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Abstract
In the present work, a geometrically nonlinear finite shell element is first presented to predict nonlinear dynamic behavior of 
piezolaminated functionally graded carbon nanotube-reinforced composite (FG-CNTRC) shell, to enrich the existing research 
results on FG-CNTRC structures. The governing equations are developed via an improved first-order shear deformation 
theory (FSDT), in which a parabolic distribution of the transverse shear strains across the shell thickness is assumed and a 
zero condition of the transverse shear stresses on the top and bottom surfaces is imposed. Using a micro-mechanical model 
on the foundation of the developed rule of mixture, the effective material properties of the FG-CNTRC structures, which 
are strengthened by single-walled carbon nanotubes (SWCNTs), are scrutinized. The effectiveness of the present method is 
demonstrated by validating the obtained results against those of other studies from literature considering shell structures. 
Furthermore, some novel numerical results, including the nonlinear transient deflection of smart FG-CNTRC spherical and 
cylindrical shells, will be presented and can be considered for future structure design.

Keywords Nonlinear dynamics · Functionally graded carbon nanotubes · Improved FSDT · Smart shell · Piezoelectric 
materials

1 Introduction

In recent decades, as a consequence of the development 
in material science and lightweight design, a new class of 
adaptive structures equipped with piezoelectric materials is 
introduced in the automotive, aerospace, medical, and scien-
tific areas to produce smart structures. Due to their coupled 
mechanical and electrical properties, smart materials enable 
to sense and to adapt their static and dynamic responses. 
Up to present, the research on intelligent structures is 
very rich. Investigations content of piezoelectric laminate 
beams, plates, and shells can be found in the following lit-
erature [1–8]. Conventional passive composite, subjected to 
dynamic loads, are sensitive to vibrations and suffer often 
from dynamic instabilities. Hence, the use of adaptive and 

active structures can solve such problems. A series of stud-
ies have been carried out to predict the dynamic behavior 
of piezolaminated structures. Moita et al. [9] developed a 
single-layer triangular plate/shell element with 18 degrees 
of freedom to control the structural dynamic response of 
the piezolaminated thin plate. Furthermore, Saviz et al. [10] 
studied the free-vibration characteristics of a thick cylindri-
cal shell with piezoelectric layers using the layerwise the-
ory. Later, Saviz and Mohammadpourfard [11] presented a 
transient analysis of orthotropic laminated cylindrical shells 
covered by two active layers. The solutions of governing 
equations were obtained using Galerkin’s finite-element for-
mulation in the radial direction.

Currently, the computational approaches for nonlinear 
analysis of shell have been developed by many investiga-
tors, since structures can endure large deformations and 
finite rotations. Several researches have been carried out 
to predict the nonlinear behavior of shell structures under 
mechanical loading [12–20]. However, it is very essential to 
anticipate the sensing and actuator capabilities of smart shell 
structures in the range of large deformations [21]. Hence, the 
effect of static large deformations on the structural behavior 
of piezolaminated beams is analyzed by [22]. By means of 
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third-order shear deformation theory, the response of smart 
thin and sandwich plates is predicted by [23] accounting 
for geometric nonlinearity. Panda and Ray [24] developed 
an FE model to simulate the nonlinear behavior of smart 
functionally graded (FG) plates based on von Karman type 
nonlinearity. Geometrically nonlinear analysis is also inves-
tigated by [25] to survey the behavior of adaptive structures. 
The developed model considers the Kirchhoff shell theory, 
and it can be used for any arbitrary shape, and mechanical 
and electrical loadings. Moreover, an improved FSDT theory 
was used for geometrically nonlinear analysis of piezolami-
nated shell structures [26]. Several piezolaminated geom-
etries are investigated in the above research using a novel 
nonlinear smart finite shell element.

Analyses of nonlinear dynamics and control of smart 
structures have been undertaken by several researchers 
[27–30]. Static and dynamic analyses of smart structures 
undergoing large displacements are also investigated by [31]. 
Using their finite-element model, they simulated sensor out-
put voltage and piezoelectric actuator based on first-order 
shear deformation theory (FSDT). A developed shell ele-
ment is employed in [28–31] to modal the shape, control 
vibration, and predict nonlinear transient deformation of 
smart structures using various shell theories. Schmidt and 
their co-authors [32–35] developed an FE shell elements to 
analyze the geometrically nonlinear behavior of smart thin-
walled structures. In their works, authors prove that it is nec-
essary to predict the sensing and actuating capabilities of the 
piezolaminated structures taking into account their geomet-
rical nonlinearity. Recently, Marinković and Rama [36–39] 
used a co-rotational FE formulation to develop a three-node 
shell element for modeling piezolaminated structures in the 
nonlinear static and dynamic cases. By presenting several 
numerical examples, important aspects of modeling shell 
structures with embedded sensors and actuators are exposed.

Recently, functionally graded materials (FGMs) attracted 
many researchers to study the linear and nonlinear static, 
dynamic, free, and forced vibration behavior [40–49]. These 
kinds of composite materials are characterized especially by 
the smooth and continuous variation of its mechanical proper-
ties [47]. Therefore, delamination problems caused by inter-
laminar stresses in the conventional composite are solved. 
Based on this background, a new category of composites, 
known as functionally graded carbon nanotube-reinforced 
composite (FG-CNTRC), is growing nowadays. In fact, the 
carbon nanotubes (CNTs) are uniformly or randomly distrib-
uted in the traditional methods; therefore, the improvement 
of their special mechanical properties may not be perfect. 
Recently, the carbon nanotubes aligned in axial direction and 
functionally graded in the thickness are embedded in a poly-
mer matrix to eliminate the above shortcomings. Recent stud-
ies [19, 50–52] reported the linear and nonlinear analysis in 
the static, buckling, and free-vibration behavior of FG-CNT 

plate and shell structures under purely mechanical loading. 
Zhang et al. analyzed the vibrations of quadrilateral plate 
[53, 54] with FG-CNT composite using element-free kp-Ritz 
method based on FSDT theory. Parametric studies show-
ing the effects of different boundary conditions, geometrical 
parameters, and types of carbon nanotube distributions are 
examined. As well as, Lei et al. [55] investigated the dynamic 
response of FG-CNTRC plates modeled with a macroscopic 
continuum approach and using the element-free method.

Most of the past studies were focused on the vibration char-
acteristics of passive FG-CNT structures under only mechan-
ical dynamic load. A few studies considered the structural 
behavior of smart FG-CNT plates and shells. The combina-
tion between FG-CNT reinforced materials and piezoelectric 
materials makes an intelligent structural material [56]. In this 
context, the optimal shape of FG-CNT composite plates with 
embedded piezoelectric patches is studied by Zhang et al. 
[57], using the genetic algorithm to find the optimal displace-
ment feedback control gains and actuator voltages. Moreo-
ver, other investigations using FSDT theory were carried out 
to predict large amplitude vibration of FG-CNTRC annular 
sector plate covered by two piezolayers. Mohammadzadeh-
Keleshteri et al. [58] found two interesting results; the fre-
quencies of the FG-CNTRC sector plate increase when the 
volume fraction of the CNTs is increasing and the thickness 
of piezoelectric layers plays an important role in the harden-
ing responses of the global structure. Furthermore, Alibeigloo 
et al. [59, 60] investigated thermoelastic behavior of CNTRC 
plate and shell structures embedded in piezoelectric layers 
using three-dimensional theory of elasticity. Nguyen-Quang 
et al. [61] proposed an extension of the isogeometric approach 
for the dynamic response of laminated carbon nanotube-
reinforced composite (CNTRC) plates integrated with piezo-
electric layers. In this study, the effects of volume fraction of 
CNT, its graded pattern, and the influence of piezoelectric lay-
ers on dynamic behavior of the plate structure were outlined. 
Recent advances in material science and technology make a 
new nano-filler material like graphene platelets (GPLs). Very 
recently, Rao et al. [62, 63] studied the static and forced vibra-
tion behavior of the FG-GPLs’ structures bonded with smart 
layers under piezoelectric and mechanical loads.

By the literature survey, it may be demonstrated that non-
linear transient analysis of smart FG-CNTRC shells is very 
scarce. Thus, the need to analyze the geometric nonlinear 
behavior of such structures has had an essential impact on 
these achievements. In this context, this paper proposes an 
FE analysis to predict nonlinear dynamic behavior of FG-
CNTRC plate and shell structures with embedded piezosen-
sors or/and actuators. A micro-mechanical model based on 
the developed rule of mixture is used to assess the effective 
material properties of the FG-CNTRC structures reinforced 
by single-walled carbon nanotubes (SWCNTs). To insure 
realistic parabolic transverse shear strain through the shell 
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thickness, an improved FSDT theory is adopted. The electric 
potential varies linearly through the piezolayers. Assumed 
natural strain (ANS) method is used to overcome shear lock-
ing in the case of thin plate and shell. The performance of 
the developed nonlinear finite-element formulation, consid-
ering large rotation, to predict the transient behavior of pie-
zolaminated structures acting as both actuator or as sensor is 
examined. It is shown that numerical results agree well with 
examples, from the literature, considering piezolaminated 
structures for nonlinear dynamic applications. Furthermore, 
an exhaustive discussion is presented to offer some new tran-
sient results to unearth the influence of the CNT distribution 
along the layer thickness, CNTs’ volume fractions, as well 
as geometrical parameters on the dynamic of active FG-
CNTRC spherical and cylindrical shells with large rotations.

2  Material properties of smart FG‑CNTRC 
shells

As shown in Fig. 1, a sandwich shell structure composed 
of functionally graded carbon nanotube-reinforced com-
posite (FG-CNTRC) core and two piezoelectric layers is 
considered in this study. The FG-CNTRC is made of a 
mixture from CNTs that are aligned in axial direction and 
functionally graded in the thickness direction, and a poly-
meric matrix. A single-walled carbon nanotubes (SWC-
NTs) is combined with an isotropic matrix polymer poly 
(m-phenylenevinylene)-co-[(2, 5-dioctoxy-p-phenylene) 
vinylene] PmPV. Various carbon nanotube distributions 
such as UD, FG-V, FG-O, and FG-X are investigated in 
the present analysis.

The corresponding volume fractions V
CNT

 for multifari-
ous CNTs distributions are expressed as:

in which V∗
CNT

 denotes the total volume fraction of CNTs, 
given as:

where w
CNT

 represents the mass fraction of the CNT in the 
composite structure. �CNT and �m are the CNT and matrix 
mass densities, respectively.

The effective mechanical properties of the FG-CNTR 
composite can be computed, using an extended rule of 
mixture, as [33]:
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Fig. 1  Schematic of a UD, b FG-V, c FG-X, and d FG-O CNTRC smart shell structure
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where YCNT
11

 , YCNT
22

 , GCNT
12

 , and �CNT
12

 are the elastic constants 
of the carbon nanotubes; Y

m
 , G

m
 , and �m

12
 are the elastic prop-

erties of the polymer matrix; �1 , �2 , and �3 denote the CNT 
efficiency parameters; V

CNT
 and V

m
 are the volume fraction 

of CNTs and matrix, respectively, satisfying the following 
condition [64]:

3  Piezoelectric enhanced FSDT shell 
formulation

The developed shell formulation based on the enhanced 
first-order shear deformation (FSDT) theory is here used to 
analyze the global characteristics of thick and thin shells. 
In this approach, a parabolic distribution of the transverse 
shear strains across the shell thickness is assumed and a 
zero condition of the transverse shear stresses on the top and 
bottom surfaces is imposed. Furthermore, the present theory 
pretends to model accurately the effects of large rotations 
leading to large deformations. A linear electric potential 
function in the thickness direction is employed. Nonlinear 
dynamic analysis of the piezoelectric laminated functionally 
graded carbon nanotube-reinforced (FG-CNT) composite 
shells using linear theory of piezoelectricity with nonlinear 
strain measure is considered.

3.1  Constitutive equations

The linear constitutive relations coupling the mechanical and 
electrical behavior of the piezolaminated structure can be 
expressed as:

(4)V
CNT

+ V
m
= 1.

(5)
[
S

q

]

8×1

=

[
C −pT

p k

][
�

E

]

8×1

,

dielectric constant, and piezoelectric stress constant matri-
ces, respectively.

3.2  Basic geometry and kinematics

A description of the geometry and kinematics of piezoe-
lectric improved FSDT shell model is concisely developed 
in this part. According to this theory, each point p of the 
mid-surface has three displacement, two independent rota-
tional, and one electrical degrees of freedom. To express 
these degrees of freedom at any point q of the shell structure 
located at the distance z from the mid-surface, a curvilin-
ear coordinate system � = (�, �, z) needs to be introduced at 
that point. Variables referred to the reference configuration 
C0 are symbolized by upper case letters and by lower case 
letters when associated with the current configuration Ct. 
Vectors are expressed using bold letters.

The mechanical displacement of one point q (see Fig. 2) 
can be defined, in both initial and deformed state of shell, as:

where h is the thickness; � is the initial shell director which 
is perpendicular to the undeformed mid-surface; � represents 
the director shell vector in the deformed configuration.

3.3  Stress and strain field

In the large deformation case, the strain field � is defined 
using the Green–Lagrange strain tensor as follows:

where e�� , ���
 , and �

�
 denote the membrane, bending, and 

transverse shear strains, respectively. In the current state Ct, 
the variation of the strain measures are expressed as:

In matrix form, the membrane, the bending and the shear 
strains are written as follows:

(6)
�q(�, �, z) = �p(�, �) + z�(�, �)
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; z ∈

[
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]
,

(7)

{
��� = e�� + z�

��
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,

(8)
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��
��
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�
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�
∕2

��
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= a� ⋅ �d + �x,� ⋅ d

; �, � = 1, 2.

in which S , � , q , and E are the second Piola–Kirchhoff stress, 
Lagrangian strain, electric displacement, and electric field 
vectors, respectively, and C , p , and k are the elasticity, 
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It should be noted that the FSDT theory developed by 
Mindlin [65] is adopted to model the kinematics for both thin 
and moderately thick shell structures. This theory assumes a 
constant distribution of the transverse shear deformations. 
However, it is already well known that both transverse strain 
and stress distributions are parabolic across the thickness 
and vanishing at points on the top and bottom surfaces of the 
structure. In this paper, the modified FSDT is introduced to 
handle the linear distribution of the shear strains by impos-
ing a parabolic function f (z) inspired from the high-order 
shear deformation (HSDT) theory given by [66]. Regarding 
to the enhanced FSDT, shear strain vector becomes:

The membrane N, bending M and shear T stress result-
ants are derived through the integration of the stress tensor 
S over the thickness. Similarly, the electric displacement 
resultant q̄ is obtained by integration of the electric displace-
ment q through the thickness:

(9)� =
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e11
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�
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�
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(10)��Z = f (z)��; f (z) =
5

4

(
1 −

4z2

h2

)
.

(11)
N�� = ∫

h∕2

−h∕2

S��dz; M�� = ∫
h∕2

−h∕2

zS��dz

T� = ∫
h∕2

−h∕2

f (z)S�3dz; q = ∫
h∕2

−h∕2

qdz; � = 1, 2.

In the matrix form, these quantities can expressed as:

The membrane N, bending M and shear T stress result-
ants and the electric displacement resultant q̄ as well as the 
membrane e , bending � and shear � strains and the elec-
tric field Em ( Em = −E ) are arranged in the following way 
to obtain a generalized resultant of stress R and strain � 
vectors:

In the case of an elastic constitutive model, the variations 
in stress resultants �� and in strain field �� are related in 
the well-known form:

with �T is the linear coupling elastic and electric matrix 
expressed as:
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Fig. 2  Geometry of a piezolam-
inated composite shell
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in which C and p represent the in-plane linear elastic and 
piezoelectric coupling sub-matrix. C� and p� are the out-of-
plane linear elastic and piezoelectric sub-matrices.

3.4  Electrical field

The electric field vector E is computed using the gradient of 
the electric potential Δ� as mentioned:

In this research, only transverse electric field E3 is consid-
ered and the in-plane electric field E1 and E2 are neglected, 
since the active layer is considered thin with polarization in 
the thickness direction. Regarding to this assumption, the 
electric field can be rewritten as below:

3.5  Weak form of the governing equations 
for piezoelectric laminate shell

The weak form of the governing equations of piezoelectric 
structures is defined by the following:

where Gext is the external virtual work.
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,

(16)E = − �,�; � = 1… 3.

(17)Em = −E = −Be ⋅ �; Be =
[
0 0

�

�z

]T
.

(18)

G = ∫V

(
S������ + S3���Z

�
+ q3�E3

)
dV − Gext= 0 ; �, � = 1, 2,

Integrating Eq. (18) through the thickness of the shell and 
using Eqs. (7), (10), and (11) would lead to:

Using Eq. (13), the weak form can be repressed as:

4  Nonlinear finite‑element modeling

To predict the nonlinear transient behavior of smart shell 
structures, an efficient and accurate 4-nodes’ shell element 
with 6 degrees of freedom per node ( u, v,w, �x, �y,� ) is 
proposed.

5  Discretization of displacement vector

The displacement vector U (U = x − X) , the director vector 
d, their incremental quantities, and the electric potential � 
are interpolated based on isoparametric shape functions NI 
as:

(19)

G = ∫A

(
N ⋅ �e +M.�� + T ⋅ �� + q ⋅ �E

)
dA − Gext = 0.

(20)G = ∫A

��TRdA − Gext = 0.

Fig. 3  Four-node shell element
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with UI and d
I
 represent the displacement vector and director 

vector at the nodal points, respectively.NI denote the shape 
functions, which are expressed in two-dimensional paramet-
ric space as (see Fig. 3):

The curvilinear coordinates are transferred to the Carte-
sian ones using the Jacobian matrix � . The derivations of NI 
in the local Cartesian and the local elementary systems can 
be expressed as:

where �0 denotes the mid-surface normal, in the initial state 
 C0, which can be evaluated by:

The Jacobian matrix can be expressed as:

Note that a spatial description leads to a shell problem 
with 7 DOF/node and the material description leads to a 
shell problem with 6 DOF/node. Therefore, the general-
ized displacement vector ��n = (�x, �d, ��)n and the nodal 
displacement vector �� n = (�x, ��, ��)n are related in the 
following way using transformation matrix �̄K:

with

where �I = �I�3; �3 =
[
0 0 1

] t , and �I =
[
�1I �2I �3I

]
 in 

which, �I denotes the director vector of the rotation matrix �I.

5.1  Discretization of strain and electric fields

The discretization of the membrane and bending parts of 
the strain field, defined in Eq. (8), is given by:
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where �m and �b are the membrane and the bending 
strain–displacement operators, respectively, which are 
expressed at node I as:denotes the director vector

where �
,a
=
∑4

I=1
N̄I
,a
�
I
; a = 1, 2 . �

1
 and �

2
 are the vectors 

of the actual basis that defined as:

The Assumed Natural Strains (ANS) method is adopted 
in the developed discrete model to avoid locking problems, 
which may improve the efficiency of the present model in 
the prediction of nonlinear dynamic behavior. Therefore, the 
shear strain is expressed as [26]:

where �
2
(A) , �

1
(B) , �

2
(C) , and �

1
(D) represent, respectively, 

the strains at middle points of the elements A, B, C, and 
D (see Fig.  3). The variation of transverse shear strain 
becomes:

Hence, the transverse shear strain can be expressed in the 
local Cartesian system as:

The electric field varies linearly through the piezolayers’ 
thickness, and it is assumed constant over an element of 
these active layers:

where t denotes the thickness of the active layer and BI
e
 is the 

discrete electric field-displacement relation.
As a result, the virtual and incremental generalized strain 

can be represented in approximate form as follows:
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5.2  Linearization of weak form

The nonlinear shell problem solved by the Newton iterative 
procedure is established using the weak form directional 
derivatives in the direction of the increment. The linearized 
weak form, mentioned in Eq. (19), is given by:

It is practical to split the tangent operator into geomet-
ric and material parts, denoted by DGG.�� and DMG.�� , 
respectively:

5.2.1  Material part

The material part of the tangent operator, obtained by the 
variation in the stress resultants, can be written as follows:

Using Eq. (35), the internal virtual work becomes:

The material stiffness matrix is inferred from Eq. (39).

where

5.2.2  Geometrical part

The geometrical part of the tangent operator is obtained by 
the variation of the virtual strain and keeping constant the 
stress resultants:

(35)
Δ� = �.Δ�; �� = �.��; �T =

[
BT
m
�T
b
�T
s
�T
e

]
.

(36)G + DG.�� = 0.

(37)DG.�� = DGG.�� + DMG.��.

(38)DMG.�� = ∫A

��T��dA.

(39)Gint = ��T
n ∫A

BT�dA = ��T
n ∫A

BTHTBdA.

(40)KM = ∫A

BTHTBdA =

[
Kuu
m

Ku�
m

K�u
m

K��
m

]
,

(41)

Kuu
M

= ∫A

BT
u
CB

u
dA; K

u�

M
= ∫A

BT
u
pTBedA

K
�u

M
= ∫A

BT
e
pB

u
dA; K

��

M
= ∫A

BT
e
kBedA; BT

u
=
[
�T
m
�T
b
�T
s

]
.

where the geometric tangent matrix KG is detailed in [26].
The generalized tangent stiffness matrix of an element is 

given as the following:

After nodal transformation, Eq. (26), the global material 
stiffness matrix can be computed by:

5.3  Nodal updates

Considering large deformations of the shell structures, the 
generalized displacement vector at node ‘I’ is updated as 
seen in Table 1.

6  Transient analysis of nonlinear 
formulation

Kinetic energy of smart shell structure is expressed in the 
discrete form as:

where ��  and 𝜞  are the virtual displacement and accelera-
tion vector at the global level. M denotes the mass matrix. 
In the current dynamic analysis, a lumped mass matrix is 
adopted, which is a diagonal matrix based on the assumption 
that the element mass is lumped on the element nodes. Its 
expression is given by:

where

� represents the material density varying along the thickness.

(42)DGG.�� = ∫A

(
���T

⋅ �
)
dA =��T

n
⋅ KG ⋅ ��n,

(43)KT = KM +KG.

(44)K = �T
n
KT�n.

(45)T = �𝜞 T
n
�𝜞 n,

(46)�II =
[
�1I �2I 0

]
diag

; I = 1… 4,

(47)

�kI =
∫ �̄�kkN

INIdA ∫ �̄�kkdA

∫
�∑

�̄�kkN
INI

�
dA

�k; k = 1, 2; I = 1..4
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−h∕2

𝜌

�
1 z

z z2

�
dz; �1 =

�
1 1 1

�
; �2 =

�
1 1

�
;

Table 1  The nodal updates The updating displacement vector U
k+1
I

= U
k

I
+ ΔU

The updating rotations d
k + 1
I

= cos (Δd)dk
I
+

sin (Δd)

‖Δd‖ Δd;Δd = ‖Δd‖Δd = Δ��̄�k
I

�̄�k+1
I

= exp (Δ�)�̄�k
I

Δ� = d
k
I
∧ Δd
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Once the computation of the inertia term finer is done, the 
residual vector ℝ may be deducted:

where F is the contribution of either the internal and exter-
nal work.

The governing equations of motion are solved by New-
mark’s method. Indeed, this method allows the direct solution 
of a second-order differential equation or a system of second-
order differential equations without the need of the transforma-
tion to a pair of simultaneous first-order differential equations. 
The method may be applied in various fields of engineering, 
in particular to the dynamic response systems. It remains to 
choose values of Newmark parameters β and γ. In the present 
study, these parameters are chosen as: β = 0.25 and γ = 0.5: the 
Newmark method is implicit and unconditionally stable, mean-
ing that the method will converge for all time increments. The 
Newmark’s algorithm is detailed in Appendix A.

The elementary governing equation of motion solved 
by Newmark’s algorithm is inferred as:

7  Numerical examples and discussion

This section mainly includes the following two parts to 
ensure the accuracy and the validity of the proposed finite-
element analysis model. First, comparison studies with the 
existing literature are carried out for the nonlinear tran-
sient behavior of piezolaminated composite shells. Then, 
numerical discussions on the nonlinear dynamic analysis 
of smart FG-CNTRC structures are made mainly to provide 
some parameterized new results.

7.1  Convergence studies

Convergence studies are carried out on nonlinear transient 
deflection of isotropic spherical shell, piezolaminated 

(48)ℝ = F −𝐌𝜞
n
; finer = 𝐌𝜞

n
,

(49)K∗Δ� t+Δt
n+1

= ℝ
t
n+1

; K∗ = K +
1

�Δt2
M.

plate, and isotropic semicircular cylindrical shell with 
surface-bonded active layers to show the validity of the 
present formulation.

7.1.1  Nonlinear dynamic behavior of passive spherical 
shell

A clamped passive spherical cap shell is analyzed with con-
sideration of both linear and nonlinear computation. The 
whole structure is subjected to a concentrated step load, F 
= 100, located at its mid-span (see Fig. 4). The spherical cap 
is meshed by 217 nodes and 192 elements with 5 degrees 
of freedom at each node. Geometric and material properties 
for this test are R = 4.76, θ = 10.9o, h = 0.01576, H = 0.0859, 
Y = 107,� = 0.3 , and ρ = 0.000245 according to [14].

The response of the structure is observed in a time interval 
of 250 µs. The time increment is Δt = 0.2 µs. The results for 
the linear and nonlinear normalized vertical displacements at 
shell apex obtained with the presented model are compared 
with those from [14]. The element used by [14] is a higher 
order solid shell element based on the Enhanced Assumed 
Strain (EAS). The results for the displacements at shell apex 
are depicted in Fig. 5 and show very good agreement.

7.1.2  Nonlinear dynamic behavior of active plate

The following example is a two-sided hinged plate, as 
shown in Fig. 6. It consists of three layers forming a sym-
metric architecture. The middle layer is made of graphite 
fiber-reinforced epoxy T300/976. Its material properties 
are as follows: Y1 = 132.28 GPa, Y2 = 10.76 GPa, G12 = 5.65 
GPa, G23 = 3.61 GPa, �12 = 0.24 and ρ = 7300 kg/m3. Two 
PZT G1195 actuators cover the structure. The material and 
piezoelectric properties of PZT G1195 are Y1 = Y2 = 63 
GPa, �12 = 0.3, e31 = e32 = 22.86 C/m2 and ρ = 7600 kg/m3. 
The dimensions of the plate are also shown in Fig. 6. The 
thicknesses of the mid layer and the active layer are 0.2 mm 
and 0.15 mm, respectively. The present results are obtained 
with a 4 × 4 mesh and with an increment time of  10−4 s. The 
two-actuator layers are subjected to a sinusoidal dynamic 

Fig. 4  Shallow spherical cap, geometry, and finite-element modeling
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voltage excitations expressed as � = 300 sin
(
2�ft

)
 , where 

the frequency f = 100Hz . Due to the opposite polarization 
of the piezo layers, their activation produces internal bend-
ing moments over the plate edges.

Figure 7 shows the transient response of composite pie-
zolaminated plate under harmonic electric excitation. The 
present transient center deflection of the plate is compared 
with those in the existing literature given by [32, 33]. Zhang 
et al. [33] developed an eight-node piezoelectric coupled 
shell element with uniformly reduced integration and the 
nonlinear theory includes fully geometrically nonlinear shell 
theory with large rotations (LRT56). The finite-rotation the-
ory (FRT) model developed by Rao and Schmidt [32] has 
18 internal DOFs for strain field in the enhanced assumed 
strain (EAS) and 12 internal DOFs for electric field in the 

an enhanced assumed gradient (EAG). The transient results 
obtained by the developed element exhibit similar vibration 
tendencies with those mentioned in [32, 33].

7.1.3  Nonlinear dynamic behavior of smart semicircular 
cylindrical shell

The dynamic simulation of smart semicircular cylindrical 
shell was proposed by [67] and was further modified by 
[36]. This smart structure was also studied by Rao and 
Schmidt [68] to perform three different analyses: linear 
eigenvalue problem, static analysis of geometrically lin-
ear and nonlinear deformations, and simulation of large 
amplitude vibrations and control with distributed actua-
tors. The curved structure is clamped at one end and free at 
the other end. The dimensions of the host structure and the 

Fig. 5  Transient response of the 
isotropic shallow spherical cap

Fig. 6  Two-edge simply supported plate with embedded PZT layers
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piezoceramic layers are displayed in Fig. 8. The host mate-
rial is considered as a steel metal, whose material proper-
ties are given as follows: Y1 = 68.95 GPa, �12 = 0.3, and 
ρ = 7750 kg/m3. The material and piezoelectric properties 
of PZT are Y1 = Y2 = 63 GPa, �12 = 0.3, e31 = e32 = 16.11 C/
m2, k33 = 1.65 × 10−8 F/m, and ρ = 7600 kg/m3. The thick-
ness of each active layer is estimated to be 0.254 mm. The 
semicircular arch is subjected to a step force F = 50 N 
at the tip point: The piezoelectric layers act as sen-
sor. The transient deflections at tip point at the free end 
are predicted by the Newmark method with a time-step 
increment of  10−3 s. The shell is modeled using 16 × 16 
mesh. The obtained results in terms of time-hoop/radial 

displacements at the tip point are compared to those given 
by [36]. Excellent agreements between both results are 
observed as depicted in Figs. 9 and 10 for hoop and radial 
displacements, respectively.

7.2  New results for smart FG‑CNTRC shell structures

After the validation of the developed model via the above 
convergence studies, the nonlinear dynamic behavior for 
smart FG-CNTRC shell structures is now simulated to high-
light the effect of introduction of CNT reinforcements to such 
piezolaminated structures. The material properties of CNT 
composite and polymer matrix are given in Tables 2 and 3.

7.2.1  Large transient deflection of smart FG‑CNTRC 
spherical shell

Nonlinear transient analysis of FG-CNTRC shallow spheri-
cal cap with integrated piezoelectric layers is considered. 
The same geometrical properties of spherical shell are 
considered as mentioned earlier in the sub-Sect. 7.1.1. The 
material and piezoelectric properties of PZT are Y = 63 GPa, 
�12 = 0.3, e31 = e32 = 16.11 C/m2, k33 = 1.65 × 10−8 F/m, and 
ρ = 7600 kg/m3. The thickness of the each active layer is 
1 mm. The structure is exhibited to sudden applied uniform 
pressure loading of value  q0 = − 1 × 106 N/m2.

Figure  11 represents the transient center deflection 
for uniform (UD) and three-dispersion pattern of CNT: 
FG-V, FG-O, and FG-X-CNTRC spherical caps and under 

Fig. 7  Center deflection of piezolaminated plate over time under harmonic electric excitation

Fig. 8  Semicircular cylindrical shell covered with active layers



1400 Engineering with Computers (2021) 37:1389–1407

1 3

three values of volume fractions 
(
V∗
CNT

= 0.11, 0.14, 0.17
)
 , 

respectively. It is intrigued to illustrate that FG-X induces 
the lowest transient central deflection, while the FG-O has 
the highest one. For UD and FG-V, they located between 
FG-X and FG-O. This can be explained by the form of 
CNT distribution where the reinforcements distributed 
close to the top and bottom surfaces and are more efficient 
in the enhancement of the nonlinear dynamic behavior of 
such structures. In addition, it is noted that the CNT vol-
ume fraction has a great influence on the vertical deflec-
tion of the FG-CNTRC spherical shell. In fact, when 
the volume fraction of CNTs decreases, the value of the 
transverse central deflection increases for each type of dis-
tribution. For instance, the value of central deflection of 
UD distribution decreases about 54% from V∗

CNT
= 0.11 

to V∗
CNT

= 0.17 at t = 0.016  s. The following results 

Fig. 9  Hoop deflection of the 
PZT laminated semicircular 
cylindrical shell over time

Fig. 10  Radial deflection of the 
PZT laminated semicircular 
cylindrical shell over time

Table 2  Mechanical properties of SWCNT fibers and PmPV at 
T = 300 K [69]

CNT composite reinforced with (10, 10) SWCNT PmPV matrix

Y
CNT
11

 = 5.6466 T Pa Y
m = 2.1 GPa

Y
CNT
22

 = 7.0800 T Pa �m = 0.34

G
CNT
12

 = 1.9445 T Pa �m = 1150 kg/m3

�CNT
12

 = 0.175
�CNT = 1400 kg/m3

Table 3  (CNT) efficiency 
parameters for three different 
volume fractions [69]

V
∗
CNT

�
1

�
2

�
3

0.11 0.149 0.934 0.934
0.14 0.150 0.941 0.941
0.17 0.149 1.381 1.381
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demonstrate the effect of CNTs in the transient behavior 
of the smart spherical shell. Therefore, designer can adjust 
the form and the volume fraction of CNT to control the 
vibration phenomenon. Furthermore, Table 4 summarizes 
the maximum center deflection of the FG-CNT spherical 
cap with surface-bonded piezolayers to clearly see the dif-
ferences of results using various CNT distribution patterns 
and volume fractions.

Moreover, the influence of variation of radius-to-thick-
ness ratio (R/H) is studied here for the active FG-CNTRC 
spherical shell (see Fig. 12). Obviously, the central deflec-
tion extend with the increasing of the parameter R/H. In fact, 
for (R/H = 20), the amplitude of transverse deflection does 
not exceed (8.88 × 10−3 m) for the different distribution pat-
tern of CNTs, while this amplitude reaches (2.16 × 10−1 m) 
with (R/H = 50). Thereby, the increase of this parameter has 
a significant effect on nonlinear forced vibrations of such 
smart FG-CNTRC structures.

7.2.2  Large transient deflection of smart FG‑CNTRC 
cylindrical shell

Extending the previous analysis in the sub-Sect. 6.1.3 to FG-
CNTRCs, large deformations for smart FG-CNTRC semi-
circular cylindrical shell are studied where the geometrical 
parameters are the same. This problem was studied by Rao 

Fig. 11  Nonlinear dynamic responses of FG-CNT spherical cap with surface-bonded piezolayers for various distribution pattern of CNTs and 
under different volume fraction

Table 4  Maximum center deflection of the smart FG-CNT spherical 
cap

Maximum center deflection [mm]

UD FG-V FG-X FG-O

V
∗
CNT

= 0.11 246.45 248.64 246.16 249.60
V
∗
CNT

= 0.14 240.60 241.21 232.91 241.90
V
∗
CNT

= 0.17 230.55 231.53 214.78 235.44
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et al. [62] to predict the forced vibration response of FG-
Graphene Platelet-reinforced polymer composites laminated 
with piezoelectric layers. It was found that the GPL distribu-
tion and weight fraction of GPLs have a significant effect on 
the vibration and damping characteristics of the FG-GPL 
composite cylindrical shell.

Figure 13 represents the nonlinear transient hoop tip 
deflection for UD and various patterns of CNT disper-
sion: FG-V, FG-O, and FG-X-CNT cylindrical shell with 
embedded actuators and under different volume fraction 
of CNTs V∗

CNT
 . It is found that FG-X semicircular shell 

has the lowest transient tip deflection values, while FG-O 
shell has the highest ones. Furthermore, values of period 
increase from FG-X curve to FG-O curve. This is due to 
the fact that reinforcements distributed close to the top and 
bottom are more efficient than those distributed near the 
mid-surface, which allow the increase of the stiffness of 
adaptive FG-CNT shell structures. Furthermore, the effect 
of CNT fraction volume on the large transverse deforma-
tion of the studied semicircular shell under step force at tip 
point is examined as shown in Fig. 13. It is observed that 
the enrichment of the polymer matrix PmPV with higher 
quantities of CNTs results in the decline of nonlinear tran-
sient central deflection. This is expected, since, for lower 
values of volume fraction V∗

CNT
 , the cylindrical shell loses 

stiffness.
The sensitivity of the geometrically nonlinear dynam-

ics to the curvature of the smart FG-CNT shell structure is 
analyzed in this part. Figure 14 depicts the nonlinear hoop 
deflection of the FG-CNT semicircular cylindrical shell, 
considering the volume fraction V∗

CNT
= 0.14 , for different 

radius-to-thickness ratio (R/h) values. It should be men-
tioned that, as the R/h ratio increases, the radius of curva-
ture rises and a cylindrical shell tends to be a flat structure. 
For all analyzed patterns of CNT dispersion, it is clearly 
observed that, as the R/h ratio increases, the tip hoop dis-
placement rises, and the piezolaminated shell structure pro-
vides a higher stiffness in comparison to the piezolaminated 
plate structure due to the presence of an initial curvature in 
its geometry.

To illustrate the influence of piezoelectric layer thickness 
tp on the nonlinear dynamic characteristics of FG-CNTRC 
plates with surface-bonded sensors, tip deflection is depicted 
in Fig. 15, for various profiles of CNT distribution and under 
a volume fraction. It is clearly seen from Fig. 15 that as the 
thickness of PZT layer tp increases, the structure becomes 
softer, since the volume fraction of PZT is increasing which 
results in higher deflections, for all patterns of CNT disper-
sion. Hence, it can be inferred that such geometrical param-
eter (thickness of active layer) has a significant effect on the 
nonlinear dynamic behavior of the active FG-CNT struc-
tures, which should be carefully considered for the structure 
design.

8  Conclusion

This paper makes a first attempt to predict geometrically 
nonlinear dynamic behavior of functionally graded car-
bon nanotube-reinforced composite (FG-CNTRC) with 
surface-bonded piezoelectric layers, so as to enrich the 
existing research results on FG-CNTRC structures. A 

Fig. 12  Nonlinear dynamic responses of FG-CNT spherical cap with surface-bonded piezolayers for various distribution pattern of CNTs, under 
volume fraction V∗

CNT
= 0.11 and with two different apothem-to-thickness ratios R/H
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micro-mechanical model according to the extended rule of 
mixture is adopted to assess the effective material properties 
of the FG-CNTRC structures strengthened by SWCNTs. The 
nonlinear formulation is based on the improved FSDT ensur-
ing realistic parabolic variation of transverse shear strain 
along the thickness direction. The governing equations of 
motion are solved using the Newmark’s algorithm coupled 
with Newton–Raphson iteration. By a variety of numerical 
examples, the accuracy of the proposed model is verified. 
Several novel results of smart FG-CNTRC spherical and 
cylindrical shells are presented. Furthermore, the effects 
of structure and material parameters are also reported. The 
obtained results show that CNT with FG-X-CNT distri-
bution is correlated with the lowest nonlinear transverse 

deflection, while FG-O-CNT distribution exhibits the high-
est one among the other CNT distributions. Furthermore, it 
is found that the volume fraction of the carbon nanotubes 
V∗
CNT

 has a significant effect on the structural behavior of the 
adaptive FG-CNTRC structures.

Appendix A: Newmark’s algorithm to solve 
� �̈ + K� = F

Initial acceleration:

(50)𝜞 0 = �−1
[
�0 −�𝜞 0

]
.

Fig. 13  Large transverse deformation of FG-CNT cylindrical shell with surface-bonded piezolayers for various distribution patterns of CNTs and 
under different volume fraction
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New state at t + Δt.

Computation of �̄ ∶

Computation of �t+Δt ∶

(51)�t+Δt −
(
�𝜞 t+Δt +�𝜞 t+Δt

)
= �.

(52)�̄ = � +
1

𝛽Δt2
� +

𝛾

𝛽Δt
�.

(53)

�t+Δt = �t+Δt +�

(
1

�Δt2
𝜞 t +

1

�Δt
𝜞 t +

(
1

2�
− 1

)
𝜞 t

)
.

Computation of � t+Δt ∶

Computation of 𝜞 t+Δt ∶

Computation of �̇ t+Δt ∶

Note that the Newmark parameters � and � are chosen 
as � = 0.25 and � = 0.5.

(54)�̄� t+Δt = �t+Δt.

(55)�̈t+Δt =
[(

�t+Δt − �t − Δt�̇t

)
1

Δt2
−
(
1

2
− �

)
�̈t

]
1

�
,

(56)�̇� t+Δt = �̇� t + Δt(1 − 𝛾)𝜞 t + 𝛾Δt𝜞 t+Δt.

Fig. 14  Large transverse deformation of FG-CNT cylindrical shell with surface-bonded piezolayers for various distribution patterns of CNTs, 
under a volume fraction V∗

CNT
= 0.14 and with different radius-to-thickness ratio
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