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Abstract
This paper introduces a new version for the nonlinear Ginzburg–Landau equation derived from fractal–fractional deriva-
tives and proposes a computational scheme for their numerical solutions. The fractal–fractional derivative is defined in the 
Atangana–Riemann–Liouville sense with Mittage–Leffler kernel. The proposed approach is based on the shifted Chebyshev 
polynomials (S-CPs) and the collocation scheme. Through the way, a new operational matrix (OM) of fractal–fractional 
derivative is derived for the S-CPs and used in the presented method. More precisely, the unknown solution is separated 
into their real and imaginary parts, and then, these parts are expanded in terms of the S-CPs with undetermined coefficients. 
These expansions are substituted into the main equation and the generated operational matrix is utilized to extract a system 
of nonlinear algebraic equations. Thereafter, the yielded system is solved to obtain the approximate solution of the problem. 
The accuracy of the proposed approach is examined through some numerical examples. Numerical results confirm the sug-
gested approach is very accurate to provide satisfactory results.

Keywords  Fractal–fractional Ginzburg–Landau equation · Shifted Chebyshev polynomials (SCPs) · Operational matrix 
(OM) · OM of fractal–fractional derivative

1  Introduction

Over the last decades, fractional calculus (the theory of inte-
gral and derivative operators of arbitrary orders) has been 
extensively studied to express various phenomena in Engi-
neering and Physics, e.g. [1–4]. This concept has been use-
fully utilized in electromagnetism [5], fluid mechanics [6], 

visco-elastic materials [7], propagation of spherical flames 
[8] and dynamics of viscoelastic materials [9]. Note that the 
main reason of using fractional operators in modeling physi-
cal systems is their non-local property (which it means that 
the present state and all the previous states of a dynamical 
system affect on the its next state) [10, 11]. Some useful 
results about theoretical analysis of such operators can be 
found in [12–14]. It should be noted that such operators are 
often singular. So, it is very difficult to get analytic solutions 
for problems involving fractional operators. In recent years, 
several numerical methods have been proposed for solving 
such problems, for instance, see [15–19].

One of the most-investigated nonlinear partial differential 
equations in Physics and Engineering is the Ginzburg–Lan-
dau equation. This equation describes various types of 
phenomena, such as nonlinear waves, second-order phase 
transitions, superfluidity, superconductivity, Bose–Einstein 
condensation, strings in field theory and liquid crystals [20]. 
Therefore, it is very necessary to solve this equation. How-
ever, there are many numerical and analytical methods for 
the numerical solution of this equation, for instance, see 
[21, 21–25]. The fractional version of the Ginzburg–Landau 
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equation has been well examined from various aspects, for 
instance, see [26–29] and references therein.

In recent years, the orthogonal polynomials have been 
widely utilized for the numerical solution of various types of 
problems in Engineering and Science, for instance, see [30, 
31]. The main reason for such wide applications is that solv-
ing the original problem is changed to solving an algebraic 
system of linear/nonlinear equations. It is worth noting that 
eigenfunctions of the singular Sturm–Liouville problems can 
be utilized with high order of accuracy to approximate any 
smooth function [32]. This useful property of such func-
tions is often called the (exponential) spectral accuracy. 
The Chebyshev polynomials are one of the main classes of 
orthogonal polynomials which have been successfully used 
in various areas, e.g. [33–37].

Since, as far as we know, there is no previous study 
related to the nonlinear Ginzburg–Landau equation involved 
with fractal–fractional derivative operator. The main aims 
of this work is to introduce nonlinear time fractal–fractional 
Ginzburg–Landau equation and to propose a computa-
tional method based on the shifted Chebyshev polynomials 
(S-CPs) for its numerical solution. Therefore, we focus on 
the following problem:

on the domain (x, t) ∈ [0, 1] × [0, 1] with the initial condition

and the boundary conditions

where i =
√
−1 is the unit imaginary number, Θ is an unde-

termined complex function, g, h and z are complex functions, 
� and � are real functions, and � , � , � and � are known con-
stants. Here, FFM0D�,�

t  denotes the fractal–fractional partial 
differentiation operator of order (�, �) (where �, � ∈ (0, 1) ) 
in the Atangana–Riemann–Liouville sense with Mittag–Lef-
fler non-singular kernel [38, 39].

In the proposed method, solving the above fractal–frac-
tional problem is changed to solving a system of algebraic 
equations. To this end, first, the function Θ(x, t) is decom-
posed into its real and imaginary parts. Then, these parts 
are expanded by the S-CPs with undetermined coefficients 
and substituted into the nonlinear fractal–fractional dif-
ferential equation introduced in Eq. (1.1) and the condi-
tions expressed in Eqs. (1.2)–(1.3). Finally, the operational 
matrix (OM) of fractal–fractional derivative and the col-
location scheme are utilized to extract an algebraic system 
of nonlinear equations. The method is mainly privileged, 
because of the special properties of the S-CPs. Note that 

(1.1)
FFM

0D
�,�
t Θ(x, t) − (� + i�)Θxx(x, t) + (� + i�)

|||Θ(x, t)
|||
2

Θ(x, t) − (�(x) + i�(x))Θ(x, t) = f (x, t),

(1.2)Θ(x, 0) = g(x),

(1.3)Θ(0, t) = h(t), Θ(1, t) = z(t),

the above-mentioned OM is obtained for the first time in 
the present paper, which can also be used on other kinds of 
fractal–fractional differential equations.

This work includes the following sections: Sect. 2 briefly 
reviews the fractal–fractional calculus. Sect. 3 provides the 
S-CPs and some relevant results. The OM of fractal–frac-
tional differentiation of the S-CPs is derived in Sect. 4. The 
presented approach is formulated in Sect. 5. Some numeri-
cal examples are examined in Sect. 6. Finally, in Sect. 7, the 
main conclusions of the study are highlighted.

2 � Fractal–fractional calculus

In this section, some essential notions of the fractal–frac-
tional calculus are briefly reviewed.

Definition 2.1  [10] The one- and two-parameter Mittag-
Leffler functions are defined, respectively, by

and

Definition 2.2  [38, 39] The fractal–fractional derivative 
of order (�, �) of the continuous function g(t) in the Atan-
gana–Riemann–Liouville sense with Mittag-Leffler kernel 
is defined by

where �, � ∈ (0, 1) , �(�) = 1 − � +
�

Γ(�)
 and

Remark 1  [38, 39] The above definition can be represented 
as follows:

Lemma 2.3  Let �, � ∈ (0, 1) and k ∈ ℕ . Then, we have

Proof  According to Remark 1, the proof is straightfor-
ward. 	�  ◻

(2.1)��(t) =

∞∑
j=0

tj

Γ(j� + 1)
,� ∈ ℝ

+, t ∈ ℝ,

(2.2)��,�(t) =

∞∑
j=0

tj

Γ(j� + �)
,�, � ∈ ℝ

+, t ∈ ℝ.

(2.3)FFM
0D

�,�
t g(t) =

�(�)

1 − �

d

dt� ∫
t

0

��

(
−�(t − s)�

1 − �

)
g(s)ds,

(2.4)
dg(t)

dt�
= lim

�→t

g(�) − g(t)

�� − t�
.

(2.5)

FFM
0D

�,�
t g(t) =

�(�)t1−�

�(1 − �)

d

dt ∫
t

0

��

(
−�(t − s)�

1 − �

)
g(s)ds.

(2.6)FFM
0D

�,�
t tk =

�(�) k! tk−�+1

�(1 − �)
��,k+1

(
−� t�

1 − �

)
.
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3 � Shifted Chebyshev polynomials (S‑CPs)

An (n + 1)-set of the S-CPs can be defined over [0, 1] by the 
following formula [40]:

where

These basis polynomials are orthogonal with respect to the 
weight functions w(t) = 1√

t−t2
 with the following 

condition:

where � is Kronecker’s delta, and �0 = 2 and �i = 1 for i ≥ 1 . 
So, any function g(t) ∈ L2

w
[0, 1] can be expressed by these 

polynomials as follows:

where

and

In a like way, any function u(x, t) ∈ L2
w
([0, 1] × [0, 1]) can be 

expressed by the S-CPs as follows:

(3.1)�i(t) =

�
1, i = 0,∑i

k=0
aikt

k, i = 1, 2,… , n,

(3.2)aik = (−1)i−k
i(i + k − 1)! 22k

(i − k)!(2k)!
.

(3.3)∫
1

0

�i(t)�j(t)w(t)dt =
��i

2
�ij,

(3.4)g(t) ≃

n∑
i=0

gi�i(t) ≜ GTΦn(t),

(3.5)
G =

[
g0 g1 ⋯ gn

]T
,

Φn(t) =
[
�0(t) �1(t) ⋯ �n(t)

]T
,

(3.6)gi =
2

��i ∫
1

0

g(t)�i(t)w(t)dt.

(3.7)u(x, t) ≃

n∑
i=0

n∑
j=0

uij�i(x)�j(t) ≜ Φn(x)
T
�Φn(t),

where � = [uij] is an (n + 1)-order square matrix with entries

Note that the derivative of the vector Φn(t) can be expressed 
by

where �(1) = [d
(1)

ij
] is an (n + 1)-order matrix (called the dif-

ferentiation OM of the S-CPs), and has the following entries:

Generally, the OM of r times differentiation of Φn(t) can be 
expressed as follows:

where �(r) is obtained by r times multiplying �(1) in itself.

4 � Operational matrix (OM) of fractal–
fractional derivative

In this section, we derive the OM of fractal–fractional deriv-
ative for the S-CPs.

Theorem 4.1  Let Φn(t) be the vector expressed in Eq. (3.5) 
and �, � ∈ (0, 1) be two real constants. The fractal–frac-
tional derivative of order (�, �) of this vector in the Atan-
gana–Riemann–Liouville sense can be expressed by

where �(�,�) = [p
(�,�)

ij
] is an (n + 1)-order matrix (called the 

fractal–fractional derivative OM of the S-CPs), and its ele-
ments are given by

(3.8)
uij =

4

�2�i−1�j−1 ∫
1

0 ∫
1

0

u(x, t)�i−1(x)

�j−1(t)w(x)w(t)dxdt, i, j = 1, 2,… , n + 1.

(3.9)
dΦn(t)

dt
= �

(1)Φn(t),

d
(1)

ij
=

{
4(i−1)

�j−1
, i = 2, 3,… , n + 1, j = 1, 2,… , i − 1, i + j is odd,

0, otherwise.

(3.10)
drΦn(t)

dtr
= �

(r)Φn(t),

(4.1)FFM
0D

�,�
t Φn(t) ≃ �

(�,�)Φn(t),

p
(�,�)

1j
=

⎧
⎪⎨⎪⎩

�(�)√
��(1−�)

∑∞

r=0

1

Γ(r�+1)

�
−�

1−�

�r Γ
�
�r−�+

3

2

�

Γ(�r−�+2)
, j = 1,

2�(�)√
��(1−�)

∑j−1

l=0

∑∞

r=0

a(j−1)l

Γ(r�+1)

�
−�

1−�

�r Γ
�
�r+l−�+

3

2

�

Γ(�r+l−�+2)
, j = 2, 3,… , n + 1,
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and for i = 2, 3,… , n + 1,

in which the coefficients a(i−1)k and a(j−1)l are previously 
introduced in Eq. (3.2).

Proof  From Eq. (3.1) and Lemma 2.3, we have

p
(�,�)

ij
=

⎧
⎪⎨⎪⎩

�(�)√
��(1−�)

∑i−1

k=0

∑∞

r=0

k! a(i−1)k

Γ(r�+k+1)

�
−�

1−�

�r Γ
�
�r+k−�+

3

2

�

Γ(�r+k−�+2)
, j = 1,

2�(�)√
��(1−�)

∑i−1

k=0

∑j−1

l=0

∑∞

r=0

k! a(i−1)ka(j−1)l

Γ(r�+k+1)

�
−�

1−�

�r Γ
�
�r+k+l−�+

3

2

�

Γ(�r+k+l−�+2)
, j = 2, 3… , n + 1,

(4.2)FFM
0D

�,�
t �0(t) =

�(�) t1−�

�(1 − �)
��

(
−� t�

1 − �

)
.

The above relation can be expressed by the S-CPs as follows:

where

From Eq. (3.1) and the above relation, we have

Definition 2.1 and Eq. (4.4) result in

(4.3)
�(𝛼) t1−𝛽

𝛽(1 − 𝛼)
�𝛼

(
−𝛼 t𝛼

1 − 𝛼

)
≃

n∑
ĵ=0

p̂
(𝛼,𝛽)

0ĵ
𝜑ĵ(t),

p̂
(𝛼,𝛽)

0ĵ
=

2�(𝛼)

𝜋𝛽(1 − 𝛼)𝛾ĵ ∫
1

0

t1−𝛽�𝛼

(
−𝛼 t𝛼

1 − 𝛼

)
𝜑ĵ(t)w(t)dt.

(4.4)

�
1

0

t1−𝛽�𝛼

�
−𝛼 t𝛼

1 − 𝛼

�
𝜑ĵ(t)w(t)dt

=

⎧
⎪⎨⎪⎩

∫ 1

0
t1−𝛽�𝛼

�
−𝛼 t𝛼

1−𝛼

�
w(t)dt, ĵ = 0,

ĵ∑
l=0

aĵl ∫ 1

0
tl−𝛽+1�𝛼

�
−𝛼 t𝛼

1−𝛼

�
w(t)dt, ĵ = 1, 2,… , n.

(4.5)

∫
1

0

t1−𝛽�𝛼

�
−𝛼 t𝛼

1 − 𝛼

�
𝜑ĵ(t)w(t)dt

=

⎧
⎪⎪⎨⎪⎪⎩

∞∑
r=0

1

Γ(r𝛼+1)

�
−𝛼

1−𝛼

�r
√
𝜋Γ

�
𝛼r−𝛽+

3

2

�

Γ(𝛼r−𝛽+2)
, ĵ = 0,

ĵ∑
l=0

∞∑
r=0

aĵl

Γ(r𝛼+1)

�
−𝛼

1−𝛼

�r
√
𝜋Γ

�
𝛼r+l−𝛽+

3

2

�

Γ(𝛼r+l−𝛽+2)
, ĵ = 1, 2,… , n.

Hence, from Eqs. (4.2)–(4.5), we obtain

where

(4.6)
FFM

0D
𝛼,𝛽
t 𝜑0(t) ≃

n∑
ĵ=0

p̂
(𝛼,𝛽)

0ĵ
𝜑ĵ(t),

(4.7)p̂
(𝛼,𝛽)

0ĵ
=

⎧
⎪⎨⎪⎩

�(𝛼)√
𝜋𝛽(1−𝛼)

∑∞

r=0

1

Γ(r𝛼+1)

�
−𝛼

1−𝛼

�r Γ
�
𝛼r−𝛽+

3

2

�

Γ(𝛼r−𝛽+2)
, ĵ = 0,

2�(𝛼)√
𝜋𝛽(1−𝛼)

∑ĵ

l=0

∑∞

r=0

aĵl

Γ(r𝛼+1)

�
−𝛼

1−𝛼

�r Γ
�
𝛼r+l−𝛽+

3

2

�

Γ(𝛼r+l−𝛽+2)
, ĵ = 1, 2,… , n.

Besides, from Eq. (3.1) and the linear property of the frac-
tal–fractional derivative operator, we have

Lemma 2.3 and the above relation yield

Approximating the elements of the above relation by the 
S-CPs yields

where

(4.8)

FFM
0D

𝛼,𝛽
t 𝜑î(t) =

FFM0D
𝛼,𝛽
t

⎛
⎜⎜⎝

î�
k=0

aîk t
k

⎞
⎟⎟⎠

=

î�
k=0

aîk
FFM0D

𝛼,𝛽
t tk, î = 1, 2,… , n.

î∑
k=0

aîk
FFM

0D
𝛼,𝛽
t tk =

î∑
k=0

aîk
�(𝛼) k! tk−𝛽+1

𝛽(1 − 𝛼)

�𝛼,k+1

(
−𝛼 t𝛼

1 − 𝛼

)
, î = 1, 2,… , n.

�(𝛼)

𝛽(1 − 𝛼)

î∑
k=0

aîkk! t
k−𝛽+1

�𝛼,k+1

(
−𝛼 t𝛼

1 − 𝛼

)
≃

n∑
ĵ=0

p̂
(𝛼,𝛽)

îĵ
𝜑ĵ(t), î = 1, 2,… , n,
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From Eq. (3.1), we have

p̂
(𝛼,𝛽)

îĵ
=

⎧
⎪⎨⎪⎩

�(𝛼)

𝜋𝛽(1−𝛼)

∑î

k=0
k! aîk ∫ 1

0
tk−𝛽+1 �𝛼,k+1

�
−𝛼 t𝛼

1−𝛼

�
w(t)dt, ĵ = 0,

2�(𝛼)

𝜋𝛽(1−𝛼)

∑î

k=0
k! aîk ∫ 1

0
tk−𝛽+1 �𝛼,k+1

�
−𝛼 t𝛼

1−𝛼

�
𝜑ĵ(t)w(t)dt, ĵ = 1, 2,… , n.

∫
1

0

tk−𝛽+1 �𝛼,k+1

(
−𝛼 t𝛼

1 − 𝛼

)
𝜑ĵ(t)w(t)dt

=

ĵ∑
l=0

aĵl ∫
l

0

(
tk+l−𝛽+1�𝛼,k+1

(
−𝛼 t𝛼

1 − 𝛼

))
w(t)dt.

Therefore, from Eqs. (4.8)–(4.9), we obtain

where

Thus, by change of the indexes i = î + 1 and j = ĵ + 1 in Eqs. 
(4.7)–(4.10), the proof is completed. 	�  ◻

Remark 2  Note that to do numerical computations often a 
few terms of the infinite series expressing two parameters 
Mittag-Leffler function, and consequently, a few terms of the 
infinite series in the above theorem is utilized. Throughout 
the paper, the first 30 terms of this series is used.

As an illustrative example, for n = 5 and (�, �) = (
1

2
,
1

4
) , 

we have

5 � The proposed method

To solve the fractal–fractional problem introduced in Eqs. 
(1.1)–(1.3), we first decompose the complex functions of the 
problem in their real and imaginary parts as follows:

FFM
0D

𝛼,𝛽
t 𝜑î(t) ≃

n∑
ĵ=0

p̂
(𝛼,𝛽)

îĵ
𝜑ĵ(t), î = 1, 2,… , n,

(4.10)p̂
(𝛼,𝛽)

îĵ
=

⎧
⎪⎨⎪⎩

�(𝛼)√
𝜋𝛽(1−𝛼)

∑î

k=0

∑∞

r=0

k! aîk

Γ(r𝛼+k+1)

�
−𝛼

1−𝛼

�r Γ
�
𝛼r+k−𝛽+

3

2

�

Γ(𝛼r+k−𝛽+2)
, ĵ = 0,

2�(𝛼)√
𝜋𝛽(1−𝛼)

∑î

k=0

∑ĵ

l=0

∑∞

r=0

k! aîkaĵl

Γ(r𝛼+k+1)

�
−𝛼

1−𝛼

�r Γ
�
𝛼r+k+l−𝛽+

3

2

�

Γ(𝛼r+k+l−𝛽+2)
, ĵ = 1, 2,… , n.

�
(
1

2
,
1

4
)
=

⎛⎜⎜⎜⎜⎜⎜⎝

1.7083682 1.1713126 − 0.2763249 0.1048443 − 0.0506811 0.0284990

1.2077200 2.3833525 0.8185425 − 0.1734736 0.0674740 − 0.0342160

0.3913427 1.8674590 2.6812790 0.8831868 − 0.1617650 0.0593137

0.1743604 0.3532049 1.7363979 2.8066474 0.9403543 − 0.1592480

0.1166231 0.2851773 0.2589298 1.6869550 2.8830557 0.9845545

0.0621188 0.1241162 0.2276172 0.2071576 1.6613565 2.9369075

⎞⎟⎟⎟⎟⎟⎟⎠

On the other hand, by considering Definition 2.1, we obtain

and

∫
1

0

tk−�+1 ��,k+1

�
−� t�

1 − �

�
w(t)dt

=

∞�
r=0

1

Γ(r� + k + 1)

�
−�

1 − �

�r

√
� Γ

�
�r + k − � +

3

2

�

Γ(�r + k − � + 2)
,

(4.9)

∫
l

0

�
tk+l−�+1��,k+1

�
−� t�

1 − �

��
w(t)dt

=

∞�
r=0

1

Γ(r� + k + 1)

�
−�

1 − �

�r

√
� Γ

�
�r + k + l − � +

3

2

�

Γ(�r + k + l − � + 2)
.

(5.1)
Θ(x, t) = u(x, t) + i v(� , �), f (x, t) = f1(x, t) + i f2(x, t), g(x) = g1(x) + i g2(x),

h(t) = h1(t) + i h2(t), z(t) = z1(t) + i z2(t),
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where u(x, t), v(x, t) and fi(x, t) , gi(x) , hi(t) , zi(t) for i = 1, 2 
are real functions. Therefore, the mentioned problem can be 
represented into a coupled system of nonlinear fractal–frac-
tional differential equations as follows:

with the initial conditions

and the boundary conditions

(5.2)

FFM
0D

�,�
t u(x, t) − �uxx(x, t) + �vxx(x, t)

+ �
(
u2(x, t) + v2(x, t)

)
u(x, t) − �

(
u2(x, t) + v2(x, t)

)
v(x, t)

− �(x)u(x, t) + �(x)v(x, t) = f1(x, t),

FFM
0D

�,�
t v(x, t) − �vxx(x, t) − �uxx(x, t)

+ �
(
u2(x, t) + v2(x, t)

)
v(x, t) + �

(
u2(x, t) + v2(x, t)

)
u(x, t)

− �(x)v(x, t) − �(x)u(x, t) = f2(x, t)

(5.3)u(x, 0) = g1(x), v(x, 0) = g2(x),

Meanwhile, the functions given in Eqs. (5.3) and (5.4) can 
be expressed by the S-CPs as follows:

and

where Gi , Hi and Zi for i = 1, 2 are known vectors. Hence, 
from Eqs. (5.5), (5.9) and (5.10), and the initial and bound-
ary conditions expressed in Eqs. (5.3) and (5.4), the follow-
ing relations can be extracted:

and

(5.9)g1(x) ≃ Φn(x)
TG1, g2(x) ≃ Φn(x)

TG2,

(5.10)
h1(t) ≃ HT

1
Φn(t), h2(t) ≃ HT

2
Φn(t),

z1(t) ≃ ZT
1
Φn(t), z2(t) ≃ ZT

2
Φn(t),

(5.11)
Φ

n
(x)T

[
�Φ

n
(0) − G1

] ≜ Φ
n
(x)TΠ1 ≃ 0,

Φ
n
(x)T

[
�Φ

n
(0) − G2

] ≜ Φ
n
(x)TΠ2 ≃ 0,

Now, we approximate the real and imaginary parts of the 
solution of the problem by the S-CPs as follows:

where � = [uij] and � = [vij] are (n+1)-order undetermined 
square matrices, and Φn(.) is in accordance with Eq. (3.5). 
From Theorem 4.1, we have

Also, two times derivative with respect to x on both sides 
of Eq. (5.5) yields

Substituting Eqs. (5.5)–(5.7) into Eq. (5.2) gives

(5.4)
u(0, t) = h1(t), v(0, t) = h2(t),

u(1, t) = z1(t), v(1, t) = z2(t).

(5.5)
u(x, t) ≃ Φn(x)

T�Φn(t),

v(x, t) ≃ Φn(x)
T�Φn(t),

(5.6)
FFM

0D
�,�
t u(x, t) ≃ Φn(x)

T��(�,�)Φn(t),
FFM

0D
�,�
t v(x, t) ≃ Φn(x)

T��(�,�)Φn(t).

(5.7)
uxx(x, t) ≃ Φn(x)

T
(
�(2)

)T
�Φn(t),

vxx(x, t) ≃ Φn(x)
T
(
�(2)

)T
�Φn(t).

(5.8)

�1(x, t) ≜ Φn(x)
T
[
��

(�,�) −
(
�

(2)
)T
(�� − ��) − �(x)� + �(x)�

]
Φn(t)

+
(
Φn(x)

T[�� − ��]Φn(t)
)((

Φn(x)
T
�Φn(t)

)2
+
(
Φn(x)

T
�Φn(t)

)2)
− f1(x, t) ≃ 0,

�2(x, t) ≜ Φn(x)
T
[
��

(�,�) −
(
�

(2)
)T
(�� + ��) − �(x)� − �(x)�

]
Φn(t)

+
(
Φn(x)

T[�� + ��]Φn(t)
)((

Φn(x)
T
�Φn(t)

)2
+
(
Φn(x)

T
�Φn(t)

)2)
− f2(x, t) ≃ 0.

(5.12)

[
Φ

n
(0)T� − H

T

1

]
Φ

n
(t) ≜ ΛT

1
Φ

n
(t) ≃ 0,

[
Φ

n
(0)T� − H

T

2

]
Φ

n
(t) ≜ ΛT

2
Φ

n
(t) ≃ 0,[

Φ
n
(1)T� − Z

T

1

]
Φ

n
(t) ≜ ΛT

3
Φ

n
(t) ≃ 0,

[
Ψ

n
(1)T� − Z

T

2

]
Φ

n
(t) ≜ ΛT

4
Φ

n
(t) ≃ 0.

Eventually, from Eqs. (5.8), (5.11) and (5.12), a system of 
2(n + 1)2 algebraic equations can be extracted as follows:

where �k =
1

2

(
1 − cos

(
(2k−1)�

2(n+1)

))
 for k = 1, 2,… , n + 1 is the 

k-th root of the shifted Chebyshev polynomial of (n + 1)-th 
degree on [0, 1]. The above algebraic system should be 
solved due to compute the unknown matrices � and � in Eq. 
(5.5), and consequently to obtain an approximate solution 
for the problem.

6 � Numerical examples

In this section, some numerical examples are solved using 
the method presented in Sect. 5. Note that Maple 17 via 20 
digits precision is utilized for numerical implementations. 

(5.13)

⎧⎪⎨⎪⎩

�l

�
�i, �j

�
= 0, l = 1, 2, i = 2, 3,… , n, j = 2, 3,… , n + 1,�

Πl

�
j
= 0, l = 1, 2, j = 1, 2,… , n + 1,�

Λl

�
j
= 0, l = 1, 2, 3, 4, j = 2, 3,… , n + 1,



1383Engineering with Computers (2021) 37:1377–1388	

1 3

The convergence order (C-order) of the proposed scheme is 
calculated by

where �1 and �2 are, respectively, the first and the second 
values of the maximum absolute error (MA-error) appear-
ing in the presented method. Also, (ni + 1)2 for i = 1, 2 is the 
S-CPs number utilized in the ith implementation.

Example 1  Consider the nonlinear time fractal–fractional 
Ginzburg–Landau equation

C-order =
||| log

(
�2

�1

)|||
/
log

(
(n2 + 1)2

(n1 + 1)2

)
, where

with the homogeneous initial condition and the following 
boundary conditions:

FFM
0D

�,�
t Θ(x, t) − (1 + 2i)Θxx(x, t) + (1 + i)

|||Θ(x, t)
|||
2

Θ(x, t)

− x2(1 + ix)Θ(x, t) = f (x, t),

f (x, t) =

(
�(�) 4! t5−�

�(1 − �)
��,5

(
−� t�

1 − �

)

+(1 + 2i)t4 + (1 + i)t12 − x2(1 + ix)t4
)
eix,

(6.1)Θ(0, t) = t4, Θ(1, t) = t4ei.

Table 1   The MA-error and the 
C-order of the proposed scheme 
for two values � where � = 0.25 
in Example 1

� = 0.25 � = 0.75

Real part Imaginary part Real part Imaginary part

n MA-error C-order MA-error C-order MA-error C-order MA-error C-order

4 5.3668E−06 – 3.3837E−06 – 1.3779E−05 – 6.0241E−06 –
5 8.5699E−07 05.0311 5.3485E−07 05.0590 2.7489E−06 04.4206 1.3135E−06 04.1768
6 1.0097E−07 06.9367 6.2538E−08 06.9614 5.4083E−07 05.2735 2.4755E−07 05.4130
7 2.5311E−08 05.1807 1.5492E−08 05.2251 1.4216E−07 05.0031 6.7865E−08 04.8456
8 6.7845E−09 05.5890 4.0775E−09 05.6665 3.6959E−08 05.7187 1.5936E−08 06.1508

Table 2   The MA-error and the 
C-order of the proposed scheme 
for two values � where � = 0.65 
in Example 1

� = 0.15 � = 0.45

Real part Imaginary part Real part Imaginary part

n MA-error C-order MA-error C-order MA-error C-order MA-error C-order

4 2.1794E−05 – 8.7717E−06 – 4.3864E−06 – 2.7811E−06 –
5 2.8986E−06 05.5325 1.3386E−06 05.1554 8.7380E−07 04.4246 5.3574E−07 04.5166
6 4.5991E−07 05.9712 2.0290E−07 06.1195 1.8610E−07 05.0164 1.0910E−07 05.1617
7 1.0661E−07 05.4738 4.9486E−08 05.2834 5.3702E−08 04.6537 3.1473E−08 04.6548
8 2.5951E−08 05.9981 1.0901E−08 06.4221 1.5580E−08 05.2531 8.7981E−09 05.4107
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Fig. 1   Plots of the S-CPs solution and the AE function (respectively left and right) for the real part where (� = 0.25, � = 0.25) and n = 8 in 
Example 1
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The analytic solution of this example is

The method presented in Sect. 5 with some values n is used 
for solving this example. The values of the MA-error and 
the C-order of the real and imaginary parts of the solution 
for some selections (�, �) are summarized in Tables 1 and 
2. Figures of the approximate solution (AS) and the corre-
sponding absolute error (AE) function for the real and imagi-
nary parts in the case of n = 8 , where (� = 0.25, � = 0.25) 
are illustrated, respectively, in Figs. 1 and 2. The reported 
results clarify that one can get excellent results by applying 

Θ(x, t) = t4eix.

only a few number of the S-CPs. Moreover, applying more 
basis functions improves the accuracy rapidly.

Example 2  Consider the nonlinear time fractal–fractional 
Ginzburg–Landau equation

where

FFM
0D

�,�
t Θ(x, t) − 5iΘxx(x, t) + 2

|||Θ(x, t)
|||
2

Θ(x, t)

− i e−ixΘ(x, t) = f (x, t),
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Fig. 2   Plots of the S-CPs solution and the AE function (respectively, left and right) for the imaginary part where (� = 0.25, � = 0.25) and n = 8 
in Example 1

Table 3   The MA-error and the 
C-order of the proposed scheme 
for two values � where � = 0.35 
in Example 2

� = 0.35 � = 0.45

Real part Imaginary part Real part Imaginary part

n MA-error C-order MA-error C-order MA-error C-order MA-error C-order

4 4.8430E−04 – 4.0752E−04 – 4.8430E−04 – 4.0752E−04 –
5 2.5319E−05 08.0932 2.1306E−05 08.0931 2.5319E−05 08.0932 2.1306E−05 08.0931
6 1.6214E−06 08.9142 1.3643E−06 08.9144 1.6214E−06 08.9142 1.3643E−06 08.9144
7 1.4746E−08 17.5991 4.9919E−08 12.3865 1.8627E−08 16.7242 5.7703E−08 11.8439
8 6.7368E−09 03.3255 1.4299E−08 05.3072 8.6838E−09 03.2396 1.7407E−08 05.0874

Table 4   The MA-error and the 
C-order of the proposed scheme 
for two values � where � = 0.75 
in Example 2

� = 0.15 � = 0.35

Real part Imaginary part Real part Imaginary part

n MA-error C-order MA-error C-order MA-error C-order MA-error C-order

4 4.8430E−04 – 4.0752E−04 – 4.8430E−04 – 4.0752E−04 –
5 2.5319E−05 08.0932 2.1306E−05 08.0931 2.5319E−05 08.0932 2.1306E−05 08.0931
6 1.6214E−06 08.9142 1.3643E−06 08.9144 1.6214E−06 08.9142 1.3643E−06 08.9144
7 1.4038E−07 09.1614 2.1680E−07 06.8875 8.1855E−08 11.1812 1.5911E−07 08.0460
8 5.2070E−08 04.2101 6.5141E−08 05.1043 3.4380E−08 03.6825 5.3468E−08 04.6293
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with the homogeneous initial condition and the following 
boundary conditions:

The analytic solution of this example is

The established method with some values n is applied for 
the numerical solution of this example. The values of the 
MA-error and the C-order of the real and imaginary parts of 
the solution for some selections (�, �) are given in Tables 3 
and 4. Figures of the AS and the corresponding AE function 
for the real and imaginary parts in the case of n = 8 , where 

f (x, t) =

(
�(�) t4−�

�(1 − �)

∞∑
k=0

(−1)k(2k + 3)(2k + 2) t2k ��,2k+4

(
−� t�

1 − �

)
+ 5i t2 sin(t) + 2t6 sin3(t) −i t2 sin(t)e−ix

)
eix,

(6.2)Θ(0, t) = t2 sin(t), Θ(1, t) = t2 sin(t)ei.

Θ(x, t) = t2 sin(t)eix.

(� = 0.45, � = 0.35) are shown, respectively, in Figs. 3 and 
4. From the reported results, it can be seen that applying 
more terms of the S-CPs provides numerical results with 
high accuracy. Moreover, it can be seen that by increasing 
the number of the S-CPs the approximate solutions tend to 
the exact solutions of the problem with high order of accu-
racy. Note that the first ten terms of the series appeared in 
the right-hand side are used for the numerical simulations. 
This assumption also is utilized in the next example.

Example 3  Consider the nonlinear time fractal–fractional 
Ginzburg–Landau equation

where

FFM
0D

�,�
t Θ(x, t) − 2Θxx(x, t) + 3i

|||Θ(x, t)
|||
2

Θ(x, t)

−
(
2x + 1 + 3ix2

)
Θ(x, t) = f (x, t),
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Fig. 3   Plots of the S-CPs solution and the AE function (respectively, left and right) for the real part where (� = 0.45, � = 0.35) and n = 8 in 
Example 2
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Fig. 4   Plots of the S-CPs solution and the AE function (respectively, left and right) for the imaginary part where (� = 0.45, � = 0.35) and n = 8 
in Example 2
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with the homogeneous initial condition and the following 
boundary conditions:

The analytic solution of this example is

f (x, t) =i

(
�(�) t4−�

�(1 − �)

∞∑
k=0

(−1)k(k + 3)(k + 2)(k + 1) tk

��,k+4

(
−� t�

1 − �

)
+ 2t3e−t + 3i t9e−3t −

(
2x + 1 + 3ix2

)
t3e−t

)
e−ix,

(6.3)Θ(0, t) = it3e−t, Θ(1, t) = it3e−(t+i).

The presented method with some values n is used for solving 
this example. The values of the MA-error and the C-order of 
the real and imaginary parts of the solution for some selec-
tions (�, �) are reported in Tables 5 and 6. Plots of the AS 

Θ(x, t) = it3e−(t+ix).

Table 5   The MA-error and the 
C-order of the proposed scheme 
for two values � where � = 0.25 
in Example 3

� = 0.25 � = 0.65

Real part Imaginary part Real part Imaginary part

n MA-error C-order MA-error C-order MA-error C-order MA-error C-order

4 6.0705E−04 – 7.2142E−04 – 6.0705E−04 – 7.2142E−04 –
5 5.8568E−05 06.4129 6.9601E−05 06.4129 5.8568E−05 06.4129 6.9601E−05 06.4129
6 3.9669E−06 08.7323 4.7143E−06 08.7322 3.9669E−06 08.7323 4.7390E−06 08.7153
7 4.6791E−08 16.6254 8.5917E−08 14.9963 1.5745E−07 12.0819 3.0937E−07 10.2187
8 2.4332E−08 02.7758 4.7284E−08 02.5352 6.0521E−08 04.0588 1.1770E−07 04.1024

Table 6   The MA-error and the 
C-order of the proposed scheme 
for two values � where � = 0.80 
in Example 3

� = 0.35 � = 0.55

Real part Imaginary part Real part Imaginary part

n MA-error C-order MA-error C-order MA-error C-order MA-error C-order

4 6.0705E−04 – 7.2142E−04 – 6.0705E−04 – 7.2142E−04 –
5 5.8568E−05 06.4129 6.9682E−05 06.4097 5.8568E−05 06.4129 6.9604E−05 06.4128
6 3.9669E−06 08.7323 5.2297E−06 08.3995 3.9669E−06 08.7323 4.8242E−06 08.6576
7 3.1877E−07 09.4407 6.2439E−07 07.9581 1.9748E−07 11.2336 3.8721E−07 09.4450
8 1.1715E−07 04.2494 2.2605E−07 04.3130 9.0209E−08 03.3260 1.7542E−07 03.3611
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Fig. 5   Plots of the S-CPs solution and the AE function (respectively left and right) for the real part where (� = 0.80, � = 0.55) and n = 8 in 
Example 3
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and the corresponding AE function for the real and imagi-
nary parts in the case of n = 8 , where (� = 0.80, � = 0.55) 
are shown in Figs. 5 and 6, respectively. The achieved results 
evidently show that the approach is efficient and reliable for 
this example.

7 � Conclusion

In this paper, a novel class of nonlinear Ginzburg–Landau 
equation has been introduced. The fractal–fractional deriva-
tive in the Atangana–Riemann–Liouville sense with Mit-
tag-Leffler non-singular kernel utilized to express this new 
class. An accurate scheme based on the shifted Chebyshev 
polynomials (S-CPs) proposed for the numerical solution 
of this class of problems. To design the proposed method, a 
novel operational matrix of fractal–fractional differentiation 
constructed for the S-CPs. This matrix and the collocation 
method have been mutually applied to change the original 
problem to a system of nonlinear algebraic equations. The 
established method applied on several numerical examples. 
The yielded results confirm the high accuracy of the pro-
posed approach.
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