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Abstract

In this study, the Ritz—Galerkin method based on Legendre multiwavelet functions is introduced to solve multi-term time-
space convection—diffusion equations of fractional order with variable coefficients and initial-boundary conditions. This
method reduces the problem to a set of algebraic equations. The coefficients of approximate solutions are obtained from the
coefficients of this system. A convergence analysis for function approximations is also presented together with an upper
bound for the error of estimates. Numerical examples are included to demonstrate the validity and applicability of the

technique.

Keywords Ritz—Galerkin method - Legendre multiwavelet functions - Multi-term time-space convection—diffusion

equations of fractional order

1 Introduction

In recent years, considerable attention has been given to the
fractional calculus, which is used in modeling and analysis
of a wide range of problems in science and engineering,
including chemistry, finance, physics, aerodynamics, elec-
trodynamics, polymer rheology, economics and biophysics
[2, 3,7, 11, 27, 32, 35, 36].
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Fractional calculus extends the concept of ordinary
differentiation and integration to an arbitrary non-integer
order. Recently, there has been a growing interest in frac-
tional differential equations. Since most fractional differ-
ential equations do not have analytic solutions, several
numerical methods such as the homotopy-perturbation
method [1], variational iteration method [33], Adomian
decomposition method [5] and finite difference approxi-
mation methods [39] have been used to obtain approximate
solutions.

Here, we recall the basic definitions of fractional cal-
culus theory [24, 27] which will be used further in this
article.

Definition 1 Suppose that f € Li[a,b],t > 0,0, € R,
then the fractional operator

1 / f"(s)
ds, n—l<a<n,
Difa) = ¢ 1= o (=T
d tnf(t)’ a=nec Na

is referred to as the Caputo fractional derivative of order o.

Caputo’s differential operator coincides with the usual
differential operator of an integer order and has the linear
operation property as follows:
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D*(Af (x) + pg(x)) = AD’f (x) + uD’g(x), Vi, p€R.

(1)
Also, the Caputo fractional derivative of power function
f(x) = xk k € N is (see [24])

0 k<o
F(k+ l) xkfa
I'k—o+1)

D' =

k>o.

For a constant as ¢, we have
D*c = 0.

The convection—diffusion equation is an equation that
appears when a particle, energy or in general physical
quantities are transferred in a system. It is a combination of
the diffusion and convection. The most famous form of
convection—diffusion equation is

%:V-(D-Vu)—v-(vu)—FR,

where u is the variable of interest, D is the diffusivity, such
as mass diffusivity for particle motion or thermal diffu-
sivity for heat transport, v is the average velocity at which
the quantity is moving, V represents gradient and V- rep-
resents divergence. Application of convection—diffusion
equation in fluid dynamics, heat transfer and mass transfer
is discussed in Refs. [10, 12, 20]. Several numerical
methods for solving this equation is introduced by the
authors, such as the variational iteration method [23],
Adomian’s decomposition method [26], homotopy pertur-
bation method [9], Bessel collocation method [40], B-
spline collocation method [16, 17], finite element method
[21], Crank—Nicolson method [15] and rational spectral
method [8]. A history of analytical methods for solving
diffusion equations can be found in Ref. [14]. However,
most fractional diffusion equations do not have analytical
solutions. In (2011), Khader [18] used the Chebyshev
collocation method as well as the finite difference method
and in Ref. [19], the authors used the Legendre pseu-
dospectral method to obtain numerical approximations.
Again, in Ref. [22], Li et al. derived numerical solutions by
the finite difference method. In Ref. [31], Saha Ray and
Bera have applied Adomian’s decomposition method to
find the solution of a time-fractional diffusion equation of
order f = % In Ref. [6], Das has used variational iteration
method for time-fractional diffusion equation of order
0<p<1. Fractional calculus of convection—diffusion
equations has been widely considered in recent years. But
there are few works devoted to numerical solutions of
fractional convection—diffusion equations. Zhong et al.
[41] applied the Legendre polynomials and also the asso-
ciated operational matrix for solutions.
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In this study, we present the Ritz—Galerkin method
based on Legendre multiwavelet functions to numerically
solving multi-term time-space convection—diffusion equa-
tion of fractional order:

r
Du =" a;(x)Du + b(x)Dlu
i=1
+ ¢(x)DPru 4 d(x)u + h(x,1), x € [0,1], t € [0,T],

(2)
with initial and boundary conditions:
u(x,0) = fi(x), x € [0, L], (3)
u(0,1) = g1(t), u(L,1) = g(1), 1 € [0, T]. (4)

Here O0<o, <... <o <a<1,0<f, <1< p <2, the func-
tions a;(x) for i=1,2,...,r,b(x),c(x),d(x),fi(x),g:1(t)
and g»(7) are known and the function u(x, f) is unknown.
The terms b(x)DPu, c(x)DP1u and h(x, 1), respectively, are
called the diffusive or viscous term, the convection term
and the source term. The operator D} is the fractional
derivative in the Caputo sense of order o; with respect to
variable .

The theory of wavelets is a relatively new and an
emerging area in mathematical research. It has been
applied in a wide range of engineering disciplines and, in
particular, has been very successfully used in signal anal-
ysis for waveform representation and segmentations, time—
frequency analysis, and can be used to construct fast
algorithms for easy implementation [4]. Moreover, wavelet
analysis has many useful properties, such as orthogonality,
compact support, and the ability to obtain exact represen-
tation of polynomials up to a given degree, and to represent
functions at different level of resolution [25].

Recently, Yousefi [34]-[37], Razzaghi and Yousefi
[28, 29] and Yousefi and Razzaghi [38], and Jafari et al.
[13] have used the Legendre multiwavelet method to obtain
approximate solutions of hyperbolic telegraph equations,
the differential equation of Lane—Emden, the Emden—
Fowler equations, Abel’s integral equations, as well as
solutions to variational problems, nonlinear problems in the
calculus of variations, the nonlinear Volterra—Fredholm
integral equations and fractional differential equations.

The paper is organized as follows: in Sect. 2, we give
the basic definition of Legendre multiwavelet functions and
state their properties. In Sect. 3, we discuss approximations
to functions using Legendre multiwavelet functions basis
and present a convergence analysis for function approxi-
mations together with an upper bound for the error of the
estimates. In Sect. 4, we solve Egs. (2)—(4) using the Ritz—
Galerkin method based on the Legendre multiwavelet
functions for solutions. Numerical results to demonstrate
the accuracy of this technique are reported in Sect. 5 and,
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finally, Section 6 contains a conclusion. YIM-12%-1N-1
flxn) = (1) ]
2 L d Iti let functi n=0 =0 i=0 j=0 (6)
egendare muitiwavelet runctions
9 — ¥ ()AY(),
The Legendre multiwavelet functions on interval [0, T) are where

defined by [13, 34]

2 2k T nT
v ([)_{‘/2,11+]2pm<ln)7 L<t<(n+ ) 7

JT\T 2k = 2k
0, otherwise,
where m=0,1,...M—1,n=0,1,...,2* — 1,k can

assume any positive integer, m is the order for Legendre
polynomials and ¢ is the normalized time. {y,,(f)} is an
orthonormal set. The coefficient /2m + 1 is needed for
orthonormality.

Legendre polynomials on the interval [0, 1] can be
determined using the following recursive formula:

po(t) =1, pi(t) =2t -1,

Cm+1)2t—1) m

pm-H(t) = m—+ 1 pm(t)

The two-dimensional Legendre multiwavelet functions on
interval [0,L) x [0,T) are defined by [34]

20 2k L 1)L
Apl<fx_n>l’.f<_t_i>’ n—,<x<(n+ ) ;

T 22— 2°
Yoy (x, 1) = iT (i+1)
x SIS
0, otherwise,
(5)
where
N QI+ 1)(2j + 1)2"
VLT ’
for
n=0,1,...,2? -1,1=0,1,....M—1,i=0,1,...,

2—1,j=0,1,...,N—1,

and p, k are positive integers. Here [, j are the order of
Legendre polynomials. {t//n,,j(x7 t)} is an orthonormal set.

The coefficient /(214 1)(2j + 1) is needed for orthonor-

mality. It is obvious that W, (x, 1) = W, (x);(2).

3 Function approximation

Consider the function  fix, 1) defined
R :=1[0,L) x [0,T). We can approximate f(x, ) as

over

— (1), mEN.

= obat) = [ [ s s 0)

with
n=0,1,...,2° =1, [=0,1,...M—1,
i=0,1,...,2=1, j=0,1,.. ,N—1,

are the elements of A which is a m x (i =2’M, n =

2€N) matrix. Also, the vectors of ¥(x) and W(¢) are,

respectively, i x 1 and 7 x 1 matrices such that

W(x) = Yoo (x), Yo (%), - -7W0(M—1)(x)7¢10(x)7 s
Vi)&W o),y @),

P (1) = Woo(t), Y01 (1), -, Wov—1) (1) W10 (2), - - -,
lljl(N—l)(Z)v"'7‘//(2‘<—l)0(t)»'"7'10(2"—1)(N—])(t)]T'

Theorem 1 Let M,N — oo, then the truncated series (6)
converges to f(x, t).

Proof We shall use the following notations for
convenience:
MN 21 M—12—1N-1
> =D :
l=a n=0 Il=a i=0 j=b
j=2>

We will prove that the sequence of partial sums of fyy (x, t)
is a Cauchy sequence in the Hilbert space # = L*(%).

Assume fgs(x,7) be an arbitrary partial sums of
afi,g,.(x,t), and M > R, N > S. Then we have
) MN . )
Waaw (e, 1) = frs e, 013 =11 Y alh (50113
I=R
j=Ss
MN MN
_< Z ai{[‘/’nlij(x?t)a Z azgl//rxqz(x7t)>
=R s=R
j=S z=3S
MN MN L
Z Z a;{lag;<wnlij(xvt)7l//rsqz(x7t)>
I=Rs=R
j=Sz=S8
MN B
= M%ﬁ
[=R
j=s
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. iji2 . .
Since 720 |a’,|” is a monotone series and bounded by

=0
2 . . .

I |l5, it converges and hence 1ts partial sums form a Cauchy

sequence. Thus, Z |a converges to zero as

M,N,R,S— 0. So |[fMN(x,t)ffRS(x,t)H§ converges to
zero as M,N,R S —oo. Thus, fyn(x,f) is a Cauchy
sequence and hence fyy(x,f) converges to g€ #. We
claim that g(x,7) =f(x,7). By (7), we have

<g(x7 t) _f(x’ t)’ !//nhj(x’ t)> = <g(x7 t)v‘ﬁnlij(xv t)>
— (f 1), g (x,1))

= Mll\llm (foaw (x, 1), 5 (x, 1)) — @)

ij

= day

—d’ = 0;
hence, g(x,7) = f(x,). This completes the proof of the
theorem. |

The following lemma gives an upper bound for the error
of estimate.

Lemma 1 Let f:
of M and N) continuous partial derivatives, and suppose
that W (x)AY(t) approximates f(x, t). Then an upper
bound for the error of approximation is as follows:

A — R be a function with J (maximum

J
S +1) H (LT)=
I =¥ ATl — B
(8)
where
'f (x,1)
5= .1 ox/ kot | e ®)

Proof A Taylor polynomial approximation for f(x, f) is

=S {3 (h) k|

p=0 =0
1< GJ (x, 1)
J_Z( ) ox/—krk

> is the binomial coefficient and computed as

-

@)

1(x,1)

nL

iT
(X—ﬁ

Y-S0t

EaalS ]

where (

(1) =5 om

@ Springer

We know that

1 (x,1) — I(x,1)] < %g(i) s
(=5) (-5)
sgoo| ) (-3) (%)

(10)

where S was defined in (9). Since W' (x)BW(r) is the
polynomial of degree J — 1 with respect to variables x and ¢
that approximates f(x, f) with the minimum mean error
bound, we have by (10),

If Gr 1) = T OB ()13 < | (x,1) = 1(x, )2

0'f (x,1)

Ox/—*ork

//[fxt I(x,1))*dr

J 2
<(J%S2(1+1)2 H
/0 ' /O ' [(x—’;—f)’(t —;—f)’rdm
:(J%Sz(l—i-l)z é} 2
L D)L )
S2(J +1)? ﬁ] 2(LT)”“

2

()22 + 1) (2 k)2 !

Taking square roots, we have (8). O

The upper bound of the error depends on

J
J+ 1)< H )(LT)”—?'

JI(2J + 1) (20 k)5

which shows that as J increases, the error rapidly
approaches zero. This is an advantage of Legendre multi-
wavelet function approximations.
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4 Method of solution
4.1 Ritz approximation function

Consider

v(x, 1) = u(x, 1) + —%gz(l‘).

g1(1)
We set
v(0,1) = v(L,t) = 0.

Now, Egs. (2)—(4) are equivalent to

D*v Za, )DEv(x, 1) + b(x)DPv(x, 1)
i=1 (1 1)
+ c(x)D{(,1) +d(v(x, 1) + s(x,1),
with the initial condition:
X — X
v(x,0) = fi(x) + 2 81(0)—282(0)7 (12)
and homogenous boundary conditions:
v(0,1) = v(L,1) =0, (13)

where

x—L
s(x,t) = h(x,1) + —ngl(t)
—x r
+T 1 a;i(x)Dfig,(t

i=

__Dfx

+= Zaz Dyigs(t %(820)_810))D}€x
+§%@Aﬁ—a@ﬂﬁx

(1) + ~d(x)g2(1).

L—x
—d
+ I (X)g1 I

Now a Ritz approximation function for (11) is in the form

= L)tcybu (W (1) +wlx,0),  (14)

where w(x, f) is an interpolating function:
x—L X
g1(t) — 7 g2(1). (15)

t
W, ) . 3

The function w(x, f) satisfies nonhomogeneous conditions
and so vyy(x,?) satisfies the initial and boundary condi-
tions (12) and (13). This approximation provides greater
flexibility when imposing initial and boundary conditions.
In general, w(x, ) is not unique.

= fi(x) +

4.2 Ritz-Galerkin method

Without loss of generality, we set M =N and p =k in
relation (14). Consider

¢nl(x) = 'x(x - L)lpnl(x% Vz](t) = ll//i]-(l)7

for n,i=0,1,...,2? -1 and [,j=0,1,... M —1. We
may write the series solution vyy(x,?) in (14) as follows:

v (x, 1) = O(x)X(1)Q + w(x, 1), (16)
where
D(x) =[¢go(x), - - '7¢0(M—1)(x)7¢l()(x)7 e
¢1(M71)(x)7 ce (15(21’71)0(?5); s d)(Zl’fl)(Mfl)(x)]lxrﬁ’
'y O 0
0o I ... 0
X(1) = . . ; (17)
0 0 :
0 0 0 Tl

(1) =00 (), o1 (1), - - -,
Yor—1)()s V10(8)s -+ s Vim—
Yr—1o(t), -

OIS
Yr—1) 1) O] 10ms

and Q is a m? x 1 matrix with unknown coefficients (see
“Appendix”). We know that the elements of ®(x) are the
polynomials of degree no greater than M + 1. Hence, we
can write @(x) using the Taylor vector as

®(x) = Tp41(x)D, (18)
where
Ty (x) = [Lxx® oM ),

and D is the (M + 2) x m transformation matrix of ®(x) to
Tys11(x). Similarly,

I'(t) = Tu(H)M, (19)
where M is the (M + 1) x i transformation matrix of I'(¢)

to Ty, (¢). We write the fractional derivative of Ty, (x) and
Ty (t) as follows:

DTy (x) = [0 Dix DIx* .. DM,y = XP(x),
(20)
D*Ty(t) = [0 D*t D** ... DM ey = S7(0). (21)

Using (17), (19) and (21) gives us

@ Springer
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S*(H)M 0 .. 0
0 S*(HM ... 0
DiX(1) = . . =F(1).
0 0 : :
0 0 0 S*(t)MJ ;.2
(22)
Also, by (18) and (20),
DPo(x) = XP(x)D. (23)

By (1), (16) and (23), the f-order fractional derivative of
v (x, 1) with respect to x is

DPvy(x,1) = XP(x)DX(1)Q + DPw(x, ). (24)

Similarly, by (1), (16) and (22), the a-order fractional
derivative of vy (x,t) with respect to ¢ is

Dy (x,1) = D()F(1)Q + Dw(x, 1). (25)

Now, substituting (16), (24) and (25) into (11), we have
G(x,1)Q = p(x,1), (26)

where

r

G(x,1) =D(X)F*(1) = Y a;(x)D(x)F* (1)

- b(x)Xﬁ(l):c)DX(t)
— ()X (x)DX (1) — d(x)D(x)X(2),

plx,1) = i a;(x)D%w(x, 1) 4 b(x)DPw(x, 1)
+ c(x)DPrw(x, 1)
+ d(x)w(x,t) — Diw(x, 1) + s(x,1).
Suppose
lP(xv t) = [(/Jl,l(x7 t)’ <P1,2(x7 t)? s P2 (x7 t)]

is a 1 x m” basis vector for L>(%).

Now, to apply the Ritz—Galerkin method to compute the
unknown coefficients of Q, we take the inner product of
Eq. (26) with the m” elements of ¥(x, ) as
GQ =P, (27)
where

Gi,i = <(p1,i(x7 t)v G]J(xa t)>7
Pi‘,l = <§0]7i(x7 t),p(xv t)>7

and (.) denotes the inner product defined by

ij=1,2,... m,

@ Springer

(p14(6,1), G (3, 1)) = / / 91406, )G 1 j(x, 1)dedx,
(pra 1), p(x 1)) = /) /0 01406, O (x, 1)ded.

Hence, we have

<¢’1A|(Xst)le.1(X,f)> <<P|.1(x~,f)aG1.2(X-,’)> <<P|,1(-’C-’)7G1_m?(x-,t)>
G| (2@061EN) (Pn)Gialn) o (012000,G10(00) ’

<(p|.mz(x“t)'7G1_1(x,t)> <‘P1An;z(xv’)'-,Gl‘2<X,’)> <(tp]‘nil(xvr)!'G1.rﬁj(x>r>>
P:|:<(/)l,l(x>l)7p(x7t)> <(/J1=2(X,l‘),p(x,t)> <(pl,rﬁ2(xal)7p(xal)>:|T'

Equation (27) corresponds to a system of 7i* linear alge-
braic equations with unknown coefficients. If
rank(G) = rank([G;P]) = r2*, then Eq. (11) has a unique
solution and so the solution of Eq. (2) is also unique. If
rank(G) = rank([G;P]) <#i*, then Eq. (11) and thus (2)
have a particular solution that may find and if
rank(G) # rank([G;P]), then it is not a solution.

In this section, we give examples to demonstrate the
accuracy of approximation solution to multi-term time-
space convection—diffusion equations of fractional order
using our technique. The error functions is defined as

em(x,1) = |texact (X, 1) — var(x, )]

Example 1 Consider the time-space convection—diffusion
equation of fractional order

D*u = 0.5D" u — xDPu + xDPru 4 h(x, 1),

xef0.1], re 0.1 )
where
h(x,t) = 2x*(1 i *(1 e

(x, 1) = 2x7( —x)m—x( _x)F(3—oc1)

n t2( 253 3 6x*F )
rG-p) T4-p)

B t2( 23 B 6xt=h >
FG—p) T@E-4))

with the initial and boundary conditions, respectively,

u(x,0) =0, x € [0, 1],
u(0,1) =u(l,t) =0, r € [0,1].

The exact solution is u(x,t) = x*(1 — x)r*>. The Ritz—
Galerkin solution vy (x,7) for M =2 and p =0 is

va(x, 1) = O(x)X(1)Q + w(x, 1), (29)
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where va(x, 1) = —0.25 0...0 4533xz(x — 1)
\.F/
ai(x) = 0.5,b(x) = —x,c(x) = x,d(x) = 0,f1(x) 14 times
=0,g1(t) = g2(t) = 0, w(x, 1) =0, D(x) — 025 0...0 1643xr(2r—1)(x—1)
= [x(x —1),V3x(x — 1)(2x — 1)} (1) 14 times
_ {E \/§t(2t _ 1)}7 —0.25 0...0 3754xt(2x—1)(x—1)
14 times
—-0.25 0. 0 4529xt(2t — 1)(2x — 1)(x — 1).
(1) 0 r 14 times
X(1) = [ : r@}’ Q = [0, e, e, 81"

Similarly for other cases, we obtain the approximate
solution of the problem by the present method as for case
o =0.1,=18,6, =08, =0.8:

The fundamental matrix relation of the problem is

G(x,1)Q = P(x,1), (30)
va(x,1) = —0.25 0...0 295xt(x — 1)
where Y
15 times
G(x,1) =D(x)F*(r) — 0.50(x)F* (1) — 025 0...0 3592t —1)(x—1)
+ xXP(x)DX (1) — xXP1 (x)DX(1), 15 times
p(x, 1) =h(x,1), — 025 0...0 4842xt(2x—1)(x—1)
h 14 times
wit ~ 025 0.0 33262 — 1)(2x — 1)(x — 1),
0 0 0 0 14 times
-1 1351/780
D= 1 —1351/260 ’ M= 1 _1351/780 for case 03] :01,[3:187ﬁ1 :0.8,0620.9:
0 1351/390
0 1351/390

We put ¥(x,t) = [1,¢,x,xt]. By taking the inner product of
Eq. (30) for oy = 0.1, = 1.8, ; = 0.8 and « = 0.7 with
the elements of W(x,7), we have the augmented matrix

[G;P] as
0.3617103291 0.1120602997 0.3993838574 0.2305843776 ; —0.1834635525
0.2551082358 0.1341812003 0.2662559049 0.2305843776 ; — 0.1407905414
0.2458067810 0.0935299831 0.4640067960 0.2511328289 ; —0.1628529334
0.1708551955 0.1045904334 0.3117571954 0.2549642813 ; — 0.1240554262

By solving this system, the unknown coefficient matrix

Q is obtained as

—0.25

—0.1443375673
—0.1443375673
—0.0833333333

Substituting the elements of the column matrix Q into (29),

we have

va(x, 1) = —0.24 9...9 7254xt(x — 1)

14 times
— 025 0...0 7762xt(2t — 1)(x — 1)
~——
14 times
— 025 0...0 5515xt(2x —1)(x — 1)
~——
14 times
—0.25 0...0 1256xt(2t—1)2x—1)(x—1),

14 times
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for case oy = 0.1, =1.8,4, =0.8,00 = 1:
va(x, 1) =—0.25 0...0 4107xt(x— 1)

14 times
— 024 9...9 354xt(2t—1)(x—1)
S~
15 times
- 025 0...0 4171x(2x = 1)(x—1)
~——
14 times
—0.25 0...0 5313x(2t —1)(2x — 1)(x —1).

14 times

Figure 1 displays the graphs of the absolute error functions
ex(x, 1) for o =0.1,=18,5, =08 when
o=1,0.9,0.8,0.7. It is clear that even with M = 2, our
approximations are very good.

Example 2 Consider the following time-fractional diffu-
sion equation [30]

D*u = —D*u+ DPu+ h(x,1), x € [0,1], 1 € [0,1], (31)
where
s = s sin(n)
X, _F(4—oc) sin(mx
6
—+ mlﬁ*msin(ﬂx) —+ 7I2t3sin(7tx),

with the initial and boundary conditions, respectively:

u(x,0) =0, x € [0,1],
u(0,¢) =u(l,t) =0, r € [0,1].

The exact solution for § = 2 is u(x,t) = *sin(nx). The
Ritz—Galerkin solution vy (x,7) for M =3 and p =0 is

V3 (x, t) = @(X)X(I)Q + W(x’ t)? (32)
where
[—-1.250 —0.887 —0.300 0 0
—0.810 —0.847 —0.469 0 0
—0.601 —-0.743 —0.534 0 0
—0.625 —0.443 —0.150 —-0909 —0.554
—0405 —0424 —-0.234 —0.602 —0.547
—-0.300 —-0.371 —-0.267 —0450 —0.489
—0.408 —0.285 —0.090 —-0909 —0.554
—-0.265 —-0.273 —0.146 —0.602 —0.547
| —0.197 —-0.240 —-0.168 —0.450 —0.489

0 —2.124 —1.153 0.134 ; 2.316]

0 —1430 —-1.170 —-0.190 ; 1.828

0 -1.073 -1.062 -0.361 ; 1510
—-0.052 —-1.062 —-0.576 0.067 ; 1.158
—-0.184 —-0.713 —-0.58 —-0952 ; 0914
—-0247 —-0536 —-0531 —-0.181 ; 0.755
-0052 —-1.17 —-0.659 0.029 ; 0.689
—0.18¢ —-0.781 —-0.663 —0.147 ; 0.543
—-0.247 —-0587 —0.598 —0.237 ; 0.449

O(x) = [x(x— 1), V3x(x — 1)(2x — 1), V5x(x — 1)(6x> — 6x + 1)]7
Ir's) O 0
XfH=| 0 I@® 0 |,
0 0 TI()

T(r) = [1, V3120 = 1), V5168 — 6+ 1)],

_ .00 01 02 00 01 02 00 01 0217
Q= [ComCowcom‘01:%17‘01’%27%2’%2] -

The fundamental matrix relation of Eq. (31) is
G(x,1)Q = P(x,1),
where

G(x,1) = O(x)F*(t) + O(x)F* (1) — XP(x)DX(1),
p(x,1) = h(x, 1),

with
0 0 0
-1 1351/780 —2889/1292
D=| 1 —1351/260 2207/141 ,
0 1351/390 — 8667/323
0 0 4253/317
0 0 0
Mo 1 —1351/780 2889/1292
0 1351/390 —4253/317
0 0 4253/317

We put W(x, 1) = [1,t,12, x,xt, xt*, x>, x*t, x*1*]. By taking
the inner product of Eq. (33) for o = 0.9,0; = 0.1 and
f = 2 with the elements of W¥(x, t), we have the augmented
matrix [G;P] as
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a=1, ,=0.1, $=1.8, $,=0.8 @=0.9, @, =0.1, p=1.8, $,=0.8

0 o

=08, @,=0.1, =18, B,=0.8 =07, 0,=0.1, =18, =08

t 0 o t N
Fig. 1 The absolute error functions for o; = 0.1, f = 1.8, f; = 0.8 when « = 1, 0.9, 0.8 and 0.7 of Example 1

By solving this system, the unknown coefficients matrix Q v3(x, 1) = 0.1886295816x1(x — 1)(6x> — 6x + 1)

is obtained as — 1.853585763x¢(2t — 1)(x — 1)
[—1.2357367097 — 0.6178234281xt(x — 1)(6£* — 61 + 1)
—1.0701682394 — 1.23573671xt(x — 1)
—0.2762990367 + 0.09422166116xt(x — 1)(6¢*> — 6 + 1)(6x> — 6x + 1)
0 + 0.2828656844x1(21 — 1)(x — 1)(6x> — 6x + 1).
Q= 0 . -
0 Similarly for other cases, we have for -case
o=1,00=0.1,=2:
0.08435771343 2
0.07303560565 v3(x, 1) = 0.1886587424xt(x — 1)(6x> — 6x + 1)
— 1.853603232x1(21 — 1)(x — 1)
0.01884433223 N
- - — 0.6178204887xt(x — 1)(61* — 61 + 1)
Substituting the elements of the column matrix Q into (32), — 1.235748223xt(x — 1)
we have + 0.09421450199x¢(x — 1)(6% — 61 + 1)(6x* — 6x + 1)

+ 0.28288847783x1(2 — 1)(x — 1)(6x> — 6x + 1),
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=12, 0,=0.1, =2

0=1.1, 0,201, =2
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Fig. 2 The absolute error functions for &y = 0.1, # =2 when « = 1.2, 1.1, 1 and 0.9 of Example 2
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Table 1 Comparison of the
absolute errors for o = o = 1

Present method

Method in Ref. [30]

and f§ = 2 of Example 2 es(x,0.3) es(x,0.5) €66(x,0.3) €66(x,0.5)
0.1 2.9599 x 1077 1.3254 x 107° 1.4212 x 1073 3.5288 x 1073
0.2 2.9991 x 1077 1.4583 x 1076 5.6199 x 107° 1.0203 x 1073
0.3 4.9827 x 1077 2.3304 x 107° 9.2469 x 107° 1.7476 x 1073
0.4 1.8177 x 1077 8.8822 x 1077 5.7318 x 107° 1.9061 x 1073
0.5 6.4785 x 1077 3.0782 x 107° 1.6258 x 1073 2.4668 x 1073
0.6 1.8177 x 1077 8.8822 x 1077 1.0580 x 1073 3.1409 x 1073
0.7 4.9827 x 1077 2.3304 x 107° 5.3736 x 107° 8.1961 x 107°
0.8 2.9991 x 1077 1.4583 x 107° 1.0919 x 1073 3.0812 x 1073
0.9 2.9599 x 1077 1.3254 x 1076 3.8734 x 1073 9.4835 x 1073

for case « = 1.1,y = 0.1, = 2:

v3(x,1) = 0.1886850925x7(x — 1)(6x> — 6x + 1)

for case « = 1.2, = 0.1, =2:

v3(x,1) = 0.188715454xt(x — 1)(6x* — 6x 4 1)

— 1.85367291x¢(2t — 1)(x — 1)

— 0.6177962154xt(x — 1)(6£* — 6t + 1)

— 1.235715861xt(x — 1)

+ 0.09420280809xt(x — 1)(6¢* — 61 4 1)(6x* — 6x + 1)
+ 0.2829110114x¢(2t — 1) (x — 1)(6x* — 6x + 1),
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— 1.853758001x¢(2t — 1)(x — 1)

— 0.6177680172xt(x — 1)(6£* — 61 + 1)

— 1.235679379xt(x — 1)

+ 0.09418952804x1(x — 1)(6> — 61 4 1)(6x*> — 6x + 1)
+ 0.28293763x¢(2f — 1)(x — 1)(6x> — 6x + 1).
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Figure 2 displays the graphs of the absolute error functions
for ¢; =0.1,§ =2 when o« =1.2,1.1,1,0.9. Table 1 is
used to show the numerical results by the present method at
t=0.3 and t =0.5 for « =a; =1, = 2. According to
Table 1, the present method gives better results as com-
pared to [30].

5 Conclusion

In this paper, we have presented a numerical method to
solve multi-term time-space convection—diffusion equa-
tions of fractional order with variable coefficients and
initial-boundary conditions. We have successfully applied
the Ritz—Galerkin method based on Legendre multiwavelet
functions and obtained very good approximate solutions
using only a few terms. The main advantage of the present
method is that the approximate solutions are very easily
and rapidly calculated using computer programs such as

-
C;
Cm
Cryi1
Com
Cor_1m
Com X
r 00 01 0(M—1) 10
€00 €00 T Coo Co0
00 01 0(M—1) 10
o1 Co1 e Co1 Co1
00 0(M—1) 10
Com—-1) Com—-1) Com-1) ComM—-1)
00 01 0(M—1) 10
&) Clo T Cio €19
00 01 0(M—1) 10
Ci(mM-1) Ci(mM-1) CliM—1 CimM—-1)
00 01 o(M-1) 10
Cr-1)0 Cr—1)0 Cr—1)0 Cl_1)0
00 01 o(M—1)
LCr—1ym-1) C@r-1)(M-1) Co—nym-1 C@-1nm-1)

Matlab.
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Appendix

The > x 1 matrix Q with unknown coefficients cf{l is as
follows:

(o
'
Q= ;
T
Ca 1
where
C(1)(()/\4171) c(()f)L”O C(()%)"—I)(M—l)'
1(M—-1 27—1)0 2—1)(M—1
R T
1(M-1) @ -1)0 @ -1)(M-1)
Com—1) Com-1) 0 Com—1)
1(M—1 27 —1)0 2’ —1)(M—-1
51(() ) Cgo : Cgo J=
61(/\'471) o (zﬂ;wo (2”—]')(M—1)
1(M—1 1(M—1) 1(M—1)
1(M-1) (2r=1) (2r-1)(M—-1)
Cr-1)0 Cr-1)0 Cr-1)0
1(M-1) @-1)0 @ -1)(M-1)
Cor—1)(M-1) Cr—1)M-1) Cr-1m-1) ]
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