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Abstract
A novel Harris hawks optimization algorithm is applied to microchannel heat sinks for the minimization of entropy genera-
tion. In the formulation of the heat transfer model of the microchannel, the slip flow velocity and temperature jump bound-
ary conditions have been taken into account. A variety of materials and fluids have also been evaluated to determine the 
optimal design of the microchannel. Since the main objective of this paper is to assess the search and exploration ability of 
the novel Harris Hawks algorithm, results are also benchmarked with those of commonly used particle swarm optimization, 
bees optimization algorithm, grasshopper optimization algorithm, whale optimization algorithm and dragonfly algorithm. 
Finally, results are compared to the analytical results and results obtained by the application of genetic algorithms. Results 
show that the Harris hawks algorithm has a superior performance in minimizing the entropy generation of the microchannel. 
The algorithm is also more computationally efficient compared to the aforementioned algorithms. Moreover, optimization 
results indicate that the use of copper for the microchannel and ammonia as the coolant leads to minimal entropy generation 
and, therefore, is considered as the best design. Considering the poor corrosive characteristics of copper, aluminum as the 
microchannel material is proposed as an alternative.

Keywords  Optimization · Harris hawks optimization (HHO) · Entropy generation · Micro-channel heat sink · Knudsen 
number · Metaheuristic optimization

List of symbols
A	� Surface area of heating (mm2)
Cp	� Specific heat of fluid (J kg−1 K−1)
Dh	� Hydraulic diameter (mm)
f	� Friction factor
G	� Volume flow rate (m3 s−1)
Hc	� Channel height (mm)
hav	� Average heat transfer coefficient (W m−2 K−1)
hfin	� Heat transfer coefficient for base surface 

(W m−2 K−1)
hbase	� Heat Transfer coefficient along fin surface 

(W m−2 K−1)
Kn	� Knudsen number

K	� Thermal conductivity of solid (W m−1 K−1)
Ka	� Thermal conductivity of air (W m−1 K−1)
kce	� Sum of entrance and exit losses
keq	� Ratio of thermal conductivity of fluid to solid
Ks	� Slip constant
L	� Length of channel in flow direction (mm)
m	� Fin parameter (m−1)
ṁ	� Total mass flow rate (kg s−1) (the same symbol is 

used for fin parameter ABOVE)
N	� Total number of microchannels
NuDh	� Nusselt number based on hydraulic diameter
PeDh	� Peclet number based on hydraulic diameter
Pr	� Prandtl number
q	� Heat flux (W m−2)
R	� Resistance (K W−1)
ReDh	� Reynolds number based on hydraulic diameter
Sgen	� Total entropy generation rate (W K−1)
T	� Absolute temperature (K)
Uav	� Average velocity in channels (m s−1)
Us	� Slip velocity (m s−1)
W	� Width of heat sink (mm)
Wc	� Half of the channel width (mm)
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Greek symbols
α	� Thermal diffusivity (m2 s−1)
αc	� Channel aspect ratio
αhs	� Heat sink aspect ratio
β	� Fin spacing ratio
∆P	� Pressure drop across microchannel (Pa)
ηfin	� Fin efficiency
γ	� Ratio of specific heats
λ	� Mean free path (m)
μ	� Absolute viscosity of fluid (kg m−1 s−1)
ν	� Kinematic viscosity of fluid (m2 s−1)
ρ	� Fluid density (kg m−3)
σ	� Tangential momentum accommodation coefficient
σt	� Energy accommodation coefficient
ζu	� Slip velocity coefficient
ζt	� Temperature jump coefficient

Subscripts
a	� Ambient
av	� Average
b	� Base surface
c	� Channel
ce	� Contraction and expansion
conv	� Convective
f	� Fluid
fin	� Single fin
h	� Hydraulic
hs	� Heat sink
in	� Inlet
out	� Outlet
s	� Slip
th	� Thermal
w	� Wall

1  Introduction

Thermal management of electronic devices has become 
increasingly important for the design of products with 
increased power and efficiency in the electronics industry. 
Hence, for higher heat dissipation, lower coolant require-
ment and many other advantages due to the small size, 
microchannel heat sinks were first introduced by Tucker-
man and Pease [1]. Nowadays, they are used as one of the 
most common methods of removing heat from electronics 
devices. In these devices, the heat transfer coefficient is 
inversely proportional to the channel hydraulic diameter [2].

One common way to improve the performance of engi-
neering structures and design is using meta-heuristic 
algorithms in the optimization field. Many meta-heuristic 
algorithms have been introduced in the evolutionary com-
putation and optimization field in recent years. For exam-
ple, the particle swarm optimization (PSO) [3] algorithm 

has been inspired from the bird migration, and the impe-
rialist competitive algorithm (ICA) [4] from social and 
human relationships to develop mathematical models and 
related optimization algorithms. The optimization problem 
has a direct relationship with the search, and its relevance 
is inspired by nature, for example, in the ant colony opti-
mization (ACO) algorithm [5], the ants always look for 
the best food source and its saving. In the artificial bee 
colony (ABC) algorithm [6], the bees look for the best 
flower for honey production. Furthermore, several swarm 
intelligence algorithms have been recently developed. For 
example, grasshopper optimization algorithm (GOA) mim-
ics the swarming behavior of grasshoppers in nature [7]. 
Similarly, dragonfly algorithm (DA) [8] and whale optimi-
zation algorithm (WOA) [9] are inspired from the behavior 
of dragonflies and whales, respectively. There is a vast 
body of literature on the successful applications of nature-
inspired algorithms for solving different engineering prob-
lems [10–16]. Nature seeks to make the most resistant and 
superior creatures. Solvers capability of finding the best 
solution amongst the infinite solutions is critical for effi-
ciently solving optimization problems. In fact, searching 
and optimization are applied to these problems, and those 
algorithms are more applicable here which investigate a 
large part of the solutions and arrive at a final solution.

In all conventional optimization methods, there are two 
phases in the common search phase: (a) exploration and 
(b) exploitation. The exploration ability aims at generating 
new and varied responses, while the exploitation ability 
is mainly responsible for the local improvement of the 
responses from the exploration phase. An efficient algo-
rithm is considered as the one, which provides a balance 
between the two components [17].

HHO is a novel optimization method developed by 
Heidari et al. [18], which is inspired from the modeling 
of the behavior of Harris Hawks. Attacking strategy of 
Harris Hawks simultaneously from various directions has 
been the building block of the algorithm. This algorithm 
has shown high search power, acceptable exploitation and 
exploration, which led to their successful application to 
many real engineering problems compared to previous 
algorithms [19–27]. In HHO algorithm, firstly, eagles 
(search agents) try to search in the solution space effec-
tively, thereby gathering information about the solution 
space. This information is then used by HHO algorithm 
to avoid being trapped to local optimums. After a com-
prehensive search, by using a group attack, hawks try to 
find the best solution region. Another key factor that leads 
to the superiority of this algorithm is the fact that HHO 
algorithm is able to update the search agents, which even-
tually lead to finding the global optimum. Applicability of 
this algorithm to the applications with many variables also 
make this algorithm an attractive alternative. On the other 
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hand, other algorithms are, in general, accurate for one or 
two-dimensional problems. HHO algorithm is applicable 
to higher-dimensional problems by balancing exploration 
and exploitation phases [7].

Moayedi et al. [19] used HHO and DA optimization meth-
ods to analyze the bearing capacity of footing over two-layer 
foundation soils. In another work, they studied the effect of 
HHO optimization algorithm to enhance the accuracy of the 
conventional multilayer perception technique to find a more 
reliable analysis of the stability of the soil slobes [20]. Abdel 
Aleem et al. [21] optimized the harmonic overloading level 
of frequency-dependent components in a non-sinusoidal dis-
tribution system using HHO algorithm. They have proven 
that HHO is an effective algorithm compared to other algo-
rithms. Yildiz et al. [22] studied the performance of HHO, 
GOA, MVO for solving manufacturing optimization prob-
lems. They showed that these algorithms are powerful for 
the manufacturing applications. Furthermore, the results of 
this study demonstrate that HHO is able to find the optimal 
solution with lower number of function evaluations. HHO 
algorithm was also used in the literature to find the optimal 
tuning of convolutional neural network parameters for the 
control chart patterns recognition [23]. Moreover, Mehta 
et al. [24] showed that HHO algorithm can be considered as 
an efficient optimization algorithm for solving the optimum 
load dispatch problems.

While HHO algorithm has shown a great performance in 
so many engineering problems, No Free Lunch (NFL) theo-
rem states that none of the metaheuristic algorithms result in 
the best solutions for all problems. Therefore, it is required 
to calibrate optimization parameters to improve their perfor-
mance. One of the limitations of HHO is that it cannot be 
used directly for binary problems. Too et al. [28] proposed 
a binary version of HHO making it possible for its applica-
tion to the binary problems such as feature selection prob-
lems. This has been achieved by integrating S-shaped and 
V-shaped transfer functions to the HHO algorithm. Hussain 
et al. [29] modified the HHO algorithm with a long-term 
memory concept to apply it to higher dimensional and opti-
mal power flow problems. Chen et al. [30] added one more 
exploration mechanism to the HHO algorithm to identify the 
unknown parameters of photovoltaic modulus efficiently. In 
this study, they used opposition-based learning and chaotic 
local search simultaneously to enhance its diversification 
algorithm. Jia et al. [31] used a dynamic control parameter 
method and mutation operator to modify the HHO and apply 
it for the satellite Image Segmentation. They concluded that 
the exploration and exploitation phases are not balanced, and 
this algorithm may not be able to yield global optimum for 
some complex problems. It is shown that this modification 
improves the search capability of the HHO, thereby leading 
to global optimum compared to original HHO algorithm. 
A new hybrid algorithm, which combines Harris Hawk 

algorithm and Nelder-Mead, is used by Yildiz et al. [32] 
for the optimization of process parameters of milling opera-
tions. Furthermore, Bao et al. [33] added differential evolu-
tion (DE) algorithm to the HHO algorithm for solving color 
image multilevel thresholding segmentation problems. In 
this paper, both algorithms of HHO and DE work at the 
same time to update the positions of each sub-population 
more efficiently. This study concludes that HHO-DE algo-
rithm has superior performance for multi-level thresholding 
color image segmentation. In another study, Bui et al. [34] 
combined the Harris Hawk optimization (HHO) with arti-
ficial neutral network (ANN) for improving the ability of 
original HHO in landslide susceptibility analysis.

Application of the optimization methods to MEMS elec-
tronics for the effective cooling by microchannel heat sinks 
have become popular in the recent years for the aforemen-
tioned reasons. In one of those studies, Wang et al. [35] 
optimized the geometric design of microchannel heat sink 
using the multi-parameter optimization methods. In this 
study, design parameters such as the number of channels, 
channel width, and channel height were optimized so as to 
minimize the heat transfer resistance. In another study by 
Bello-Ochende et al. [36], minimization of the peak tem-
perature from microchannel heat sink walls was chosen as 
the objective function using the finite volume method. In a 
more recent study, Cruz-Duarte [37] developed an optimal 
microchannel heat sinks design with colloidal coolants by 
minimizing entropy generation. In this process, three opti-
mization algorithms including unified Particle swarm opti-
mization, spiral optimization and cuckoo were used and their 
performance was compared. They showed that the cuckoo 
algorithm provides a more accurate response than the other 
two methods. In another paper [38], using optimization 
methods such as SA, SO and UPSO, they investigated the 
minimization of heat resistance in micro channel heat sinks 
with spreading resistance.

Adham et al. [39] analyzed methods to improve micro 
channel heat sink performance by combining the classic 
optimization of genetic algorithm with EGM. In this pro-
cess, the genetic algorithm has been used with different 
methodologies to improve optimization.

There is a vast body of literature on the minimization 
of the thermal resistance of microchannel heat sinks. Afzal 
Hussain and Kim [40] minimized the thermal resistance in 
a microchannel by optimizing the width and depth of the 
microchannel and fin width. In another study [41], they 
attempted to optimize the performance of microchannel heat 
sinks using hybrid multi-objective evolutionary algorithm 
coupled with surrogate methods, where multi-objectives 
were chosen as the thermal resistance and pumping power.

Furthermore, the effectiveness of different algorithms 
on the performance of microchannels has been com-
pared in various works. Most common algorithms from 
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the literature are MOGA [42], MOEA [43], prey-pred-
ator algorithm and Artificial Neutral network [44] GA 
and Taguchi methods [45] and Ant Lion algorithm [46]. 
Khan et al. [28] minimized the entropy generation rate in 
microchannel heat sinks using Genetic Algorithms. In this 
study, the optimization results were compared with those 
obtained from the Newton–Raphson method.

Given the articles cited in the literature review, improv-
ing the performance of micro channel heat sinks by opti-
mizing the design of these structures is an important 
topic with high importance in the electrical equipment 
and MEMS industries. Among the previous studies, many 
researchers have tried to improve the performance of ther-
mal microchannels using optimization algorithms [35–47]. 
Among them, only in one study conducted by Khan et al. 
[28], the slip flow velocity and temperature jump boundary 
conditions have been considered in calculating friction and 
heat transfer coefficient. It is noteworthy that in Khan’s 
study [47], the classical genetic optimization algorithm 
has been used. In this study, by using a new swarm intel-
ligence algorithm called HHO (introduced in 2019), the 
most optimal possible solution and design parameters were 
obtained by considering the slip flow, and its performance 
has been compared to the results of the aforementioned 
algorithms such as bees algorithm (BeA), grasshop-
per optimization algorithm (GOA), whale optimization 
algorithm(WOA), dragonfly algorithm (DA) and particle 
swarm optimization (PSO) algorithms. In addition, results 
are considered for different fluids and microchannel mate-
rials to achieve the best performance. The organization of 

the paper is as follows: first, modeling of the heat transfer 
problem is explained in Sect. 2. An overview of the HHO 
optimization algorithm is given in Sect. 3. In Sect. 4, opti-
mization methodology is explained in detail. The results 
are presented in Sect. 5. Finally, conclusions are addressed 
in Sect. 6.

2 � Modeling

The geometry of the microchannel heat sink is shown in 
Fig. 1. It consists of N parallel microchannels with a rec-
tangular cross-section ( 2Wc × Hc ), length and width are 
respectively equal to L and W (Fig. 1). It is noteworthy to be 
mentioned that the upper surface of micro-channel is iso-
lated, and the bottom surface of it is uniformly heated. The 
thickness of the fin and temperature of the internal wall are 
2Ww and Tw, respectively. Heat is dissipated away by a fluid 
as a coolant with the temperature of Ta and the velocity of 
Uav. For calculation of friction and heat transfer coefficient 
in channel’s wall, Slip flow velocity, and temperature jump 
boundary conditions are taken into account.

Half of the channel is considered for the analysis of 
the performance of the microchannel heat sink as shown 
in Fig. 1. The side and the top surfaces can be considered 
impenetrable, adiabatic and shear free i.e. no mass and shear 
work transfer across these surfaces. The system’s irrevers-
ibility is due to heat transfer and friction. For convenience, 
the following assumptions are taken into account:

Fig. 1   The geometry of the 
microchannel heat sink
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•	 The fluid is compressible with constant thermodynamic 
properties.

•	 The fluid flow is fully developed fluid flow.
•	 The fluid flow is 2D and steady-state laminar.
•	 The material for the microchannels is isotropic.
•	 The surfaces of the wall of microchannels are smooth.
•	 There is uniform heat flux from the bottom surface of the 

microchannel.
•	 Adiabatic fin tips boundary conditions are assumed.
•	 Slip flow (which is between 0.1 and 0.001) without con-

sidering creep effect.
•	 The change in kinetic and potential energies is negligible.

2.1 � Entropy generation formulation

The conservation of mass equation for specified control vol-
ume (see Fig. 1) is defined as follows:

where ṁin and ṁout are the mass rate at the inlet and outlet 
of the microchannel, respectively. dmcv

dt
 is the mass rate of the 

control volume. Equation (1) is re-written as follows with 
the steady state assumption:

The application of the first law of thermodynamics to the 
aforementioned control volume in steady-state condition and 
neglecting kinetic and potential energies results in:

where Q is the total heat transfer from the fin and base of 
the microchannel. hin, hout are the inlet and outlet enthalp-
ies of the fluids, respectively. Equation 4 is obtained by the 
application of the second law of thermodynamics according 
to the procedure from [48, 49]:

where dScv
dt

 is the entropy rate of the control volume. Tb and Qb 
are the temperature and heat transfer of the base of heat sink, 
Qfin is the heat transfer from the fin and Sgen is the entropy 
generation. sin, sout are the inlet and outlet entropies of the 
fluids. The left hand’s side of Eq. 4 becomes zero under the 
steady-state condition. In addition, the heat transfer from the 
fin and base add to the total heat transfer resulting in:

By integrating Gibb’s equation one can find:

(1)
dmcv

dt
= ṁin − ṁout

(2)ṁin = ṁout = ṁ

(3)Q = ṁ
(
hout − hin

)

(4)
dScv

dt
= ṁ

(
sin − sout

)
+

Qfin

Ta
+

Qb

Tb
+ Sgen

(5)Sgen = ṁ
(
sout − sin

)
−

Q

Tb

where � is the density of the fluid. Pin,Pout are the inlet and 
outlet pressure of the fluids, respectively. By substituting 
Eqs. (3) and (5) into Eq. (6) and considering �b = Tb − Ta , 
we have:

where P is the total pressure drop across the microchannel 
and �b = RthQ . So, the final form of Eq. (7) becomes as:

where Rth is total thermal resistance across the microchan-
nel. The expression in Eq. 8 is the entropy generation equa-
tion, which consists of thermal resistance and pressure drop.

The number of channels for the specified dimensions is 
calculated as follows:

ww is half of the width of the channel and wc is the half of 
the fin of the microchannel. Given the total flow rate, height 
and width of the microchannel, the average velocity in each 
channel can be obtained from Eq. (10):

where Hc is the height of microchannel.

2.2 � Thermal resistance of microchannel

Thermal resistance taking into account the convective and 
fluid thermal resistances is calculated from:

where Tf is the bulk fluid temperature. The temperature of 
base surface of microchannel and bulk fluid can be written 
calculated according to Eqs. (12) and (13), respectively:

(6)hin − hout = Ta
(
sin − sout

)
+

1

�

(
Pin − Pout

)

(7)Sgen =
Q𝜃b

TaTb
+

ṁ

𝜌Tb
ΔP

(8)Sgen =
Q2Rth

TaTb
+

ṁ

𝜌Tb
ΔP

(9)N =
W − ww

wc − ww

(10)Uav =
ṁ

N𝜌(2ww)Hc

(11)

Rth =
�b

Q

Rth =
Tb − Tf

Q
+

Tf − Ta

Q

Rth = Rconv + Rfluid

(12)Tb = Ta + QRth
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where Cp is the specific heat of fluid. Assuming same heat 
transfer coefficient for fin and base, i.e. ( hbase = hfin = hav ), 
the thermal resistance reduces to:

where hav is the average heat transfer coefficient. A is the 
contact surface, which can be calculated from Eq. (16):

Fin efficiency ( �fin ) is defined as follow [50]:

where m is the fin parameter and k is the thermal conductiv-
ity of the fin. Khan et al. [49] determined the Nusselt number 
in the dimensionless form by solving energy equation and 
taking into account the slip flow velocity and temperature 
boundary conditions:

(13)Tf = Ta +
Q

2Cpṁ

(14)Rconv =
1

Ahav

(15)Rfluid =
1

Cpṁ

(16)A = 2NL(Wc + Hc�fin)

(17)�fin =
tanh

(
mHc

)

mHc

(18)m =

√
2hav

kwc

(19)Nu =
havDh

kf

(20)
Nu =

140∕17

(
1 + �c

)[
1 −

6

17

Us

Uav

+
2

51

(
Us

Uav

)2
]
+

140

17
�t

(21)�c =
2wc

Hc

(22)
Us

Uav

=
6�

1 + 6�

(23)� =
2�u

1 + �c

(24)�u =
(
2 − �

�

)
Kn

where Dh is the hydraulic diameter and kf is the thermal 
conductivity of the fluid, Us is the slip velocity of the fluid, � 
is the thermal diffusivity, �u is the slip velocity coefficient,�t 
is the temperature jump coefficient, �t is the energy accom-
modation coefficient, Pr Prandtl number, � is the ratio of 
specific heat. Kn is the Knudsen number, which character-
izes the boundary condition of the fluid.

By using the above equations thermal resistance can be cal-
culated according to Eqs. (26) to (31):

2.3 � Pressure drop formulation

Pressure drop due to flow across the channel is as follow:

where Kce is the sum of entrance and exit losses. Khan 
et al. [48] calculated the friction coefficient of a rectangular 
microchannel in terms of aspect ratio and slip velocity coef-
ficient as:

where ReDh is the Reynold’s number and f is the friction 
factor. Kce can be expressed as follow [51, 52]:

By substituting the above equation in the Eq. (8) Sgen can 
be found as follow:

(25)�t =

(
2 − �t

�t

)
.
2�

� + 1
.
Kn

Pr

(26)Rth =
2C3�hs

LC1C2kf

(27)C1 = N�hs
(
2�fin + �c

)

(28)C2 =
(
1 + �c

)
∕�c

(29)C3 =
1

NuDh
+

C1

PeDh

(30)�hs =
L

2wc

(31)� =
wc

ww

(32)ΔP =
�U2

av

2

[
Kce +

(
f
L

Dh

)]

(33)fReDh =

(
24

1 + �c

)
.
(

1

1 + 6�

)

(34)Kce = 1.79 − 2.32

(
wc

wc + ww

)
+ 0.53

(
wc

wc + ww

)2
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3 � HHO optimization algorithm

HHO is a novel optimization method developed by Hei-
dari et al. [18]. HHO is a nature-inspired optimization 
algorithm inspired by the Harris Hawk birds’ behavior 
modeling. The essence of the algorithm is the coopera-
tion between hawks in hunting the prey. Based on this 
algorithm, a group of Harris hawks attack the prey from 
different directions to take it by surprise. Evidently, the 
prey’s escape pattern is proportional to the Harris hawk’s 
chase model. Birds cooperate in the process of attack. 
Meanwhile, the leader of the Harris hawks attacks the tar-
get prey, follows it, and suddenly moves out of sight, and 
the next Harris hawk continues the chase. This strategy 
tires the prey and eventually results in its capture. HHO 
algorithm is more superior to other algorithms on its appli-
cability to constrainted problems. Moreover, HHO, which 
is a global optimizer, can maintain its balance between 
exploitation and exploration phases. The HHO algorithm 
has three phases. The first phase is the ability of explora-
tion, which is formulated as follows:

where X(t) is the current location of Hawk, X(t + 1) is the 
location of Hawk in the next iteration t, Xprey(t) is the loca-
tion of prey, r1, r2, r3, r4 and q are random numbers between 
(0,1). Xrand(t) is the randomly selected hawk between the 
population. Furthermore, LB and UB denote the lower bands 
and the upper bands, respectively. Xa(t) is the average loca-
tion of Harris Hawk, which is given as below:

where Xi(t) demonstrates the position of each Harris Hawk 
in iteration t and N is the number of all Harris Hawks. The 
second phase is the exploitation. Evidently, the hawks’ 
energy is reduced during chase and hunt. The energy of a 
prey can be defined as:

(35)Sgen =
Q2

TaTb
.
2C3�hs

LC1C2kf
+

�wcHcU
3
av

Ta
C4

(36)C4 =

[
Kce +

(
f
L

Dh

)]

(37)

x(t + 1) =

{
xrand(t) − r1

||xrand(t) − 2r2x(tt
|| q ≥ 0.5

xprey(t) − xa(t) − r3(LB + r4(UB − LB)) q ≺ 0.5

(38)xa(t) =
1

N

N∑

i=1

xi(t)

(39)E = 2E0

(
1 −

1

T

)

E0 is the energy in the first stage, T indicates the maximum 
number of iterations and E is the escaping energy. In this 
phase, when ||E0

|| ≥ 1 exploration happens and when ||E0
|| ≺ 1 

exploitation occurs.
The third phase is exploitation, which is mainly to improve 

the local solutions from previously found solutions. This phase 
is the hawks’ surprising attack on the prey identified in the pre-
vious phase. Based on the prey’s escape and hawks’ chasing, 
four models have been proposed for the attack phase. Different 
phases of the HHO algorithm are shown in Fig. 2. 

3.1 � Soft besiege

Soft besiege condition is valid when r ≥ 0 and |E| ≥ 0 , which 
is modeled as:

where Δx is the difference between the prey location and the 
current location of Hawk in the iteration t. J is the random 
jump power of the prey while it is escaping which is equal to 
J = 2(1 − r5) and r5 is a random number in the interval (0,1).

(40)x(t + 1) = Δx(t) − E
|||Jxprey(t) − 2x(t)

|||

(41)Δx(t) = xprey(t) − x(t)

Fig. 2   Different phases of HHO algorithm [18]
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3.2 � Hard besiege

Hard besiege condition is valid when r ≥ 0 and |E| ≺ 0 . The 
prey is tired and does not have sufficient energy to escape. This 
phase is modeled as follows:

3.3 � Soft besiege with progressive rapid dive

Soft besiege with progressive rapid dive condition is valid 
when r ≺ 0 and |E| ≥ 0 . In this phase, the prey has enough 
energy to escape successfully. In this stage, for performing 
soft besiege Hawk examines the next move that can be for-
mulated as follows:

where D indicates the dimension and S is a random vector 
by size 1 × D and LF is the levy flight function [18, 53]. As 
a result we have:

1.	 Hard besiege with progressive rapid dive
2.	 Hard besiege with progressive rapid dive is valid when 

r ≺ 0 and |E| ≺ 0 . In this case, the prey does not have 
enough energy to escape appropriately. This strategy can 
be formulated as follows:

4 � Optimization methodology

The objective function is defined as the minimization of the 
entropy generation. The constraints are put for the geometric 
dimensions of the microchannel. The optimization problem 
is formulated in Eq. (47) with the objective function and 
constraints in the negative null form:

(42)x(t + 1) = xprey(t) − En|Δx(t)|

(43)x = xprey(t) − E
|||Jxprey(t) − x(t)

|||

(44)Z = Y + S + LF(D)

(45)x(t + 1) =

{
Y f (Y) ≺ f (y(t))

Z f (Z) ≺ f (y(t))

(46)

x(t + 1) =

{
xprey(t) − E

|||Jxprey(t) − xm(t)
||| f (Y) ≺ f (y(t))

Z = Y + S + LF(D) f (Z) ≺ f (y(t))

(47)F(x) = Sgen =
Q2

TaTb
.
2C3�hs

LC1C2kf
+

�wcHcU
3
av

Ta
C4

For the optimization case study, silicon and air are cho-
sen as the material for the microchannel and the coolant, 
respectively. Harris Hawk’s optimization algorithm (HHO) 
is applied to obtain the optimal design variables in terms 
of two dimensionless parameters: channel aspect ratio 
( �c =

2Wc

Hc

 ) and fin spacing ratio ( � =
Wc

Ww

 ). Fin spacing ratio 
is related to the width of channels and thickness of fin. 
Furthermore, the channel aspect ratio depends on the 
width and height of channels. HHO algorithm for the opti-
mization of microchannel heat sink (MCHS) is shown in 
Fig. 3. The recommended parameters from the literature 
are used for PSO, BeA, GOA, WOA, DA and HHO 

(48)

Subject to : 0.1 < 2Wc < 0.3

0.1 < 2Ww < 0.3

3 < Hc < 8

Fig. 3   HHO algorithm for the design of the microchannel heat sink
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algorithms and are given in Table 1. We set maximum 
iteration number to 500 iterations to ensure the conver-
gence. For further information on the PSO, GOA, WOA, 
DA, BeA algorithms, readers are referred to [3, 7–9, 54], 
respectively. All algorithms were simulated using Matlab 
(R2019a). Alternative materials to silicon and air are used 
to investigate their effect on the performance of micro-
channels. Computational efficiency of each algorithm is 
calculated as the average of 20 different runs and com-
pared to each other. Model parameters and material prop-
erties of MCHS are given in Table 1.

4.1 � Calibration of optimization parameters

Calibration of the optimization parameters plays an impor-
tant role in minimizing entropy generation problems using 
the aforementioned algorithms. Therefore, in this section, we 
describe how to tune these parameters for obtaining the best 

possible solution. For that purpose, silicon–air case (Si–Air) 
is used as a test case, where the properties of Si–air are 
shown in Table 1. In the tuning process, all of the optimiza-
tion parameters (shown in Table 2) are considered and varied 
across their nominal values generating a design of experiment 
(DOE) matrix. The optimization is run for all the elements of 
the DOE matrix and the optimization parameters correspond-
ing to the minimum entropy generation are considered as the 
tuned parameters.

5 � Results and discussions

Results are presented in two sections. In Sect. 1, HHO, 
GOA, WOA, DA optimization methods are used to mini-
mize the entropy generation for optimizing the silicon 
microchannel design with air coolant fluid at various vol-
ume flow rate and Knudsen numbers. The results of this 

Table 1   Dimensions of heat 
sink and relevant material 
properties

Parameter Value

Channel or heat sink length, L (mm) 51
Width of heat sink, W (mm) 51
Thermal conductivity of solid, k (at 300 K) (W m−1 K−1)
 Silicon 148
 Cupper 401
 Aluminium 237

Thermal conductivity of air, ka at 300 K (Coolant) (W m−1 K−1)
 Air 0.0261
 NH3 0.0247

Density, � (kg m−3)
 Air 1.1614
 NH3 0.6894

Specific heat,c
p
 (J kg−1 K−1)

 Air 1007
 NH3 2158

Kinematic viscosity, ν (m2 s−1)
 Air 1.58 × 10−5

 NH3 1.47 × 10−5

Prandtl number, Pr
 Air 0.71
 NH3 0.89

Heat flux, q (W cm−2) 15
Ambient temperature, Ta (°C) 27
Tangential momentum accommodation coefficient, σ 0.85
Energy accommodation coefficient, σt 0.85
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study are compared with those obtained from the previ-
ous studies conducted by Khan, Newton–Raphson and GA 
methods [48, 49]. The results from the optimization study 
indicate the effectiveness of the HHO algorithm based on 
the lower entropy generation results compared to other 
algorithms. In Sect. 2, a variety of materials with different 
thermal conductivity and coolant fluids are evaluated to 
obtain the optimum microchannel design. The results from 
this study are compared with six optimization algorithms: 
(HHO, GOA, WOA, DA, BeA, PSO).

5.1 � Design using silicon–air

In this section, the entropy generation is minimized by HHO, 
GOA, WOA and DA optimization for silicon microchannel 
with air coolant at different flow rates and Knudsen num-
bers. The results of the comparison with Khan’s previous 
works [48, 49] are summarized in Table 3. It is observed that 
by reducing the Knudsen number, the entropy generation 
increases. It should be mentioned that in Table 3, G is the 
volume flow rate of coolant and Kn is the Knudsen number, 

which were described in Sect. 2.2. The results indicate that 
the design from HHO algorithm is more efficient than oth-
ers in the shortest time in a few iterations since the entropy 
generation is reduced as well as �c and � . Using HHO algo-
rithm, the entropy generation has been reduced by 63.31% 
compared to analytical NR method and 30.77% compared to 
GA algorithm from the literature. HHO has several charac-
teristics that make it possible to show superior performance 
in exploring and exploiting in the search space. For exam-
ple, the energy parameter, described in Sect. 3, improves the 
exploitation and exploration phase. HHO uses various array 
of diversification mechanism depending on the average loca-
tion of hawks. The algorithm has different LF-based patterns 
with short length jumps, which would lead to increasing the 
capability of exploiting and exploring phases in HHO algo-
rithm. Furthermore, search agents are able to improve their 
location by using progressive selection scheme in the algo-
rithm. One of the superiority of HHO algorithm compared 
to previous algorithms is its capability to solve constrained 
problems and it can maintain its balance between exploi-
tation and exploration. Moreover, HHO algorithm can use 
different search strategies based on r, E and jump (J) param-
eters, which allows HHO to balance the exploitation and 
exploration phases. The convergence curve for HHO, GOA, 
WOA, DA is shown in Fig. 4 for the various arrays of Kn and 
G. It is concluded from the convergence curve that, GOA, 
WOA and DA algorithms converge in 150 iterations. On the 
other hand, HHO algorithm as explained in Sect. 3 yields 
better results compared to other metaheuristic algorithms. 
As can be detected from Table 3, WOA is the second best 
algorithm after HHO (best results in Table 3 are highlighted 
as bold). The results show that minimum entropy generation 
[Sgen = 0.1268 (W K−1)] is achieved for G = 0.007 m s−3 and 
Kn = 0.1 for silicon MCHSs with air as a coolant. 

Figure 5 shows the variations of the entropy generation 
as a function of the volume flow rate for different Kn values. 
This figure is plotted for the specific design variables, (Hc 
as height of channel, 2wc as width of the channel, and 2ww 
as width of the fin), it can be observed that Sgen depends on 
these dimensions. Then, the parameters, which minimize 
Sgen, can be identified.

For some flow rate values, the entropy generation is 
decreasing while for others it is increasing. It is also deduced 
from the diagram that for each model there is a volume of 
volumetric flow rate in which the entropy generation is mini-
mized. Different flow rate designs and microchannel materi-
als can change this specific volume of flow rate. In Fig. 6, 
conductivity thermal changes induce significant changes in 
entropy generation. At a large Knudsen number, by increas-
ing thermal conductivity, the entropy generation is reduced. 
Conductivity is a critical parameter on the microchannel 
design. It is known that a material with high conductivity 
in the design of microchannel improves the efficiency of the 

Table 2   The optimization parameters

Optimi-
zation 
Method

Parameter Value

GOA Attraction length scale 1.4
intensity of attraction 0.4
search agent number 30
Number of iteration 500

WOA Search agent 30
b 1
Number of iteration 500

DA Number of search agent 35
Beta 1.5
Number of iteration 500

HHO Number of search agents 50
β 1.5
Number of iteration 500

PSO Topology fully connected inertia 
factor

0.3

C1 1
C2 1
Number of population 50
Number of iteration 500

BeA nScoutBee 50
nSelectedSite 0.5*nScoutBe
nEliteSite 0.4*nSelectedSite
nSelectedSiteBee 0.5*nScoutBee
nEliteSiteBee 0.5*nScoutBee
Neighborhood radius damp rate 0.5
Number of iteration 500
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system considerably. The results of Figs. 5 and 6 are in line 
with Khan’s findings from [47]. Our results show that there 
is a similar trend for Sgen versus volume flow rate between 

Sgen versus thermal conductivity as in the literature. This 
proves the accuracy of our formulation and numeric results.

(a) (b)

(c) (d)

(e) (f)

Fig. 4   Sgen versus iterations in 500 iterations for S–Air configuration corresponding to different G and Kn values
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(g) (h)

(i)

Fig. 4   (continued)
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Fig. 5   The effect of volume flow rate on Sgen for various Kn
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Fig. 6   The effect of thermal conductivity on Sgen for various Kn with 
G = 0.005
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Table 4   Optimum design results from the application of optimization algorithms for different MCHSs

Sgen (W K−1) Kn = 0.1 Kn = 0.01

G (m3 s−1) PSO BeA DA WOA GOA HHO PSO BeA DA WOA GOA HHO

Cu–NH3

0.005 0.1139 0.1039 0.1263 0.1239 0.1052 0.0973 0.1315 0.1165 0.1426 0.1222 0.1352 0.1107
0.006 0.1110 0.0942 0.1146 0.0981 0.1038 0.0909 0.1259 0.1118 0.1299 0.1125 0.1306 0.1093
0.007 0.1086 0.0904 0.1118 0.0937 0.0979 0.0877 0.1281 0.1136 0.1213 0.1177 0.1302 0.1094
0.008 0.1107 0.0920 0.1164 0.0903 0.1013 0.0882 0.1305 0.1176 0.1246 0.1142 0.1338 0.1105
0.009 0.1137 0.0932 0.1221 0.0922 0.1056 0.0897 0.1341 0.1195 0.1381 0.1150 0.1404 0.1123
Al–NH3

0.005 0.1222 0.1016 0.1164 0.1094 0.1333 0.0990 0.1443 0.1195 0.1226 0.1233 0.1311 0.1126
0.006 0.1198 0.0941 0.1113 0.1032 0.1281 0.0920 0.1408 0.1176 0.1184 0.1211 0.1291 0.1104
0.007 0.1176 0.0928 0.1095 0.1001 0.1133 0.0891 0.1419 0.1180 0.1180 0.1196 0.1222 0.1110
0.008 0.1202 0.0951 0.1106 0.1063 0.1241 0.0899 0.1466 0.1202 0.1261 0.1263 0.1236 0.1122
0.009 0.1211 0.0997 0.1139 0.1101 0.1283 0.0912 0.1483 0.1226 0.1328 0.1321 0.1308 0.1143
Si–NH3

0.005 0.1326 0.1063 0.1231 0.1073 0.1320 0.1004 0.1421 0.1247 0.1436 0.1426 0.1285 0.1136
0.006 0.1300 0.1004 0.1185 0.1053 0.1271 0.0931 0.1409 0.1226 0.1400 0.1321 0.1274 0.1117
0.007 0.1289 0.0999 0.1109 0.1038 0.1182 0.0909 0.1421 0.1242 0.1381 0.1273 0.1255 0.1125
0.008 0.1300 0.1002 0.1166 0.1086 0.1233 0.0916 0.1437 0.1249 0.1384 0.1314 0.1279 0.1144
0.009 0.1316 0.1089 0.1212 0.1141 0.1293 0.0933 0.1458 0.1263 0.1411 0.1364 0.1325 0.1167
CPU time (s) 1.1 1.7 10.36 0.46 1.31 0.25 1.1 1.7 10.36 0.46 1.31 0.25
Al–Air
0.005 0.1561 0.1381 0.1476 0.1516 0.1500 0.1310 0.1911 0.1647 0.1741 0.1754 0.1903 0.1565
0.006 0.1548 0.1332 0.1455 0.1463 0.1477 0.1249 0.1888 0.1623 0.1725 0.1731 0.1851 0.1551
0.007 0.1538 0.1320 0.1423 0.1391 0.1423 0.1248 0.1905 0.1644 0.1719 0.1706 0.1811 0.1563
0.008 0.1562 0.1377 0.1444 0.1429 0.1436 0.1264 0.1936 0.1665 0.1752 0.1784 0.1823 0.1586
0.009 0.1579 0.1395 0.1511 0.1487 0.1455 0.1286 0.1989 0.1703 0.1801 0.1827 0.1849 0.1618
Cu–Air
0.005 0.1541 0.1375 0.1486 0.1509 0.1456 0.1298 0.1936 0.1649 0.1875 0.1759 0.1873 0.1546
0.006 0.1493 0.1309 0.1436 0.1459 0.1441 0.1234 0.1900 0.1636 0.1831 0.1727 0.1832 0.1537
0.007 0.1514 0.1316 0.1381 0.1422 0.1388 0.1236 0.1923 0.1658 0.1829 0.1721 0.1769 0.1549
0.008 0.1556 0.1335 0.1441 0.1434 0.1409 0.1244 0.1940 0.1689 0.1842 0.1749 0.1811 0.1565
0.009 0.1577 0.1365 0.1477 0.1487 0.1451 0.1264 0.1954 0.1712 0.1863 0.1788 0.1853 0.1593
CPU Time (s) 1.1 1.7 10.36 0.46 1.31 0.25 1.1 1.7 10.36 0.46 1.31 0.25

Sgen (W K−1) Kn = 0.001

G (m3 s−1) PSO BeA DA WOA GOA HHO

Cu–NH3

0.005 0.1430 0.1239 0.1368 0.1282 0.1491 0.1154
0.006 0.1398 0.1200 0.1321 0.1210 0.1414 0.1147
0.007 0.1388 0.1190 0.1324 0.1206 0.1359 0.1139
0.008 0.1422 0.1206 0.1339 0.1259 0.1452 0.1154
0.009 0.1446 0.1218 0.1425 0.1281 0.1537 0.1175
Al–NH3

0.005 0.1415 0.1242 0.1327 0.1258 0.1267 0.1158
0.006 0.1381 0.1204 0.1319 0.1243 0.1261 0.1147
0.007 0.1398 0.1225 0.1302 0.1237 0.1222 0.1156
0.008 0.1405 0.1241 0.1309 0.1319 0.1234 0.1169
0.009 0.1424 0.1269 0.1355 0.1366 0.1301 0.1192
Si–NH3
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5.2 � Design using alternative materials

In the second part, for better investigation six optimization 
algorithm (HHO, GOA, WOA, DA, BeA, PSO) are used to 
minimize the entropy generation. As it is mentioned in the 
previous section microchannel’s conductivity has a signifi-
cant effect on entropy generation of system. In this regard, 
three microchannels of copper and aluminum–silicon with 
two fluids of air and ammonia gas are investigated. Another 
important design consideration on the MCSH design is the 
coolant fluid. In this study, we consider two types of cool-
ants: ammonia and air. Ammonia gas (R-717) is used exten-
sively in industrial systems due to its known advantages. 
Firstly, ammonia is environmentally compatible. Second, 
ammonia has superior thermodynamic quality and requires 
less heat transfer area and hence uses less electricity. Moreo-
ver, the odor of ammonia makes it easy to detect the leaks. 
Finally, it is comparatively cheaper than other alternatives.

Six cases (1) Cu–NH3:Cupper–ammonia, (2) Al–NH3: 
(3) Aluminum–Ammonia, (4) Si–NH3:silicon–ammonia, (5) 
Al–Air: Aluminum–Air, Cu–Air: Cupper–air and (6) Si–Air: 
silicon air) are evaluated with six algorithms to minimize the 
entropy generation (Si–Air was studied in Sect. 5.1).

Table 4 show the results for various Knudsen number 
and volumetric flow rates (best results in Table 4 are high-
lighted as bold). The results indicate the effectiveness and 
computational efficiency of the HHO method compared to 
other algorithms. In addition, its high search and exploration 

power is also visible in Fig. 7 for case Cu–NH3. Consider-
ing the merits of HHO algorithm which are elaborated in 
the previous section, this algorithm is looking for optimal 
solutions by trying to balance the exploration and exploi-
tation. The BeA algorithm found the solution in the same 
low number of iterations, and the higher iterations failed to 
produce better solutions but compare to other algorithms 
it shows superior performance. The opposite is seen in the 
HHO algorithm, which achieved better results in higher 
iterations by producing more acceptable solutions, indicat-
ing this novel algorithm’s strength in examining problems. 
Another distinctive feature of this algorithm is conducting 
the optimization process in less time, which is recommended 
to use in more complex functions with more variables. 

From Table  4 it can be concluded that material of 
microchannel and fluid as a coolant are effective param-
eters on entropy generation and the efficiency of system. 
Copper, compared to aluminum and silicon, has a higher 
conductivity and therefore leads to lower entropy genera-
tion. From the comparisons between Cu–NH3 and Cu-air, 
entropy generation is reduced drastically for the Cu–NH3 
case, which is attributed to the use of ammonia as the 
coolant fluid.

Thermophysical properties, conductivity and specific 
heat capacity of ammonia can result in a better performance 
of microchannel’s coolant fluid compare to air. In addition, 
using ammonia is advantageous as the leakage from a poten-
tial damage in the system would lead to early detection of 

Table 4   (continued)

Sgen (W K−1) Kn = 0.001

G (m3 s−1) PSO BeA DA WOA GOA HHO

0.005 0.1512 0.1253 0.1378 0.1329 0.1422 0.1167
0.006 0.1486 0.1232 0.1370 0.1317 0.1388 0.1162
0.007 0.1508 0.1267 0.1314 0.1286 0.1311 0.1171
0.008 0.1528 0.1274 0.1355 0.1321 0.1321 0.1190
0.009 0.1544 0.1311 0.1403 0.1383 0.1364 0.1216
CPU time (s) 1.1 1.7 10.36 0.46 1.31 0.25
Al–Air
0.005 0.1936 0.1728 0.1839 0.1864 0.1739 0.1617
0.006 0.1910 0.1701 0.1817 0.1834 0.1721 0.1613
0.007 0.1941 0.1723 0.1794 0.1788 0.1688 0.1627
0.008 0.1972 0.1749 0.1821 0.1819 0.1744 0.1663
0.009 0.1988 0.1774 0.1874 0.1841 0.1767 0.1686
Cu–Air
0.005 0.1932 0.1733 0.1813 0.1794 0.1804 0.1606
0.006 0.1901 0.1719 0.1791 0.1776 0.1789 0.1599
0.007 0.1920 0.1725 0.1785 0.1769 0.1773 0.1609
0.008 0.1939 0.1753 0.1811 0.1784 0.1801 0.1632
0.009 0.1953 0.1768 0.1819 0.1806 0.1826 0.1661
CPU time (s) 1.1 1.7 10.36 0.46 1.31 0.25
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the damage due to its odor, which is not harmful to human 
health. Moreover, it has a lower density which makes it suit-
able for microscale applications.

It is fair to be mentioned that ammonia has some dis-
advantageous. The major disadvantage of ammonia as 

a coolant is its toxicity. Due to ammonia’s hygroscopic 
nature, it migrates to moist areas of the body, including the 
eyes, nose, throat and moist skin and may cause severe burn 
injuries.
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Fig. 7   Objective function versus iterations for Cu–NH3 case for different G and Kn parameters from a to i 
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Figure 8 shows the minimum generation entropy data 
compared to the volumetric flow rate for the six design 
cases, indicating that the use of ammonium coolant performs 
better than using air as the coolant to minimize entropy gen-
eration as bad factor for system. This can be due to the high 
specific heat of ammonia compared to air.

As seen in the diagram, the best design is the copper-
ammonia (Cu–NH3), whose entropy generation value in 
volumetric flow rate 0.007 reaches its minimum value.

Even though ammonia has very attractive properties, it 
is a corrosive material when used with copper, brass and 
bronze. Therefore, we proposed to use aluminum-ammonia 
(Al-NH3) in the microchannel design as Al–NH3 is the 
second best case from the results of Fig. 8.

Reliability of aluminum has been proven as an efficient 
material in industry for many years. Advantageous of alu-
minum are summarized below:

•	 cost efficient and ductile

•	 good machinability
•	 toughness at subzero temperature
•	 suitable for soldering and welding
•	 cheaper than copper

6 � Conclusion

In this paper, the effects of different channel aspect ratio, fin 
aspect ratio, heat sink materials and different Knudsen num-
bers in different flow rate have been studied. In this regard, 
the entropy generation is optimized with the powerful novel 
HHO method, which provides better results than previous 
works applying other methods and algorithms. The results 
obtained by the HHO method indicate that the entropy gen-
eration, which is a negative factor for the system, can be 
designed with a lower aspect ratio and fin aspect ratio, which 
in turn reduces the negative effect of this disturbing factor 
for the system.
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Fig. 7   (continued)



1426	 Engineering with Computers (2021) 37:1409–1428

1 3

Alternative materials for the microchannel and coolant 
fluids were also assessed in terms of their effect on the per-
formance of the system. Optimization results indicate that 
copper as the microchannel material and ammonia gas as the 
coolant results in the minimum entropy generation. Since 
ammonia is not resistive to corrosion, aluminum-ammonia 
(Al-NH3) is recommended as an alternative for microchan-
nel material and coolant fluid.

In this paper, the newly introduced HHO optimization 
algorithm is used to minimize the entropy generation. This 
algorithm was compared to the five powerful algorithms of 
GOA, WOA, DA, BeA and PSA. It is found that the HHO 
algorithm yields a better solution than the well-known 
algorithms in less CPU time thanks to its strong explora-
tion and search pattern. HHO has several characteristics 
that make it possible to finds solution based on stable equi-
librium between diversification and intensification and it 
is able to converge towards global optimum without being 
trapped to local optimum solutions. This simulation results 
show that the application of this algorithm is a strong and 
efficient candidate in many engineering problems, which 
are modeled with complex functions and many variables.

It is well known that material parameters can effectively 
minimize the entropy generation (Sgen). other materials 
based on kw, ʋ and ρ and etc. can be studied to improve 
the performance of MCHS design. Furthermore, it is pos-
sible to integrate HHO with other evolutionary schemes for 
improving the performance of HHO algorithm. These are 
acknowledged as future work.
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