposed HAMC 
is investigated for both robustness and efficiency by three 
reliability examples and two RBDO problems in Sect. 5. 
The conclusions presented in Sect. 6 state that the proposed 
MPP search formulation provides the superior convergence 
performances compared to other studied methods.

2  Reliability‑based design optimization 
methodology

2.1  RBDO model

Using objective function under probabilistic constraints in 
RBDO, the optimization model is typically formulated as 
follows [29, 49]

where f  is the cost function, p is the number of probabilistic 
constraints ( gj ) with reliable domain of � jt , � is the standard 
normal cumulative function. Two categories variables as 
design d ∈ Rk and random variables X ∈ Rm are considered 
in the RBDO model. dL and �L

x
 are, respectively, the lower 

bounds for design and lower mean for random variables; 
while, dU and �U

x
 are, respectively, upper bounds for design 

and upper mean for random design. g(d,X) < 0 denotes the 
failure domain. Therefore, the reliable failure probability 
( Pf  ) can be determined as follows [50, 51]:

where f
X
(x) is the joint probability density function of the 

random variables X . Generally, the MPP-based search 
approaches are used to compute the optimal results of opti-
mization problems under uncertainties due to their simplicity 

(1)

find d , �
x

min f (d,X)

s.t. Pf [gj(d,X) ≤ 0 ] ≤ �(−�
j

t ) j = 1, 2,… , p

d
L ≤ d ≤ d

U, �
L
x
≤ �

x
≤ �

U
x
,

(2)Pf

[
g(d,X) ≤ 0

]
= �
g(d,X)≤0

…� fX(x)dX,

and efficiency in RBDO [52, 53]. The RBDO-based optimi-
zation model is solved based on two main loops as outer 
loop which is used as an optimization solver to search d 
and the inner loop to provide the safe constraints which is 
operated using reliability algorithm-based MPP search in 
DLA. PMA for evaluating the probabilistic constrains can 
be provided the high efficiency as computational burden for 
RBDO problems [54].

2.2  Performance measure approach

By applying the RBDO model in in Eq. (1), the proba-
bilistic constraints in RBDO model-based PMA can be 
rewritten as

where Fgj
 is the cumulative distribution function for perfor-

mance function gj . Therefore, we have

In PMA, the probabilistic constraints gj(d,X) are evalu-
ated using MPP which is related to target reliability index 
( � jt ). Consequently, the MPP using FORM is computed for 
jth constraint as below model:

where U∗ is MPP, U is the independent normal standard 
variables. In the RBDO-based PMA, the iterative formula 
to search MPP in reliability loop is essential key to pro-
vide the stable results with fast convergence. The HCC and 
FSL methods were proposed to improve the efficiency and 
robustness of MPP search-based FORM. In HCC, the MCC 
is combined with AMV using convexity criterion to improve 
the efficiency of MCC and robustness of AMV. Thus, the 
hybrid formulation with AMV can provide the efficient com-
putational results in RBDO. The AMV is combined with 
modified FORM approaches in hybrid descent mean value 
[55], adaptive chaos control [28], hybrid mean vale [22], 
and hybrid self-adjusted mean value [40]. This strategy is 
applied to enhance the efficiency of improved versions of 
the MPP search approaches because the MCC and the CMV 
may provide the inefficient results for convex probabilistic 
constants.

(3)gj(d,X) = F−1
gj
(d,�(−�

j

t )) ≥ 0,

(4)

find d, �
x

min f (d,X)

S.t. gj(d,X) ≥ 0 j = 1, 2,… , p

d
L ≤ d ≤ d

U, �
L
x
≤ �

x
≤ �

U
x
.

(5)

find U
∗

min gj(d,U)

s.t. ‖U‖ = �
j

t ,
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3  MPP search methods

In this section, the HCC and FSL formulae to search MPP in 
reliability loop of DLA-based PMA are presented.

3.1  Hybrid modified chaos control (HCC)

In HCC algorithm, the AMV and MCC are adaptively com-
bined based on the convexity criterion as follows [36]:

where �k+1 describes the convex type of the performance 
function, i.e., �k+1 ≤ 0 is concave and 𝜍k+1 > 0 is convex 
function at the point Uk+1 . nk is the normalized sensitivity 
vector at point Uk , which is given as follows:

The convexity criterion in Eq. (6) is a way to select the 
AMV or MCC for MPP search in DLA. The convexity-
based function type is introduced by employing three con-
secutive iterative data using normalized sensitivity vectors. 
The convexity criterion is plotted in Fig. 1 for convex type 
(1a) and concave type (1b) function. It can be seen, �k+1 is 
cosine of the angle �k between nk+1 − nk and nk − nk−1 . If 
the Sign(�k+1) as shown in Fig. 1a is larger than zero (convex 
problem), the iterative point of the AMV method is applied; 
while, the iterative AMV formula may be oscillated for con-
cave performance measure function as shown in Fig. 1b for 
Sign(�k+1) < 0. Therefore, the hybrid formula of MPP search 
using convexity criterion is defined to improve the robust-
ness of AMV.

The HCC was proposed by combining AMV and MCC 
in terms of convexity criterion as below.

(6)�k+1 = (nk+1 − nk) ⋅ (nk − nk+1),

(7)nk =
Uk

‖‖Uk
‖‖
.

For 𝜍k+1 > 0 with convex performance function (see 
Fig. 1a), the AMV iterative formula is used to compute 
the new point as below:

where n(uAMV
k

) stands for the normalized steepest sensitiv-
ity vector.

For the concave performance, i.e., �k+1 ≤ 0 , the MCC 
iterative formula is applied to determine the new point as 
follows:

where f (uk) represents the new point computed by AMV for-
mulation (8). � is the n × n dimensional involutory matrix, 
which only has one element in each row and each column to 
be 1 or − 1 and the others are 0. Actually, the unit matrix of 
� and � (i.e., 0 < 𝜆 < 1 ) represents the chaos control factor 
with a smaller value to achieve stabilization. ñk+1 stands for 
the modified sensitivity vector. The MCC method updates 
the point by moving it on beta hypersphere.

3.2  Finite‑step length adjustment (FLS) method

The FSL iterative formula is presented as follows [5]:

(8)

U
AMV
k+1

= �t n(u
AMV
k

)

n(uAMV
k

) = −
∇ug(d,U

AMV
k

)

‖‖‖∇ug(d,U
AMV
k

)
‖‖‖
,

(9)

U
MCC
k+1

= 𝛽t
ñk+1

‖‖ñk+1‖‖
ñk+1 = U

MCC
k

+ 𝜆�
[
f (uk) − U

MCC
k

]

f (uk) = −𝛽t
∇ug(d,Uk)

‖‖∇ug(d,Uk)
‖‖
,

Fig. 1  Convexity criterion for 
performance functions a convex 
type, b concave type
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where UFSL
k+1

 and UFSL
k

 are, respectively, the new and previous 
points computed by FSL formula. � is the finite-step length, 
which is selected a larger value 𝜆 > 0 . U�

k+1
 is the point along 

the direction of UFSL
k

− �∇ug(d,Uk) . if � → ∞ then the FSL 
formula is similar to the AMV. Consequently, it is a criterion 
as ‖‖‖U

FSL
k+1

− U
FSL
k

‖‖‖ ≥ ‖‖‖U
FSL
k

− U
FSL
k−1

‖‖‖ is used to control insta-
bility of the FSL method for highly concave performance 
f u n c t i o n s  a s  s e t  � = �∕c  w h e n 
‖‖‖U

FSL
k+1

− U
FSL
k

‖‖‖ ≥ ‖‖‖U
FSL
k

− U
FSL
k−1

‖‖‖ in which c is an adjusting 
factor as c ∈ 2.2–2.6. A large finite-step length may be pro-
vided a slow convergence rate or unstable results for FSL 
method in highly nonlinear performance functions while the 
criterion ‖‖‖U

FSL
k+1

− U
FSL
k

‖‖‖ ≥ ‖‖‖U
FSL
k

− U
FSL
k−1

‖‖‖ is satisfied its 
convergences with stable results.

4  Hybrid sufficient modified chaos control

4.1  Sufficient descent criterion

In this section, the sufficient descent criterion is used to pro-
vide the hybrid formulation of MPP search algorithm. The 
sufficient descent criterion is suggested as below:

The sufficient descent criterion in Eq. (11) is evaluated 
using the new point computed by AMV and previous points 
computed by AMC.

The above criterion is simply computed using the results 
of iterative formula-based MPP search using points UAMV

k+1
U

k
 

(10)
U

FSL
k+1

= �k

U
�

k+1

‖‖‖U
�

k+1

‖‖‖
U

�

k+1
= U

FSL
k

− �∇ug(d,Uk),

(11)
‖‖‖U

AMV
k+1

− Uk
‖‖‖ < ‖‖Uk−1 − Uk

‖‖.

and U
k−1

 . The new sensitivity vector has a sufficient descent 
property when Eq. (11) is satisfied based on point UAMV

k+1
 ; 

thus, the AMV can be used to compute the new point. Oth-
erwise, i.e., ‖‖‖U

AMV
k+1

− Uk
‖‖‖ ≥ ‖‖Uk−1 − Uk

‖‖ , the new point is 
obtained based on insufficient search direction, and the cri-
teria are, respectively, plotted in Fig. 2a, b for concave and 
convex types at the point Uk of performance functions. It can 
be seen that the proposed criterion is different from the con-
vexity criterion. Fig. 2b schematically shows that the perfor-
mance function is concave at the point Uk , but the new 
search direction vector is sufficient descent. This means that 
the new steepest descent search direction vector ( ̃nk+1 ) can 
be computed using the AMV approach ( n(uAMV

k
) ) based on 

the descent criterion. Nevertheless, the new point should be 
computed using the MCC-based MPP search method by 
applying convexity criterion (see Fig. 2b). However, the 
descent criterion in Fig. 2b is sufficient; thus, the AMV 
approach is accurately provided the sufficient search direc-
tion to compute the new point. This means that the conver-
gence rate of hybrid method increases using the sufficient 
decent condition. Therefore, a hybrid formula based on the 
proposed sufficient descent criterion is converged faster than 
the HCC, which is developed based on convexity criterion.

Figure 3 illustrates insufficient descent iteration at new 
point of reliability method-based MPP search that this fig-
ure includes convex (Fig. 3a) and concave (Fig. 3b) func-
tions which is given by convexity criterion. The insuffi-
cient descent condition presented in Fig. 3 showed that the 
improved versions of MPP search should be used in reli-
ability loop of DLA, while AMV can be used to search 
MPP based on convexity criterion in HCC as showed in 
Fig. 3a. In this current paper, the sufficient descent condi-
tion can be used to adapt the sensitivity vector using AMV 
when ‖‖‖U

AMV
k+1

− Uk
‖‖‖ < ‖‖Uk−1 − Uk

‖‖ or the modified MPP 
search method in the iterative FORM formula.

Fig. 2  Sufficient descent for 
performance functions a convex 
type, b concave type
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4.2  Adaptive modified chaos control (AMC) method

It supposes that the length between the new point-based 
AMV and previous point as ‖‖‖U

AMV
k+1

− U
H
k

‖‖‖ (where UH
k

 is the 
point computed by hybrid formulation) is less than the rela-
tive previous length as ‖‖‖U

H
k
− U

H
k−1

‖‖‖ which are used to com-
pute the sufficient criterion descent criterion, then the AMV 
has a  successful  i terat ion.  This  means that 
‖‖‖U

AMV
k+1

− U
H
k

‖‖‖ <  ‖‖‖U
H
k
− U

H
k−1

‖‖‖ ;  t h u s ,  w e  h a v e 
‖‖‖U

H
k
− U

H
k−1

‖‖‖ → 0 when k → ∞ . Using this creation, the 
stable convergence is obtained based on a fixed point as 
‖‖‖U

H
k
− U

H
k−1

‖‖‖ → 0.
It can be concluded that the robustness of hybrid algo-

rithm based on criterion ‖‖‖U
AMV
k+1

− U
H
k

‖‖‖ < ‖‖‖U
H
k
− U

H
k−1

‖‖‖ is 
dependent on modified algorithm of MPP search for reliabil-
ity analysis. The stable convergence of hybrid iterative for-
mulation can be guaranteed when the modified reliability 
algorithm provides robust results. In this paper, a sufficient 
iterative method is proposed using the sufficient descent con-
dition which is applied to determine the chaos control factor 
as below simple dynamical relation:

It is obvious 0 < 𝜆k <
1

𝛿k
 and λk→0 when k→∞, where � 

represents the adaptive coefficient as 1.01 < 𝛿 ≤ 1.2 . Con-

s e q u e n t l y ,  ‖UH
k
−UH

k−1‖
‖UAMV

k+1
−UH

k ‖
≈ 0 ⇒ U

H
k
≈ U

H
k−1

 ,  w h i l e 
‖‖‖U

AMV
k+1

− U
H
k

‖‖‖ is given a larger value. This means that the 
proposed sensitivity vector which is computed based on the 
sufficient descent criterion can provide stable results by con-
sidering ||UH

k
− U

H
k−1

|| < ||UH
k−2

− U
H
k−1

|| from previous 

(12)𝜆k <

‖‖‖U
H
k
− U

H
k−1

‖‖‖
‖‖‖U

AMV
k+1

− U
H
k

‖‖‖
=

‖‖‖U
H
k
− U

H
k−1

‖‖‖
𝛿k ×

‖‖‖U
AMV
k+1

− U
H
k

‖‖‖
.

results. The iterative formula for reliability analysis using 
the adaptive modified chaos control (AMC) presented in Eq. 
(13) which is satisfied the sufficient descent condition as 
below:

The ñA represents normalized sensitivity vector which is 
computed using modified chaos control factor with adap-
tive property using sufficient descent criterion. The pro-
posed condition is as simple as MCC and AMV, while the 
sufficient descent condition is applied to provide the stable 
results for concave and convex performance functions. The 
modified chaos control method as well as the adjusted chaos 
control in the method proposed by Li et al. [33] is used in 
this search direction. Unlike the chaos control factor pro-
posed by Li et al. [33], the proposed chaos control is dynam-
ically adjusted using sufficient descent condition in AMC. 
The proposed AMC is adapted using a dynamical acceler-
ated chaos control which is the major difference between 
the AMC and MCC in HCC or FSL. The dynamical chaos 
control in AMC is adaptively accelerated between 1 and 0 
for problem with insufficient properties which is given the 
smaller values at the final iterations. Therefore, it can pro-
vide the stable results for highly nonlinear problems, finally.

4.3  Hybrid sufficient reliability method

The proposed AMC is applied for hybrid iterative for-
mula by applying the AMV based on sufficient descent 
condition. The hybrid formula-based AMC and AMV 
approaches are utilized to improve the robustness and 
efficiency of FORM-based MPP search in RBDO. The 

(13)
U

AMC
k+1

= 𝛽t

ñ
A
k+1

‖‖‖ñ
A
k+1

‖‖‖
ñ
A
k+1

= U
AMC
k

+ 𝜆k
[
U

AMV
k+1

− U
AMC
k

]
.

Fig. 3  Insufficient descent for 
performance functions a convex 
type, b concave type
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sufficient descent criterion in Eq. (11) is used to hybrid 
formulation of AMC and AMV. In addition, hybrid method 
for MPP search ( UH

k+1
 ) is given as follows:

where UAMV
k+1

 is determined based on Eq. (8) and UAMC
k+1

 is 
computed based on the proposed AMC formula in Eq. (13). 
The AMC and AMV methods are applied in the proposed 
hybrid adaptive modified chaos control (HAMC) using suf-
ficient descent criterion.

Based on Eq. (14), the step size in HAMC method is 
varied between 0 and 1 which is equal to 1 for performance 
functions with sufficient descent condition. AMC is used 
when sufficient condition is not satisfied; thus, the chaos 
control is adjusted to less than 1 using Eq. (12). Therefore, 
hybrid formulation in Eq. (14) may improve the robustness 
inverse reliability method.

4.4  Algorithm of hybrid adaptive modified chaos 
control

The iterative procedure of the proposed HAMC method is 
described in this section. The descent condition is applied 
for hybrid AMV with AMC by the following steps:

Step 1: Define performance function g(d,X) and �t . 
Given statistical random variables � and � . Set k = 0 , and 
� (stopping criterion).

Step 2: Transfer random variable into normal standard 
space u = �−1{FX(x)}.

Step 3: Compute ∇ug(d,U
AMV
k

) and new point UAMV
k+1

 
using Eq. (8).

Step 4: For k = 1, UH
k+1

= U
AMV
k+1

Otherwise i.e. k > 1, If 
‖‖‖U

AMV
k+1

− U
H
k

‖‖‖ <
‖‖‖U

H
k
− U

H
k−1

‖‖‖ , then UH
k+1

= U
AMV
k+1

Else (i.e. 
‖‖‖U

AMV
k+1

− U
H
k

‖‖‖ ≤ ‖‖‖U
H
k
− U

H
k−1

‖‖‖ ), using Eq. (13) UH
k+1

= U
AMC
k+1

Step 5: If ‖‖‖U
H
k+1

− U
H
k

‖‖‖∕
‖‖‖U

H
k

‖‖‖ < 𝜀 , then stop, print 

U
∗ = U

H
k+1

 and g(d,UH
k+1

)Else k = k + 1 and go to Step 2.
Based on the sufficient descent condition for combina-

tion of the MPP search methods, the flowchart of HAMC 
is plotted in Fig. 4. As can be seen, the iterative formula 
is as simple as the AMV, and the hybrid formula of MPP 
search is computed by the new and pervious results. The 
sufficient descent condition and the adaptive step size are 
used to compute the adaptive search direction vector in 
HAMC. However, steepest descent search direction with 
a constant step size (i.e., 1 or 0.1) is implemented in HCC 
using the convexity criterion. As seen, the step size is 
adjusted based on the different between ‖‖‖U

H
k
− U

H
k−1

‖‖‖ and 
‖‖‖U

AMV
k+1

− U
H
k

‖‖‖ . The main differences between the proposed 

(14)U
H
k+1

=

{
U

AMV
k+1

‖‖‖U
AMV
k+1

− U
H
k

‖‖‖ <
‖‖‖U

H
k
− U

H
k−1

‖‖‖
U

AMV
k+1

‖‖‖U
AMV
k+1

− U
H
k

‖‖‖ ≥ ‖‖‖U
H
k
− U

H
k−1

‖‖‖
,

HACM and HCC are the implementation of sufficient 
descent criterion and a new adaptive modified search 
direction in Eq. (12).

5  Illustrative examples

The robustness and efficiency of proposed HAMC with 
descent criterion are investigated through three nonlinear 
performance functions and two RBDO problems with non-
linear convex and concave probabilistic constraints which 
are computed based on DLA-based PMA. The adaptive 
coefficient in HAMC is set as δ = 1.1. The results of HAMC 
methods are compared with the AMV, MCC (with the 
parameters of � = � and λ = 0.2), FSL (its parameters are 
given to be λ = 30 and c = 2.5), and HCC (parameters are 
given as � = � and λ = 0.2). For this purpose, the numbers of 
computations of ∇g(U) (central finite difference), the perfor-
mance value at MPP ( g(X∗) ) for each performance function, 
the objective and the number of evaluating probabilistic con-
straints for RBDO problems are used to compare reliability 
algorithms with stopping criterion (ε = 10−6).

5.1  Reliability examples

Three nonlinear performance functions are used as

Example 1  g = 0.3x2
1
x2 − x2 + 0.8x1 + 1 ,  i n  which , 

x1 ∼ N(0, 0.552) , x2 ∼ N(6, 0.552) and �t = 3.0.

Example 2 g = x4
1
+ 2x4

2
− 20 , in which, x1 ∼ N(10, 52) , 

x2 ∼ N(12, 52) and �t = 2.5.

Fig. 4  Iterative framework of HAMC algorithm-based MPP search
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E x a m p l e  3  g = 0.489x
3
x
7
+ 0.843x

5
x
6
− 0.0432x

9
x
10
+

0.0556x
9
x
11
+ 0.000786x

2

11
− 0.75 ,  in which, i = 1 ∼ 7

x
i
∼ N(1, 0.005

2), i = 8 ∼ 9 x
i
∼ N(0.3, 0.006

2), i = 9 ∼ 10

x
i
∼ N(0, 10.0

2) and �t = 3.0

The converged results of Examples 1–3 for different relia-
bility methods are listed in Table 1. It is obvious that the pro-
posed hybrid HAMC method by combining the AMV and 
AMC algorithms improves the robustness of AMV for these 
highly nonlinear performance functions, and it enhances the 
efficiency of MCC by using the adaptive chaos control. The 
HAMC method is accurately converged to stable results for 
all examples, while the AMV method is periodically yielded 
to unstable solutions. It is evident that the MCC and SLA are 
more robust than AMV. The HAMC is as robust as the MCC 
and HCC, but is significantly more computationally efficient. 
The proposed HAMC using hybrid sensitivity vector with 
sufficient descent criterion improves the efficiency of MPP 
search-based FORM formula compared to other modified 
methods.

Figure 5 illustrates the convergence histories of dif-
ferent reliability methods for Example 1. As seen, the 
HCC, SLA, and HAMC are converged to stable results as 
g(X∗) = −6.7116 and X∗ = (− 0.15416, 7.64278). The SLA 
and HAMC are converged with different iterations. Con-
sequently, it is shown that different sensitivity vectors are 
obtained by HAMC and SAL formulas.

By comparing the results of Table  2 for Example 2, 
the MCC and HCC are not converged to stable solutions 
based on λ = 0.2. The AMV produces periodic-2 solutions 
as g(X∗) = (10207.93, 41,533.52); while The HAMC yields 
stable results as 50.30983 after 20 iterations which is closely 
in agreement with the results extracted from Ref. [36] i.e. 
g(X∗) = 50.3096. The proposed HAMC method is efficient, 
while the HCC is the more inefficient method based on the 
parameters C = I and λ = 0.15 among other inverse reliability 
methods.

The convergence histories-based performance function 
for Example 3 is presented in Table 3. It can be seen that 
the HAMC is slightly more efficient than the MCC and 

HCC schemes. The HAMC is converged about three times 
faster than the MCC method. The AMV yields to 2-periodic 
unstable results as 1.395544 and 0.65651 while the proposed 
HAMC are efficiently converged to stable performance value 
as g(X∗) = 0.075282 after 27 iterations which is more agree-
ment with the extracted results from Ref. [56].

5.2  RBDO examples

Two RBDO examples are selected herein to illustrate the 
performances of the proposed HAMC which is formulated 
using sufficient descent criterion for RBDO problem. Two 
examples are selected to demonstrate the performances of 
the proposed HAMC method with highly nonlinear con-
straints in terms of mathematical and structural optimiza-
tion problems.

Example 4 A nonlinear mathematical RBDO problem is 
given as [19]:

This example includes three probabilistic constraints 
g1 , g2 , g3 and two Gumbel random variables with means of 
design point and standard deviation of 1. The RBDO results 
of different DLA-based PMA methods are summarized in 
Table 4 with stopping criterion ε = 10−6. It can be found 
from Table 4 that the results of different reliability methods 
are almost equal to the results extracted from Ref. [56]. In 
addition, results indicate that the AMV yields unstable solu-
tion, but the MCC, HCC, SLA, and proposed HAMC meth-
ods are robustly converged. The MCC is most inefficient 
among RBDO-based PMA methods. However, the HAMC is 
slightly more efficient than other existing PMA-based MPP 
search approaches. The HAMC is converged about three 
times faster than the MCC method. It can be concluded 
that the proposed PMA-based HAMC can slightly enhance 
the efficiency of MCC and also improves the robustness of 
AMV method for this nonlinear problem.

The converged optimum and number of evaluating the 
probabilistic constraints for different stopping criteria (ε) 

(15)

Find d = [d1, d2]
T

min f (d) = d1 + d2

S.t. Pf [gj(X) > 0] ≤ 𝛷(−𝛽
j

t ), j = 1, 2, 3

where g1 = 1 −
x2
1
x2

20

g2 = 1 −
(x

1
+ x

2
− 5)2

30
−

(x
1
− x

2
− 12)2

120

g3 = 1 −
80

x2
1
+ 8x

2
+ 5

0 ≤ di ≤ 10, xi ∼ N (di, 1
2) for i = 1, 2

d
0 = [5, 5], 𝛽1

t
= 𝛽2

t
= 𝛽3

t
= 2.5.

Table 1  Results of different reliability-based MPP search methods

a These methods yielded to unstable solutions as 2-periodic with step 
size λ = 0.2, thus to achieve stabilization, the step size is selected to 
be 0.15

Method Example 1 Example 2 Example 3

AMV Periodic-2 Periodic-2 Periodic-2
MCC − 6.71162 (36) 50.30983 (67)a 0.07528 (44)
HCC − 6.71162 (43) 50.30983 (70)a 0.07528 (43)
SLA − 6.71162 (67) 50.30983 (64) 0.07528 (24)
Proposed HAMC − 6.71121 (17) 50.30983 (20) 0.07528 (16)
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are listed in Table 5 for the RBDO example in Eq. (15). 
The HAMC converges faster than HCC and SLA methods, 
while the HCC is computationally more efficient than the 
MCC and SLA.

Example 5 Vehicle side impact example [19].
Based on a quadratic regression-based response surface 

method, the optimization model for was extracted for vehicle 
crashworthiness as below:

Fig. 5  Iterative histories of 
different reliability methods for 
Example
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With

(16)

Find d = [x1 ∼ x9]
T

min f (d)

S.t. Pf [FAL ≤ 1 kN] ≥ R1

Pf [Dup ≤ 32 cm] ≥ R2

Pf [Dmid ≤ 32 cm] ≥ R3

Pf [Dlow ≤ 32 cm] ≥ R4

Pf [VCup ≤ 0.32 cm] ≥ R5

Pf [VCmid ≤ 0.32 cm] ≥ R6

Pf [VClow ≤ 0.32 cm] ≥ R7

Pf [Fps ≤ 4 kN] ≥ R8

Pf [VB-pillar ≤ 9.9m∕cm] ≥ R9

Pf [Vdoor ≤ 15.69m∕cm] ≥ R10,

where

�
L ≤ �i ≤ �

U, i = 1 ∼ 9; �10,�11 = 0,

d
0 = �0, �1

t
∼ �10

t
= 3.0.

Table 2  Performance function of different reliability methods for 
Example 2

a The step size is considered as λ = 0.15 to achieve the stable results 
for these methods

Iteration AMV MCCa HCCa SLA HAMC

1 51,452 51,452 51,452 51,452 51,452
2 1793.377 1793.377 1793.377 1793.377 1793.377
3 41,491.06 449.8948 41,491.06 41,488.57 8671.156
… … … … … …
19 41,533.52 50.33174 50.39994 41,102.38 50.30983
20 10,207.93 50.32513 50.37132 10,172.09 50.30983
… … … … …
26 10,207.93 50.31184 50.31788 10,117.4
27 41,533.52 50.31127 50.31563 38,879.33
… … … … …
63 41,533.52 50.30983 50.30983 50.30983
64 10,207.93 50.30983 50.30983 50.30983
65 41,533.52 50.30983 50.30983
66 10,207.93 50.30983 50.30983
67 41,533.52 50.30983 50.30983
68 10,207.93 50.30983
69 41,533.52 50.30983
70 10,207.93 50.30983
71 41,533.52 50.30983
72 10,207.93
73 41,533.52

Table 3  Performance function 
of different reliability methods 
for Example 3

Iteration AMV MCC HCC SLA HAMC HSLA

1 0.582 0.582 0.582 0.582 0.582 0.582
2 0.31493 0.31493 0.31493 0.31493 0.31493 0.31493
3 1.14586 0.161093 1.14586 0.582463 0.214331 0.912962
… … … … … … …
15 1.395544 0.075284 0.075283 0.075282 0.075282 0.075282
16 0.65651 0.075283 0.075282 0.075282 0.075282 0.075282
… … … … … …
20 0.65651 0.075282 0.075282 0.075282 0.075282
21 1.395544 0.075282 0.075282 0.075282 0.075282
22 0.65651 0.075282 0.075282 0.075282
23 1.395544 0.075282 0.075282 0.075282
24 0.65651 0.075282 0.075282 0.075282
… … … …
42 0.65651 0.075282 0.075282
43 1.395544 0.075282 0.075282
44 0.65651 0.075282
… …
423 1.395544
424 0.65651
425 1.395544
426 0.65651
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where FAL and Fps are dummy abdomen load and dummy 
pubic symphysis force, respectively. Dup,Dmid and Dlow are 
the dummy upper rib, middle rib and lower rib; while VCup , 
VCmid and VClow are the dummy upper chest, middle chest 
and lower chest, respectively. Also, VB - pillar and Vdoor rep-
resent the velocity at the middle B-pillar position and door 
belt line, respectively. This example involves eleven random 
variables, as listed in Table 6.

The optimal design point, objective function at the opti-
mal design point, and the probabilistic constraints values, 
which are evaluated on the beta-hypersphere, are listed in 
Table 7 to compare the accuracy of PMA-based reliability 

(17)

f = 1.98 + 4.9x1 + 6.67x2 + 6.98x3 + 4.01x4 + 1.78x5 + 2.73x7,

FAL = 1.16 − 0.3717x2x4 − 0.00931x2x10 − 0.484x3x9 + 0.01343x6x10,

Dup = 28.98 + 3.818x3 − 4.2x1x2 + 0.0207x5x10 + 6.63x6x9 − 7.77x7x8 + 0.32x9x10,

Dmid = 33.86 + 2.95x3 + 0.1792x10 − 5.05x1x2 − 11x2x8 − 0.0215x5x10 − 9.98x7x8 + 22x8x9,

Dlow = 46.36 − 9.9x2 − 12.9x1x8 + 0.1107x3x10,

VCup = 0.261 − 0.0159x1x2 − 0.188x1x8 − 0.019x2x7 + 0.0144x3x5 + 0.0008757x5x10

+ 0.08045x6x9 + 0.00139x8x11 + 0.00001575x10x11,

VCmid = 0.214 + 0.00817x5 − 0.131x1x8 − 0.0704x1x9 + 0.03099x2x6 − 0.018x2x7

+ 0.0208x3x8 + 0.121x3x9 − 0.00364x5x6 + 0.0007715x5x10

− 0.000535x6x10 + 0.00121x8x11 + 0.00184x9x10 − 0.02x2
2
,

VClow = 0.74 + 0.61x2 − 0.163x3x8 + 0.001232x3x10 − 0.166x7x9 + 0.227x2
2
,

Fps = 4.72 − 0.5x4 − 0.19x2x3 − 0.0122x4x10 + 0.009325x6x10 + 0.000191x2
11
,

VB-pillar = 10.58 − 0.647x1x2 − 1.95x2x8 + 0.02054x3x10 − 0.0198x4x10 + 0.028x6x10,

Vdoor = 16.45 − 0.489x3x7 − 0.843x5x6 + 0.0432x9x10 − 0.0556x9x11 − 0.000786x2
11
,

methods of HAMC with extracted results from Ref. [19]. As 
can be seen from Table 7, the constraints g2 , g8 , and g10 are 
active in RBDO using HAMC for this example. The AMV is 
not converged, but the MCC, HCC and SLA are converged 
to stable results as well as the proposed HAMC. The HAMC 
formula using PMA is improved the stability of AMV, and 
is enhanced the computational efficiency about six, five and 
three times faster than the MCC, HCC and SLA methods, 
respectively. The MCC, HCC, SLA, HAMC for PMA can 
provide accurate results and more agreement with the results 
obtained from Ref. [19].

Table 4  The results of RBDO 
problem for Example 4

a Results are extracted from Ref. [56] based on self-adaptive modified chaos control method (SMCC)

Method Design variables Objective Iterations Iterate g1\g2\g3 F Evaluations

AMV – – – Not converged
MCC (3.760865, 3.691388) 7.452252 11 1545\492\3003 5040
HCC (3.760865, 3.691388) 7.452252 11 1098\591\582 2271
SLA (3.760864, 3.691388) 7.452252 11 354\592\990 1936
HAMC (3.760864, 3.691386) 7.452251 11 294\717\582 1593
SMCCa (3.76086, 3.69139) 7.45225 – 801/762/1959 3522

Table 5  The results of RBDO 
problem in Example 4 for 
different stopping criterion (ε)

a Objective value at the optimum point and number of evaluating probabilistic constraints

Method ε = 10−4 ε = 10−6 ε = 10−8 ε = 10−10

AMV – – – –
MCC 7.452258 (3096)a 7.452252 (5040) 7.452252 (6981) 7.452252 (8917)
HCC 7.452253 (1338) 7.452252 (2271) 7.452252 (3204) 7.452252 (4116)
SLA 7.452254 (1363) 7.452252 (1936) 7.452252 (2509) 7.452252 (3103)
HAMC 7.452256 (1152) 7.452251 (1593) 7.452252 (2223) 7.452252 (3014)
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The proposed hybrid formula using sufficient descent 
condition can be applied for reliability loop in RBDO prob-
lems, successfully. The sufficient descent condition can be 
used to enhance the performance convergence including 
both efficiency and robustness of the reliability methods 
as well as the convexity criterion. The HAMC adaptively 
implemented the modified sensitivity vector based on the 
proposed AMC in Eq. (13) and AMV in Eq. (8). Thus, the 
proposed hybrid method can be applied for RBDO of real 
engineering problems, in future.

6  Conclusions

In this paper, a criterion named a sufficient descent is 
applied for adaptive modified sensitivity vector of reli-
ability loop-based MPP search, which is used to evaluate 
probabilistic constraints in reliability-based design opti-
mization (RBDO) using performance measure approach 
(PMA). An adaptive modified chaos control (AMC) 
method is proposed by developing a dynamical chaos 
control using sufficient descent condition. The AMV and 

Table 6  Design and random 
variables for vehicle side impact

Random variables Std. dev. Upper bound Nominal/initial Lower bound

x1 B-pillar inner 0.03 0.5 1.0 1.5
x2 B-pillar reinforcement 0.03 0.45 1.0 1.35
x3 Floor side inner 0.03 0.5 1.0 1.5
x4 Cross member 0.03 0.5 1.0 1.5
x5 Door beam 0.05 0.875 2.0 2.625
x6 Door belt line reinforcement 0.03 0.4 1.0 1.2
x7 Roof rail 0.03 0.4 1.0 1.2
x8 Material of B-pillar inner 0.006 0.192 0.3 0.345
x9 Material of floor side inner 0.006 0.192 0.3 0.345
x10 Barrier height 10 − 30 0 30
x11 Barrier height position 10 − 30 0 30

Table 7  Comparing the results 
for vehicle side impact example

a Results are extracted from Shan and Wang [19] based on reliable design space (RDS)

Method AMV MCC HCC SLA HAMC RDSa

x1 Not converged 0.87831 0.87831 0.81409 0.81095 0.8008
x2 1.35 1.35 1.35 1.35 1.35
x3 0.82011 0.82011 0.72782 0.72799 0.7134
x4 1.5 1.5 1.5 1.5 1.5
x5 0.92084 0.92084 0.93853 0.93850 0.875
x6 1.2 1.2 1.2 1.2 1.2
x7 0.4 0.4 0.4 0.4 0.4
x8 0.345 0.345 0.345 0.345 0.345
x9 0.192 0.192 0.192 0.192 0.192
Objective – 29.75871 29.75871 28.83133 28.81701 28.5526
F evaluation – 67728 52,248 30,432 10,668 N/A
Constraints
 g1 (Xa) – 0.5307 0.5307 0.5221 0.5259 0.5424
 g2 (Xa) – 0 0 0 0 0
 g3 (Xa) – 1.8565 1.8565 1.7054 1.6945 1.6307
 g4 (Xa) – 1.8558 1.8558 1.8366 1.8251 1.871
 g5 (Xa) – 0.0796 0.0796 0.0748 0.0745 0.0789
 g6 (Xa) – 0.1056 0.1056 0.0727 0.0725 0.1056
 g7 (Xa) – 0.0181 0.0181 0.0163 0.0164 0.0162
 g8 (Xa) – 0 0 0 0 0
 g9 (Xa) – 0.3795 0.3795 0.3763 0.3824 0.3821
 g10 (Xa) – 0 0 0 0 0.2013
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proposed AMC methods are adaptively implemented using 
sufficient descent criterion in RBDO-based PMA. The 
results of reliability examples and RBDO problems for 
proposed hybrid method named HAMC are compared with 
several reliability methods. The results indicated that the 
HAMC improved the robustness of AMV for highly non-
linear functions and it enhanced the efficiency of existing 
modified versions of MPP search. The HAMC has top per-
formances for accuracy and efficiency compared to other 
existing RBDO-based PMA. To be specific, the HAMC is 
more robust than the AMV and is more computationally 
efficient than the MCC, HCC, and SAL. Therefore, the 
HAMC can be implemented to evaluate the probabilistic 
constraints of real and complex RBDO engineering prob-
lems in future.
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