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Abstract
The drift capacity of reinforced concrete (RC) columns is a crucial factor in displacement and seismic based design proce-
dure of RC structures, since they might be able to withstand the loads or dissipate the energy applied through deformation 
and ductility. Considering the high costs of testing methods for observing the drift capacity and ductility of RC structural 
members in addition to the impact of numerous parameters, numerical analyses and predictive modeling techniques have 
very much been appreciated by researchers and engineers in this field. This study is concerned with providing an alternative 
approach, termed as linear genetic programming (LGP), for predictive modeling of the lateral drift capacity (Δmax) of circular 
RC columns. A new model is developed by LGP incorporating various key variables existing in the experimental database 
employed and those well-known models presented by various researchers. The LGP model is examined from various per-
spectives. The comparison analysis of the results with those obtained by previously proposed models confirm the precision 
of the LGP model in estimation of the Δmax factor. The results reveal the fact that the LGP model impressively outperforms 
the existing models in terms of predictability and performance and can be definitely used for further engineering purposes. 
These approve the applicability of LGP technique for numerical analysis and modeling of complicated engineering problems.

Keywords  Reinforced concrete columns · Drift capacity · Cyclic lateral loading · Predictive modeling · Linear genetic 
programming

List of symbols
a/Ls	� Aspect ratio
Ac	� The area of RC column core within perimeter 

transverse reinforcement (center-to-center)
Ag	� Gross area of the column section
Asl	� The total area of the longitudinal reinforcement
Ast	� The total area of transverse reinforcement
b	� Column section width
bc	� The column concrete core width
d	� Effective depth
Deq or D	� The diameter of the equivalent circular column 

cross section

f′c	� Standard compressive strength of unconfined 
concrete samples

fyl	� The yield strength of longitudinal steel 
reinforcement,

fyt	� The yield strength of lateral or transverse steel 
reinforcement

hc	� The column concrete core depth
L	� Column length
L/D	� The column slenderness ratio
P	� The axial load applied to the column
s	� The spacing between transverse reinforcement 

or spiral pitch
Vmax	� The maximum shear strength
α	� The axial load ratio calculated by P/Agf′c
β	� The transverse reinforcement index equal to 

ρtfyt/f′c
γ	� The longitudinal reinforcement index equal to 

ρlfyl/f′c
Δmax	� The maximum lateral displacement or the drift 

capacity of circular RC columns
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ρl	� The longitudinal steel ratio
ρt	� The ratio of the volume of lateral reinforcement 

to volume of confined concrete core

1  Introduction

The key consideration in the design and performance assess-
ment of civil engineering structures and infrastructures is the 
fact that they must work efficiently during their service life. 
This is achieved through ensuring about the structural safety, 
i.e., strength and stability, and their serviceability. Particu-
larly in seismic hazard zones, the performance and design of 
buildings and their structural members should also be exam-
ined according to seismic provisions recommended by codes 
and guidelines [1, 2]. In this regard, the shear strength and 
ductility of structural members under cyclic lateral loads, 
such as seismic loads, are two important factors should be 
scrutinized. Although the strength of structural elements is 
of paramount significance, the ductility and the deformabil-
ity, in both elastic and plastic states, are also important, since 
the member might be still able to withstand larger loads 
through its deformation. In fact, the ductility also causes to 
dissipate the energy applied to the structure and its corre-
sponding elements during the occurrence of an earthquake.

Amongst structural members, columns are usually con-
sidered as the major structural member, generally, as axial 
load-bearing components. In reinforced concrete (RC) mem-
bers, the slight tensile strength and the brittle behavior of the 
concrete is commonly enhanced through augmenting it with 
materials such as steel bars owing to their higher deformabil-
ity and tensile strength. Besides to the existing longitudinal 
reinforcement in RC columns, experimentations demon-
strated that transverse reinforcement through steel stirrups or 
spirals arranged in different layers as confinement along the 
column length also increase their shear strength and ductility 
characteristics, particularly as they are subjected to earth-
quake and seismic loadings [3–6]. Therefore, it is obvious 
that the ductility of RC columns is provided by the longitu-
dinal or transverse reinforcement commonly including steel 
bars. In many cases, lack of existing appropriate ductility in 
columns would lead to their brittle failure and this might also 
result in structural collapse, severe damage and fatalities. 
To rise above this, the lateral drift capacity or the maximum 
lateral displacement of RC columns is typically examined by 
the researchers and practicing engineers and this is a crucial 
factor in displacement-based design and seismic evaluation 
of structures, since the structure is expected to withstand a 
specific drift without structural damage [7–9].

Considering the expensive process of direct testing 
approaches to acquire and observe the drift capacity of RC 
columns under cyclic lateral and seismic loads, indirect esti-
mation and numerical modeling techniques have been very 

much appreciated by engineers and researchers, mostly for 
pre-design purposes. The displacement-based design proce-
dure for RC columns and pertinent approaches require esti-
mation models of drift capacity [9]. In this regard, several 
models have been proposed by different researchers using 
analytical and empirical numerical analysis methods. Con-
sidering the plastic hinge concept, the lateral deformation 
and corresponding drift of RC columns can be represented 
as follows.

It can be realized from Fig. 1, the ultimate lateral drift 
capacity (Δmax) of the column can be considered as the sum-
mation of yield elastic displacement and plastic deformation, 
Δy and Δp, respectively, where L is the column length; P and 
V are axial and shear loads applied. The lateral drift capacity 
or ultimate deformation, i.e., Δmax is commonly defined as 
the lateral displacement of the column observed at 80% of 
peak shear strength (Vmax) in pertinent load–displacement 
curves acquired by experimental studies and testing meth-
ods, according to [10].

Pujol and his colleagues [11] have explored the displace-
ment of RC columns in their nonlinear range of response 
to reduce earthquake impacts via energy dissipation. In 
addition, it is observed that the column drift capacity is a 
function of displacement history and, as well as the shear 
strength, it decreases as the number and amplitude of cycles 
increases [12]. The maximum drift capacity model for RC 
columns proposed is as follows [10, 11]:

where

(1)100
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L
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Fig. 1   a Typical illustration of RC columns under shear (V) and axial 
(P) load in plastic hinge concept; b schematic deformation illustration 
of the RC column
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Saatcioglu and Razavi [13] proposed a model based on 
column displacement analyses using different amounts of 
transverse reinforcement and levels of applying axial com-
pressive loads, where the lateral displacement at 80% of lat-
eral shear strength (Vmax) was considered as the Δmax. The 
model is given as follows:

In equation above

and there exist some conditions as follows:

Furthermore, Elwood and Moehle [10] formulated the 
drift of columns at 80% in peak shear strength based on 
experimental data gained by tests carried out on RC columns 
specimens [10]. The empirical drift capacity formula has 
been acquired by regression analysis and is as follows:

where

From a different perspective, drift capacity models are 
also valuable to recognize the critical columns in seismic 
assessment and rehabilitation of structures. It is clear that the 
lateral drift capacity of RC members is a complicated prob-
lem, since there are numerous parameters and their changes, 
in turn, influencing the system performance under loadings. 
This can also be realized as the expression of the aforemen-
tioned empirical and analytical based models have incorpo-
rated distinct parameters, e.g., P/Agf′c, ρt and a/Ls, as inde-
pendent input variables to estimate the Δmax of RC columns. 

(3)
Δmax

L
=

�tfyt

14f
�

c

√
k2

�
Ag

Ac

− 1
�
PO

P
(MPa).

(4)�t =
Ast

bs
,

(5)k2 = 0.15

√
bc

s

bc

sl
≤ 1.0,

(6)PO = 0.85f
�

c

(
Ag − Asl

)
,

(7)
P

PO

≥ 0.2,

(8)
Ag

Ac

− 1 ≥ 0.3.

(9)
Δmax

L
=

3

100
+ 4��� −

1

40

�
√

f
�

c

−
1

40

P

Agf
�

c

≥
1

100
,

(10)v =
Vmax

bd
.

Nevertheless, there exist some defects associated with the 
models proposed. The most significant weakness of analyti-
cal methods is the fact that they cannot incorporate many 
parameters. This is due to that they are developed based on 
assumptions simplifying the problem. The empirical mod-
els based on regression analysis are usually calibrated and 
validated using few experimental data. In regression-based 
analysis few models are commonly checked to find the fit-
test model. The drift capacity equations provided by Pujol 
et al. [11] and Elwood and Mohele [10] incorporate the shear 
strength (Vmax) of the RC column as an input variable. The 
Vmax factor itself should be directly observed through experi-
mental investigations and this is inefficient when indirect 
estimation is the purpose or it can be indirectly estimated 
through the numerical analysis which might produce nega-
tive effects on the accuracy of the drift capacity model in 
estimation. Furthermore, the design equation proposed by 
Saatcioglu and Razavi [13] is conditional, e.g., in Eq. 7, 
where P/P0 ≥ 2, and covers a small range. This would lead to 
its deficiency in predictability and approximation capability.

When it comes to approximation and modeling of com-
plicated real-world problems, data-mining methods and 
soft computing (SC) techniques, can be selected as useful 
alternative approaches. In general, SC techniques are natu-
rally motivated algorithms which are developed based on 
the analogy of biological activities, the behavior of natu-
ral systems or biological systems of living creatures. SC 
methods are data-mining computational tools that attempt 
to simulate and find the structure of the models existing 
between the independent input and corresponding output 
variables. These data-driven and self-adaptive approaches 
such as artificial neural networks (ANNs) and support vector 
machines (SVM) and genetic programming (GP) and their 
subdivisions have been very much employed for predictive 
modeling of engineering problems [8, 14–18]. However, 
these approaches have been trivially employed for indirect 
estimation and simulating of the drift capacity of RC col-
umns. Inel [8] applied ANNs to model the ultimate deforma-
tion and estimates of RC columns using experimental data in 
which flexural failure was the criterion. The model proposed 
incorporates the aspect ratio, a/H, fc′ (MPa), fyl (MPa), fyt 
(MPa), s (mm), ρl (%), ρt (%), confinement effectiveness 
factor provided by [19] and the axial load ratio, P/fc′ Ag 
[8]. In addition, Gordon [20] also developed an ANN-based 
model for the prediction of the Δmax of RC columns using 
b or D for rectangular and circular RC column, respectively 
(m), d (m), P/√fc′ Ag, ρl (%), ρt (%) and a/L. Although the 
results of the ANN models produced were expressed to be 
promising in estimation, ANNs have been criticized to be 
black-box tools and this is a substantial deficit. This means 
that the ANN-based developed models can only be com-
puted through computer. In other words, the mathematical 
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structure of the obtained model cannot be presented as an 
explicit formula or an expression [6, 21, 22].

This paper is concerned with providing an alternative per-
spective on the numerical analysis and predictive modeling 
of the drift capacity of RC columns of circular cross section 
at their lateral strength with normal strength concrete. A 
robust SC technique, linear genetic programming (LGP) is 
employed to generate new predictive models. The superior-
ity of LGP approach over other SC techniques is to create 
models that can be converted to explicit formulae and they 
can be employed for further design and calculation purposes. 
LGP has been successfully used to solve various engineering 
problems [16, 23–28]. A database consisting of 63 experi-
mental results conducted on different types of circular RC 
columns is compiled for development of drift capacity mod-
els. Several runs have been done and many models have been 
developed using LGP approach for indirect estimation of the 
Δmax of RC columns. The optimal model has been selected 
based on the assessment of the generated models from vari-
ous accuracy perspectives.

2 � LGP approach

Genetic programming (GP) is a symbolic optimization tech-
nique that generates computer programs or models based on 
the principle of Darwinian natural selection [23, 24, 29]. GP 
programs are programmed using a functional language such 
as LISP [24, 25]. LGP is an improved subdivision of GP 
having a linear program assembly comparable to the struc-
ture of DNA existing in natural genomes. This algorithm 
develops variable-length sequences of a programming lan-
guage, C or C++ [16, 29, 30]. The functions commonly used 
in LGP include arithmetic operations, e.g., +, −, / and × , 
unary functions such as Log, abs and Sqrt, conditionals such 
as if–then statements, and some of Trigonometric functions, 
Sin and Cosine. LGP algorithm can develop programs faster 
than other types of GP variants due to the simple formations 
of generated programs and the fact that these programs are 
not required to be interpreted [6, 22]. Figure 2 represents a 
linear shaped solutions generated by LGP.

In general, LGP starts with producing an initial number 
of individual programs or solutions. These are models, and 
therefore, their accuracy is assessed by means of a fitness 

function. After running a tournament, typically four pro-
grams are randomly chosen from the initial individuals [23, 
26]. Those members with better fitness acquire a greater 
opportunity to grow into a parent in the next production of 
programs. Subsequently, those fittest individuals are repro-
duced or transformed randomly to new programs by means 
of genetic operators. To tackle bloating problem, i.e., the 
undue development of the program size without a notewor-
thy fitness improvement, LGP restricts the size of programs 
which can be predefined prior to the model development 
[16, 22, 31]. After the evaluation of the programs regarding 
their fitness, the procedure repeats till the stop conditions 
are reached and the best program is obtained [27, 32, 33].

2.1 � Genetic operators

The main operation in evolutionary algorithms (EAs) is per-
formed by genetic operators mainly including reproduction, 
mutation, crossover or recombination [23, 28, 31, 33]. GP 
optimizes the population of computer programs according to 
a fitness function. Hence, the fitness function is the objective 
function that GP optimizes [26]. In the procedure of training, 
some parts of programs are modified by genetic operators 
to enhance the program accuracy. Reproduction is basically 
carried out by duplicating a fitting program within the exist-
ing population to the next generation without any changes 
applied. In addition, crossover and mutation change, the pro-
grams and structures of individuals are illustrated in Fig. 3.

2.2 � Fitness assessment

The fitness function is used to assess how close the estimated 
and observed or experimental values are. Therefore, it can 
also be used as a selection means of producing individu-
als with higher accuracy in the training process [15, 27]. 
Here, the a linear sum of errors function is employed as the 
fitness function to develop LGP programs and this can be 
calculated using a linear mean of errors function which is 
given as follows:

(11)f =

N∑

i=1

(||Ei − Pi
||
)
,

Fig. 2   LGP program expressing 
y = f (v[i]) =

√
3 − v[0] L0 : f[0]=0;

L1 : f[0]-=v[0];

L2 : f[0] +=3;

L3 : f[0]=Sqrt(f[0]);

Return f[0];

f[0] = v + 

g[0] = v[2]  ×   

f΄[0] = v -

g΄[0] = v[2]  ×

Crossover(b)

f΄[0] = v   v[3]f[0] = v   v[3]
Mutation

(a)

Fig. 3   a Crossover and b mutation operators used in LGP
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where Ei is the value of the outputs observed in experiments, 
and Pi is the equivalent predicted value using the LGP model 
for case i and N is the number of output data [16].

3 � Experimental database and model 
variables

It is well-known that SC algorithms are data-driven. In pre-
sent study, a valuable and reliable database already presented 
by the Pacific Earthquake Engineering Research Structural 
Performance Database (PEER-SPD) [34] is employed for the 
development of LGP models for indirect estimation of Δmax 
of RC columns. This comprehensive database is a collec-
tion of experimental studies previously conducted by sev-
eral researchers in the literature to examine the precisions of 
seismic performance predictions for RC columns of different 
cross sections. The database contains the key RC columns 
material characteristics, mainly circular and rectangular cross 
section, geometry and reinforcement factors, the applied 
loads and observed damage, test results and so forth [20, 34]. 
The database used in this paper is presented in Appendix A.2. 
Test configurations considered are cantilever, double-curva-
ture, double-ended, hammerhead, and cantilever-flexible-
base testing methods [20, 34]. The samples have been tested 
under cyclic horizontal loading until failure. It is noteworthy 
that the shear failure was assumed and was defined by the 
maximum displacement, Δmax, where shear resistance fell 
below 80% of the maximum shear recorded [10, 20, 35]. Δy 
and Δmax acquired by load–displacement test results has been 
defined by Elwood and Mohele [10], as represented in Fig. 4.

∆s or ∆max is the displacement at 80% of Vmax, and ∆y is 
the displacement at the point of intersection of a horizon-
tal line at the peak shear, and a line formed by the origin 
and the point on the force–displacement envelope, where 

the shear is at 70% of its peak value [20]. Nevertheless, the 
purpose of this study is to find a predictive model for the 
∆max. The experimental data in which the shear failure of 
samples under cyclic lateral loading occurred were selected 
in presents study for the development of models. Two modes 
of shear failure reported in the database, i.e., flexural-shear 
and shear failure modes, are typically considered as the main 
reason to narrow down the PEER-SPD. Therefore, the LGP 
model is merely useful for these two type of failure modes. 
The descriptive statistical details of the database is summa-
rized and given in Table 1. For further considerations, the 
whole experimental data used here is attached to this article 
as a supplementary file for online publication.

Considering the models proposed by different research-
ers and the incorporated variables previously mentioned, it 
is possible to find the significant variables to estimate the 
Δmax factor. The LGP-based Δmax model in this study is 
also assumed to be a function of the key independent input 
variables. Considering the available information in the 
experimental database, some significant variables such as 
L/D, which represents the slenderness of the column, can 
also be used to develop LGP models. It is worth mention-
ing that analytical models are commonly developed based 
on assumptions for simplifying the problem. These mod-
els might not be capable of capturing the impact of several 
important variables such as L/D. It is also noteworthy that 
the LGP model is free from the impact of Vmax, since new 
experiments are required to calculate this parameter and cal-
culating this parameter from analysis may impact the accu-
racy of the model. This is the superiority of LGP over other 
approaches and also the fact that LGP models are based on 
experimental observations without any assumptions. The 
variables employed here are considered to be dimensionless 
and meaningful from engineering perspectives. The LGP 
Δmax (mm) function can be demonstrated as follows:

where L/D is the slenderness ratio which is defined as the 
column length to diameter or the circular column, ρt and 
ρl are the transverse and longitudinal reinforcement ratio 
(%), α is assumed to be the axial load ratio, P/Agfc′, and β is 
considered to be the transverse reinforcement index equal to 
ρtfyt/fc′, and γ is the longitudinal reinforcement index equal to 
ρlfyl/fc′, s/d is the transverse reinforcement spacing to depth 
ratio and a/Ls is the aspect ratio.

4 � Data classification

To assess the potential of prediction models, i.e., to see 
whether they underfit or overfit and their generalization per-
formance, many researchers recommended that the data sets 

(12)Δmax = f
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Fig. 4   Representation of columns drift capacity in shear load–dis-
placement curves reported in the database
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be mainly classified into three groups, learning, validation 
and test data [6, 27, 36]. The learning group is applied to fit 
the models, i.e., LGP-generated programs, and the validation 
is utilized for the fitness assessment of learned programs. 
It is noteworthy that the learning and validation process is 
known as the training process. Another data set which is not 
employed in the training process and only to confirm the 
predictability of the obtained model and this set is so-called 
test data. Considering the recommended values by research-
ers, the training and testing data are usually taken 80% and 
20% of all data, respectively, for model development through 
SC techniques [6, 21, 22, 33, 37]. Similarly, these values are 
considered in this study to explore the accuracy degree of 
the generated models. It is obvious that in case the perfor-
mances of the model on different sets of data, e.g., learning, 
validation and test data, are good and close, overfitting and 
underfitting are avoided [6, 16].

5 � LGP training parameters

To find the estimation models of Δmax for circular RC col-
umns, Discipulus software provided by [38], was utilized in 
present study. In SC algorithms, There exist several param-
eters in the algorithms should be fixed or predefined to per-
form a run. Herein, the initial number of program population 
was considered to be first 500 and second 700. The number 
of generation of programs without improvement was fixed 
at 200 which mean that the generation of programs would be 
stopped when the fitness of 200 programs was not acceptable 
in that iteration. Various operators, +, −, × , /, mathemati-
cal operator, √, and random constants between − 10 and 
10 have been selected to develop programs. These sorts of 
operators are considered here to find a simple LGP model 
which can be used via manual calculations. A significant 
problem in GP is the fact that the size of produced pro-
grams gradually increase without any improvement in their 
accuracy after a while and this is known as bloat. To rise 
above this, LGP restricts the size of programs generated to 
a number of orders [31–33]. In this study, the maximum 
program size was fixed at 120 bytes. In addition, demes, 
i.e., semi-isolated subgroups, classify program populations 
of equal size and this leads to a better evolution of genera-
tion in each run in LGP [6, 21]. The number of demes was 
considered to be equal to 20. There exist some other param-
eters such as the probability of crossover and mutation which 
were equal to 0.5 and 0.95, respectively. These parameters 
should be appropriately initialized to produce an accurate 
model. To adjust these parameters’ values, numerous runs 
might be required to be carried out through a process of 
trial and error. Albeit, those previously suggested values of 
the parameters by other researchers can also be used [6, 22, 
31, 32].Ta
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6 � Initial accuracy evaluation of LGP models

In general, there exist some statistical indices that are com-
monly utilized to examine the accuracy of predictive models. 
These indices mainly include coefficient of correlation (R), 
mean absolute error (MAE) and the root mean square error 
(RMSE). If the correlation coefficient (R) between the exist-
ing predicted values of the output by the model and those 
experimental or observed values becomes equal or more 
than 0.8, it can be proposed that the accuracy of the model 
generated in estimation is acceptable [32, 33, 39]. Besides 
to this, the MAE and RMSE are typically used to provide 
an overall insight to the error produced. It is clear that the 
less the MAE and RMSE values, the better the performance 
of the model will be. According to [25], R does not change 
significantly by shifting the output values of a model equally, 
and error functions (e.g., RMSE and MAE) only shows the 
error. Therefore, a better criteria can be used which can 
simultaneously incorporate the impact of R, RMSE and/or 
MAE such as performance index (PI) [25]. PI is proposed as 
a function of the relative root mean square error (RRMSE) 
and the R as the following equations.

In present study, these well-known indices are considered 
as the criteria for the assessment of the accuracy of LGP-
based models for selecting the best model. It is noteworthy 
that supplementary analyses should be performed to dis-
cover the optimal model as are described in the following 
sections. These mathematical expressions of these indices 
are demonstrated as follows:
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(16)RRMSE =
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�
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�2

n
,

where n is the number of data samples, Pi is the model pre-
diction hi and ti are the experimental value of the ith output, 
respectively, Pi and Ei are the mean value of the predicted 
and experimental values of outputs.

7 � The proposed LGP‑based model

A process of trial and error was carried out to select the 
best GP model for the prediction of the Δmax of circular RC 
columns in this study. Many runs were made and numer-
ous LGP programs were produced through applying vari-
ous combinations of the algorithm parameters and check-
ing various input variables. Amongst all, the selection of 
a model initially depends on considering two criteria as a 
multi-objective strategy [22, 32]. First, the simplest model 
structure; albeit, this was not the main factor, and second, 
the optimal fitness value on the training data sets, i.e., learn-
ing and validation data. It is noteworthy that several other 
criteria are also conducted to evaluate the models and this 
procedure was performed for several times to propose the 
LGP model in present study. The processes are presented in 
the following sections. The fittest program generated LGP is 
in C or C ++ code and is provided in Appendix A for further 
considerations. Herein, the LGP program is converted into a 
mathematical expression through replacing the contributed 
variables. The optimal LGP-based formula of Δmax (mm) is 
represented in the following equation:

This LGP model is acquired after examining numer-
ous models produced after a great process of training and 
validation. The proposed LGP model for Δmax is chosen 
among a total of 967, 302,012 programs produced after 
several runs and iteration. The accuracy of this model is 
also checked on a group of unseen data in the modeling 
process which presents the generalization performance 
and predictability. These major issues are the superiori-
ties of LGP over regression-based techniques. It is worth 
remarking that the advantage of LGP approach over other 
SC techniques, e.g., ANNs and SVMs, is the fact that it 
can produce predictive models which can be converted to 
explicit formulae to be used for further design and calcula-
tion purposes [6, 16, 31].
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8 � Results and discussion

8.1 � Evaluation of the performance of models

As was stated, during and after the process of modeling 
and performing training and validation procedures, several 
models are generated by LGP. With the intention to exam-
ine the fitness of models, some statistical indices, R, RMSE 
and MAE, are initially employed after the assessment of 
models used through a fitness function. The performance of 
the optimal model should be examined for different division 
of data, i.e., training data and test data. The last is known 
as the generalization performance or the predictability of 
the model [6]. Furthermore, PI can be used to evaluate the 
model incorporating the simultaneous impact of R, RMSE 
and/or MAE. These indices are calculated for different 
classes of data employed here In Table 2.

It is proposed that if PI value is close to zero (e.g., 
PI ≤ 0.2), the model predicts the actual values well and is 
the recommended acceptance threshold [25]. According to 
the PI values in Table 2, the performance of the LGP model 
proposed here is acceptable. Furthermore, a traditional way 
to assess the accuracy and fitness of a model in compari-
son to those existing in the literature for estimation of the 
drift capacity of RC columns is to indicate the model output 
results versus the experimental values [6, 17, 40]. Figure 5 
shows a scatter plot of the obtained values of the Δmax of 
cyclically loaded circular RC columns obtained by the LGP 
and other models proposed by well-known researchers ver-
sus those experimentally observed.

The calculated values of R, RMSE, MAE and PI for all, 
training and test data presented in Table 2 imply that the 
LGP model does not underfit which means that it is capa-
ble of estimating Δmax factor with an acceptable degree 
of precision. In addition, the closeness of R, RMSE and 
MAE values calculated for training and test data indicates 
this fact that overfitting is eliminated. It can be figured out 
from Fig. 6 that the model provided in this study by LGP 
method considerably outperforms those well-known models 
suggested by researchers for indirect measurement of Δmax 
of RC columns.

Although the models provided by Elwood and Mohele 
[10] and Pujol [11] can to estimate the Δmax factor with an 

acceptable degree of accuracy, they present poor results for 
several cases. It can be seen in Fig. 5 that the PI calculated 
values are more than 0.2, while that of LGP is equal to 0.15 
which demonstrates better performance of LGP model com-
pared to these models. the calculated for This is mainly due 
to the fact that these models incorporate few input variables 
for the estimation of Δmax factor, e.g., Pujol [11] merely con-
sidered L, b, d, Vmax, ρt and fyt. Therefore, in case an ignored 
parameter changes cause variation of the model output, e.g., 
P, ρl and D which have not been considered in Pujol’s model, 
this impacts the model performance and cause poor estima-
tions and inefficiency of that model for such data, similar to 
this study. In addition, the experimental data employed in 
other studies were mainly conducted on columns samples of 
rectangular cross section; albeit, the generated models are 
used for estimation of Δmax of RC columns of circular cross 
section. It can be also seen that the Elwood and Mohele’s 
model almost overestimated the Δmax factor in several 
cases. It is worth noting that the empirical model proposed 
by Saatcioglu and Razvi [13] was not able to estimate all 
Δmax values considered in the database employed here. The 
main reason is the fact that the model is conditional and 
developed based on limitations which cause deficiency and 
poor results and inapplicability for several data. Thus, the 
aforementioned model could not be presented here.

8.2 � Additional indices for the evaluation 
of the model predictability

Some additional factors have been recommended by 
researchers in the existing literature which can be used to 
evaluate the generalization performance of mathematical 
models on unseen data [6, 17, 21, 33]. In present study, these 
criteria are considered for the assessment of the predictabil-
ity of the LGP-based Δmax model and the obtained results 
are summarized in Table 3. Numbers in this table indicate 
the fact that the proposed model fulfills all of the conditions 
required and this approves the robustness of LGP model in 
prediction for unseen or test data.

According to [25], R does not change significantly by 
shifting the output values of a model equally, and error func-
tions (e.g., RMSE and MAE) only shows the error. There-
fore, a better criteria can be used which can simultaneously 
incorporate the impact of R, RMSE and/or MAE such as 
performance index (PI) [25]. PI is also calculated to evaluate 
the predictabilty of the proposed LGP model and is given 
in Table 2.

8.3 � Parametric analysis of the LGP model

Considering the coefficients of different variables in Δmax 
models proposed by Elwood and Mohele [10], Pujol [11] 
and Saatcioglu and Razavi [13], the trend of Δmax can be 

Table 2   Performance of the LGP model on different divisions of data

Item All data Training data Test data

R 0.92 0.922 0.916
RMSE 6.38 6.19 6.96
MAE 4.78 4.72 5.01
PI 0.15 0.15 0.17
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realized when each variable varies. For instance, when 
P/Agfc′ increases, Δmax decreases which demonstrates that it 
has a negative coefficient in the model proposed by Elwood 
and Moehle [10]. Accordingly, it can be expected that Δmax 
must increase with increasing ρt, ρl, and a/Ls. The trend of 
the model to the changes of its independent variables must 
be proper and meaningful. Definitely, if the model behavior 
conforms to the outcomes in the literature, the model can 
be accepted from engineering viewpoints. In present study 
this behavior is explored for LGP models using a parametric 
analysis [6, 25, 33].

The methodology utilized here is dependent on merely 
varying one independent variable, while the other variables 
are considered to be equal to their mean values [6, 25, 33]. 
For this aim, a group of simulated data is generated for 
each input variable accounting for the variable’s range in 
the database. Then, the output value, which is the Δmax of 
circular RC columns here, is calculated by the predictive 
model using the virtual values of inputs. The aforementioned 
procedure is repeated similarly for another variable till the 
model response to all input variables has been obtained. Fig-
ure 6 shows the results of the parametric analysis carried 
out for the LGP model to assess its response to the changes 
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Fig. 5   Estimated versus experimental values of Δmax calculated by a LGP model (this study); b Elwood and Mohele’s Model [10], and c model 
proposed by Pujol et al. [11]
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Fig. 6   Parametric analysis of 
the proposed LGP-based model 
for indirect estimation of the 
Δmax of circular RC columns
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of incorporated predictor variables, L/D, ρt, ρl α = P/Agfc′, 
β = ρtfyt/fc′, γ = ρlfyl/fc′, s/d and a/Ls. The results of the para-
metric analysis demonstrates that LGP model can perfectly 
capture the physical behavior of the system. This also repre-
sents the robustness of LGP as a soft computing algorithm 
for solving complicated engineering problems.

8.4 � Sensitivity analysis

The crucial question when a model is used for estimation 
aims is the fact that how the output value varies as the values 
of each input variable changes. To explore this, a sensitivity 
analysis (SA) procedure is useful. This sort of analysis of the 
model can indicate how predictors which are independent 
input variables incorporated in a model impact the amount 
of changes of the dependent variable [6, 16, 25, 31, 32]. 
For this purpose, the sensitivity index (SI) can be utilized. 
In this study, the SI (%) can be obtained via the following 
equations:

where fmax (xi) is maximum value of the LGP model predic-
tion for the ith input variable x, while fmax (xi) is calculated 
minimum value. These values are calculated by the model, 
where other inputs incorporated, except xi, are considered 
constant at their mean values and n is the number of inde-
pendent input variables in the model.

It can be suggested that that input variables with higher 
value of the SI have greater impact compared to other input 
variables on the model performance and the output value 
and vice versa. This shows the significance of variables. In 

(19)Ni = fmax(xi) − fmin(xi)

(20)
SIi(%) =

Ni

n∑

j=1

Ni

× 100,

case the SI value become small or close to zero, the relevant 
variable poorly or does not influence on the model variations 
which means that it can be omitted. The SA process is car-
ried out for the LGP model proposed in this study and the 
results are illustrated in Fig. 7.

Sezen [41] has stated that the shear deformation of RC 
columns greatly relevant to ρt, a/Ls, P and some other param-
eters [41]. In addition, the amount of transverse reinforce-
ment radically impacts both the shear strength and ultimate 
drift capacity of RC columns [4, 6, 42]. A significant and 
new factor considered in this study was the slenderness ratio 
of the column, denoted by L/D. Although this factor can be 
regarded as a key parameter, it has not been incorporated in 
previous models proposed by researchers in the literature. 
As can be seen in Fig. 6, the SI (%) values obtained by the 
LGP model proposed in this study suggest that the L/D is 
the most influential input variable, followed by ρt and s/d, 
whereas the ρt and γ slightly impact the performance of the 
LGP-based Δmax model. The results precisely conform to 
those provided by researchers, e.g., [3, 10–13, 41]. It should 
be noted that the SI is a unique factor for every single of 

Table 3   Additional parameters 
for evaluation of the LGP 
model predictability proposed 
for prediction of Δmax of RC 
columns

hi: the actual outputs for the ith output. ti: the calculated outputs for the ith output. n: the number of sam-
ples. h
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 : the average of the calculated outputs
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estimation models which should be given very much atten-
tion whenever an equation is used.

9 � Summary and conclusion

This paper explored the applicability of a robust SC 
approach, called LGP, for predictive modeling of the Δmax 
of circular RC columns with normal strength concrete. A 
valuable experimental database, PEER-SPD, has been uti-
lized to develop LGP-based estimation models. The new 
LGP design equation proposed in this study incorporates 
L/D, ρt, ρl α = P/Agfc′, β = ρtfyt/fc′, γ = ρlfyl/fc′, s/d and a/Ls as 
independent input variables which have also been presented 
as key parameters by other researchers for indirect estima-
tion of the Δmax factor. The predictability and performance 
of the proposed LGP model was indicated through conduct-
ing some statistical analyses and was checked via comparing 
the results with some well-known models in the literature. 
It was stated that the model proposed by Saatcioglu and 
Razavi [13] was not able to estimate all data employed in 
this study and this is due to the fact that it is condictional and 
was developed based on simple regression-based analysis. 
The superiorities of the LGP model in comparison to other 
models are the consideration of more number of parameters 
to describe the Δmax of circular RC columns, accounting 
for the column slenderness ratio as an input, higher accu-
racy in estimation and the predictability and generaliza-
tion performance, and being a computational intelligence 
based model. The last means that the optimal LGP model 
is selected amongst numerous models after performing a 
comprehensive process of trial and error and improvement 
and optimization of the models which does not occur in 
regression-based numerical modeling methods. To repre-
sent the influence of each variable on the model, a sensitivity 
analysis was carried out. In this study, the slenderness ratio 
of the RC columns is also incorporated for the prediction of 
the Δmax. The parametric analysis of the LGP model demon-
strated that it can successfully capture the physical behavior 
off the system. The SA results presented that all variables 
contribute to the changes of Δmax factor, where L/D, ρt and 
s/d were the most significant influential variables. The accu-
racy of the LGP model proposed here taking into account 
several parameters compared to other conventional models 
confirm the capability of LGP approach for resolving com-
plicated engineering problems. The authors are confident 
that the proposed LGP model is useful and valuable for the 
design of RC columns, particularly for pre-design aims.

Appendix A

A.1. The optimum LGP program for the prediction of fc′c.

The following LGP program can be run in the Discipulus 
interactive evaluator mode or can be compiled in C++ envi-
ronment. (Note: v[0], v, v [3],…, v [7], respectively, are L/D, 
ρt, β = ρtfyt/fc′, ρl, γ = ρlfyl/fc′, α = P/Agf′, s/d and a/Ls)

float DiscipulusCFunction(float v[])
{
long double f;
long double tmp = 0;
int cflag = 0;
f[0]=f=f[2]=f[3]=f[4]=f[5]=f=f[7]=0;
L0: f[0]+=v[2];
L1: f[0]*=v[6];
L2: f[0]*=v[7];
L3: f[0]-=v[3];
L4: f[0]*=v[3];
L5: f[0]+=v[4];
L6: f[0]*=v[6];
L7: f[0]-=v[7];
L8: f[0]*=v[7];
L9: f[0]*=v[1];
L10: f[0]/=v[4];
L11: f[0]-=v[5];
L12: f[0]*=v[3];
L13: f[0]+=v[0];
L14: f[0]/=v[6];
L15: f[0]-=v[5];
L16: f[0]*=v[0];
L17: f[0]+=v[0];
L19:
if (!_finite(f[0])) f[0]=0;
return f[0];
}

A.2. The database used in the present paper is attached 
as a supplementary file.

References

	 1.	 ACI Committee 318-14 Building code requirements for structural 
concrete (ACI 318 M-14) and commentary (ACI 318RM-14). In: 
2015, American Concrete Institute

	 2.	 FEMA 356 (2000) Prestandard and commentary for the seismic 
rehabilitation of buildings. Federal Emergency Management 
Agency, Washington DC

	 3.	 Mander J, Priestley M, Park R (1988) Observed stress–strain 
behavior of confined concrete. J Struct Eng 114(8):1827–1849

	 4.	 Pujol S, Sözen M, Ramirez J (2000) Transverse reinforcement 
for columns of RC frames to resist earthquakes. J Struct Eng 
126(4):461–466

	 5.	 Caglar N, Garip ZS (2013) Neural network based model for 
seismic assessment of existing RC buildings. Comput Concr 
12(2):229–241

	 6.	 Sadrossadat E, Ghorbani B, Hamooni M, Moradpoor Sheikhkan-
loo MH (2018) Numerical formulation of confined compressive 



1591Engineering with Computers (2021) 37:1579–1591	

1 3

strength and strain of circular reinforced concrete columns 
using gene expression programming approach. Struct Concr 
19(3):783–794

	 7.	 Priestley M, Park R (1987) Strength and ductility of concrete 
bridge columns under seismic loading. Struct J 84(1):61–76

	 8.	 Inel M (2007) Modeling ultimate deformation capacity of RC col-
umns using artificial neural networks. Eng Struct 29(3):329–335

	 9.	 Zhu L (2005) Probabilistic drift capacity models for reinforced 
concrete columns. University of British Columbia, Columbia

	10.	 Elwood KJ, Moehle JP (2005) Drift capacity of reinforced con-
crete columns with light transverse reinforcement. Earthq Spectr 
21(1):71–89

	11.	 Pujol S, Ramfrez J, Sozen MA (1999) Drift capacity of reinforced 
concrete columns subjected to cyclic shear reversals. Spec Publ 
187:255–274

	12.	 Pujol S (2002) Drift capacity of reinforced concrete columns 
subjected to displacement reversals. Purdue University, West 
Lafayette

	13.	 Saatcioglu M, Razvi SR (2002) Displacement-based design of 
reinforced concrete columns for confinement. Struct J 99(1):3–11

	14.	 Sadrossadat E, Heidaripanah A, Osouli S (2016) Prediction of 
the resilient modulus of flexible pavement subgrade soils using 
adaptive neuro-fuzzy inference systems. Constr Build Mater 
123:235–247

	15.	 Sadrossadat E, Heidaripanah A, Ghorbani B (2016) Towards 
application of linear genetic programming for indirect estimation 
of the resilient modulus of pavements subgrade soils. Road Mater 
Pavement Des 19(1):139–153

	16.	 Rostami MF, Sadrossadat E, Ghorbani B, Kazemi SM (2018) New 
empirical formulations for indirect estimation of peak-confined 
compressive strength and strain of circular RC columns using 
LGP method. Eng Comput 34(4):865–880

	17.	 Alavi AH, Gandomi AH, Sahab MG, Gandomi M (2010) Multi 
expression programming: a new approach to formulation of soil 
classification. Eng Comput 26(2):111–118

	18.	 Khandelwal M, Faradonbeh RS, Monjezi M, Armaghani DJ, Abd 
Majid MZB, Yagiz S (2017) Function development for appraising 
brittleness of intact rocks using genetic programming and non-
linear multiple regression models. Eng Comput 33(1):13–21

	19.	 Sheikh SA, Uzumeri S (1982) Analytical model for concrete con-
finement in tied columns. J Struct Div 108(12):2703–2722

	20.	 Gordon N (2015) Prediction of shear strength and ductility of 
cyclically loaded reinforced concrete columns using artificial 
intelligence. Dissertation, University of Nevada, Las Vegas

	21.	 Tajeri S, Sadrossadat E, Bazaz JB (2015) Indirect estimation of 
the ultimate bearing capacity of shallow foundations resting on 
rock masses. Int J Rock Mech Min Sci 80:107–117

	22.	 Alavi AH, Sadrossadat E (2016) New design equations for estima-
tion of ultimate bearing capacity of shallow foundations resting 
on rock masses. Geosci Front 7(1):91–99

	23.	 Gandomi AH, Yang XS, Talatahari S, Alavi AH (2013) 
Metaheuristic applications in structures and infrastructures. Else-
vier, London

	24.	 Gandomi AH, Yun GJ, Alavi AH (2013) An evolutionary 
approach for modeling of shear strength of RC deep beams. Mater 
Struct 46(12):2109–2119

	25.	 Gandomi AH, Roke DA (2015) Assessment of artificial neural 
network and genetic programming as predictive tools. Adv Eng 
Softw 88:63–72

	26.	 Gandomi AH, Alavi AH, Ryan C (2015) Handbook of genetic 
programming applications. Springer, Switzerland

	27.	 Sadrossadat E, Basarir H (2019) An evolutionary-based prediction 
model of the 28-day compressive strength of high-performance 
concrete containing cementitious materials. Adv Civil Eng Mater 
8(3):484–497

	28.	 Sadrossadat E, Basarir H, Karrech A, Durham R, Fourie A, Bin H 
(2019) The optimization of cemented hydraulic backfill mixture 
design parameters for different strength conditions using artificial 
intelligence algorithms. In: Proceedings of the 28th international 
symposium on mine planning and equipment selection - MPES 
2019, 2020, pp 219–227

	29.	 Koza JR (1992) Genetic programming II, automatic discovery of 
reusable subprograms. MIT Press, Cambridge

	30.	 Brameier MF, Banzhaf W (2007) Linear genetic programming. 
Springer, New York

	31.	 Gandomi AH, Alavi AH, Sahab MG (2010) New formulation for 
compressive strength of CFRP confined concrete cylinders using 
linear genetic programming. Mater Struct 43(7):963–983

	32.	 Alavi AH, Ameri M, Gandomi AH, Mirzahosseini MR (2011) 
Formulation of flow number of asphalt mixes using a hybrid com-
putational method. Constr Build Mater 25(3):1338–1355

	33.	 Sadrossadat E, Soltani F, Mousavi SM, Marandi SM, Alavi AH 
(2013) A new design equation for prediction of ultimate bearing 
capacity of shallow foundation on granular soils. J Civ Eng Manag 
19(sup1):S78–S90

	34.	 Berry M, Parrish M, Eberhard M (2004) PEER structural per-
formance database, user’s manual (version 1.0). University of 
California, Berkeley

	35.	 Baradaran Shoraka M, Elwood K (2013) Mechanical model 
for non ductile reinforced concrete columns. J Earthq Eng 
17(7):937–957

	36.	 Ziaee SA, Sadrossadat E, Alavi AH, Shadmehri DM (2015) 
Explicit formulation of bearing capacity of shallow foundations 
on rock masses using artificial neural networks: application and 
supplementary studies. Environ Earth Sci 73(7):3417–3431

	37.	 Armaghani DJ, Faradonbeh RS, Momeni E, Fahimifar A, Tahir 
MM (2018) Performance prediction of tunnel boring machine 
through developing a gene expression programming equation. 
Eng Comput 34(1):129–141

	38.	 Conrads M, Dolezal O, Francone F, Nordin P (2004) Discipu-
lus–fast genetic programming based on AIM learning technology. 
Register Machine Learning Technologies Inc, Littleton CO

	39.	 Smith GN (1986) Probability and statistics in civil engineering. 
Nichols Publishing Company, New York

	40.	 Ghorbani B, Sadrossadat E, Bazaz JB, Oskooei PR (2018) Numer-
ical ANFIS-based formulation for prediction of the ultimate axial 
load bearing capacity of piles through CPT data. Geotech Geol 
Eng 36(4):2057–2076

	41.	 Sezen H (2008) Shear deformation model for reinforced concrete 
columns. Struct Eng Mech 28(1):39–52

	42.	 Vu NS, Yu B, Li B (2016) Prediction of strength and drift capac-
ity of corroded reinforced concrete columns. Constr Build Mater 
115:304–318

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.


	Predictive modeling of the lateral drift capacity of circular reinforced concrete columns using an evolutionary algorithm
	Abstract
	1 Introduction
	2 LGP approach
	2.1 Genetic operators
	2.2 Fitness assessment

	3 Experimental database and model variables
	4 Data classification
	5 LGP training parameters
	6 Initial accuracy evaluation of LGP models
	7 The proposed LGP-based model
	8 Results and discussion
	8.1 Evaluation of the performance of models
	8.2 Additional indices for the evaluation of the model predictability
	8.3 Parametric analysis of the LGP model
	8.4 Sensitivity analysis

	9 Summary and conclusion
	References




