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Abstract
Reliability-based design optimization (RBDO) has been an important research field with the increasing demand for product 
reliability in practical applications. This paper presents a new RBDO method combining adaptive surrogate model and Impor-
tance Sampling-based Modified Sequential Optimization and Reliability Assessment (IS-based modified SORA) method, 
which aims to reduce the number of calls to the expensive objective function and constraint functions in RBDO. The proposed 
method consists of three key stages. First, the samples are sequentially selected to construct Kriging models with high clas-
sification accuracy for each constraint function. Second, the samples are obtained by Markov Chain Monte Carlo in the safety 
domain of design space. Then, another Kriging model for the objective function is sequentially constructed by adding suitable 
samples to update the Design of Experiment (DoE) of the objective function. Third, the expensive objective and constraint 
functions of the original optimization problem are replaced by the surrogate models. Then, the IS-based modified SORA 
method is performed to decouple reliability optimization problem into a series of deterministic optimization problems that are 
solved by a Genetic Algorithm. Several examples are adopted to verify the proposed method. The optimization results show 
that the proposed method can reduce the number of calls to the original objective function and constraint functions without 
loss of precision compared to the alternative methods, which illustrates the efficiency and accuracy of the proposed method.

Keywords Reliability-based design optimization · Sequential Optimization and Reliability Assessment · Kriging model · 
Markov Chain Monte Carlo · Importance Sampling

1 Introduction

In traditional engineering design optimization, the optimum 
design is obtained by deterministic design optimization 
(DDO) with regard to the limits of the problem constraints 
[1]. However, there are various uncertainties (such as mate-
rial properties, structural dimensions, boundary conditions 
and loads) in practical engineering problems, and this can 
lead to the constraint functions with high failure probability 
at the deterministic optimal solution [2]. Therefore, reliabil-
ity-based design optimization (RBDO) methods have been 
developed to achieve a balance between cost and safety, 
and thus produce designs that are not only reliable but also 
economical for the engineering systems with uncertainties 
[3–5]. A typical RBDO problem can be formulated as:

where C is the objective or cost function; Gj is the jth constraint 
function (i.e. performance function); � t

j
 is the target reliability 

index for the jth probabilistic constraint; � is the standard nor-
mal cumulative distribution function; d represents distribution 
parameters of the random variable vector x ; ny is the number 
of probabilistic constraints; dL and dU denote the lower and 
upper limits of distribution parameters d , respectively.

Equation (1) shows that RBDO intrinsically involves a so-
called double-loop procedure where the outer optimization 
loop includes inner loops of reliability analysis. In general, 
RBDO methods include simulation-based methods and ana-
lytical methods for solving the probabilistic constraints in 
Eq. (1) [2, 3].
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Simulation-based methods are accurate and robust meth-
ods, which are mainly used for reliability assessment of the 
constraint functions of a RBDO problem in the complex 
engineering application. In the simulation-based methods, 
Monte Carlo simulation (MCS) is one of the most accurate 
simulation methods for approximating the failure probabil-
ity, but it always involves heavy computation work [6, 7]. 
Many sampling techniques have been proposed to reduce the 
required samples, such as Importance Sampling (IS) method 
[8], Subset Simulation (SS) method [9, 10] and Line Sam-
pling (LS) method [11]. Nevertheless, these techniques are 
more difficult to solve RBDO problems with small probabili-
ties or implicit constraint functions. Many researchers have 
proposed and developed some simulation-based methods for 
solving the RBDO problems to improve the computational 
efficiency and effectiveness, such as cell evolution method 
[12], sampling-based method with a reweighting scheme 
[13] and weighed simulation method (WSM) [14, 15]. The 
WSM method is one of the most promising simulation-based 
methods, and it involves generating uniformly distributed 
samples and applying the product of probability distribu-
tion functions (PDFs) of the variables as a weight index 
at any sample. The failure probability is then regarded as 
the ratio of the sum of the weight indices in failure domain 
over the sum of the indices in the entire optimization design 
domain. Many practical methods have been proposed based 
on WSM for solving RBDO problems [1, 2, 16, 17], such 
as WSM–RBDO method [1], hybrid PSO–WSM method 
[2], improved weighted average simulation approach [16], 
and hybrid WSM–NSGA-II method [17]. However, the 
above-mentioned simulation methods require many expen-
sive black-box function calls, which are often unacceptable, 
especially for the RBDO problems with time-consuming 
simulation models.

In general, analytical methods are more efficient than 
simulation-based methods for special RBDO problems 
such as linear systems with normal random variables since 
they are almost gradient based. Those methods include the 
moment matching method [18] and the Most Probable Point 
(MPP) [19, 20]-based method. In analytical methods, reli-
ability index approach (RIA) and performance measurement 
approach (PMA) are the most commonly used MPP-based 
methods [2, 3]. RIA can convert the reliability constraints 
into the constraints of reliability indexes at the current 
design point by First-Order Reliability Method (FORM) 
and Second-Order Reliability Method (SORM), and then 
the RBDO problem is transformed into a relatively simple 
DDO problem [21, 22]. PMA, a more stable and efficient 
method than RIA, is proposed to reduce the computational 
cost of RBDO. PMA transforms the reliability constraint 
into deterministic constraints by solving the optimization 
problem of inverse MPP, which is easier with respect to the 
searching process of MPP [23, 24]. Lee et al. proved that 

PMA is more stable and efficient than RIA [25]. Moreover, 
Du et al. proposed the SORA method, and two optimiza-
tion procedures in each iteration circle of the SORA method 
are included: the optimization with the modified constraints 
and the optimization searching for the inverse MPPs [3, 26]. 
In this way, the two-level optimization of RBDO is decou-
pled into serial single-level optimizations, which greatly 
reduces the computational cost. More recently, some modi-
fied methods based on the RIA, PMA, and SORA and some 
other analytical methods [27–35] were suggested, such as 
single loop approach (SLA) [27], sequential approximate 
programming [28], reliable design space (RDS) method [5], 
penalty-based decoupled approach (PDA) [29], approximate 
sequential optimization reliability assessment (ASORA) 
method [30]. In recent years, Keshtegar and his team have 
an indispensable contribution to enrich the analytical meth-
ods for RBDO [36–42], such as adaptive hybrid approach 
(AHA) [36], modified mean value (MMV) method [37], 
self-adaptive modified chaos control (SMCC) method 
[38], Hybrid descent mean value (HDMV) approach [39], 
enhanced single-loop method (ESM) [40], second-order reli-
ability method-based stepped up sequential optimization and 
reliability assessment (SSORA–SORM) approach [41], and 
adaptive conjugate single-loop approach (AC-SLA) [42]. 
Moreover, some relatively efficient analytical methods for 
RBDO have recently been proposed, such as enriched self-
adjusted mean value (ESMV) method [43], augmented step 
size adjustment (ASSA) method [44] and hybrid conjugate 
mean value (HCMV) method [45]. However, such methods 
still require a large number of calls. Meanwhile, these meth-
ods based on the MPPs or gradient have large errors for the 
constraint functions with high nonlinear, even difficult for 
complex engineering problems with implicit function.

In addition, with the increasing complexity of engineer-
ing problems, more and more researchers are turning their 
attention to approximation techniques (also named surro-
gate model or meta-model method). Surrogate models are 
often constructed to replace the original objective or con-
straint functions to solve RBDO problems [6, 26], thereby 
the computational efficiency is increased. Chen et al. pro-
posed a variety of Kriging based methods for RBDO, such 
as local adaptive sampling (LAS) method [46], important 
boundary sampling (IBS) method [47] and local approxi-
mation method using the most probable point (LMPP) [48]. 
Shi et al. [49] developed a RBDO method using first-order 
score function analysis and adaptive response surface that is 
obtained by integrating Bayesian metric and Gaussian pro-
cess-based model bias correction method. Lehký et al. [50] 
proposed an inverse reliability method based on Artificial 
Neural Network (ANN) and small-sample simulation. Yang 
et al. [6] proposed a RBDO framework that combines Par-
ticle Swarm Optimization (PSO), Support Vector Machine 
(SVM) and SS to enhance computational efficiency. Li 
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et al. [26] proposed a sequential surrogate model method 
for reliability-based optimization (SSRBO) based on radial 
basis function (RBF) and MCS to reduce the number of 
the expensive black-box function calls in RBDO. Although 
these surrogate model-based RBDO methods can greatly 
reduce the number of calls to the original model, their com-
putational efficiency is limited by the reliability assessment 
method. For example, the SSRBO with MCS [26] and the 
method proposed in [6] with SS have lower computational 
efficiency to assess the reliability of constraints for solving 
RBDO problems.

In this paper, a new RBDO method based on adaptive 
surrogate model and importance sampling-based modified 
SORA method is proposed to reduce the number of original 
objective function and constraint functions calls and ensure 
computational efficiency. In practical engineering problems, 
constraint conditions or boundary conditions are usually 
dependent with each other, which makes the required sam-
ples to construct the surrogate models of the constraint func-
tions independent. So, we assume that the constraint func-
tions are dependent on each other and the constraint function 
is independent of the objective function in this paper. First, 
the adaptive Kriging models of the constraint functions are 
sequentially constructed until the accuracy requirements are 
met. Second, sufficient samples are generated by MCMC in 
the safety domain of design space, and then another Kriging 
model for the objective function is constructed by adaptively 
adding suitable samples to update the DoE of the objective 
function. After the Kriging models of the constraint func-
tions and the Kriging model of the objective function are 
constructed, the expensive objective and constraint func-
tions of the original optimization problem are replaced by 
these Kriging models. Third, the IS-based modified SORA 
method that combines the advantage of IS in accuracy and 
the advantage of SORA in efficiency is performed to decou-
ple reliability optimization problem into a series of deter-
ministic optimization problems that are solved by a Genetic 
Algorithm (GA). At last, the optimal solution of the original 
RBDO problem is obtained.

The remainder of this paper is presented as follows. The 
basic theories and formulations of main methods used in 
our method are introduced in Sect. 2. The detailed princi-
ples and process of the proposed method are described and 
discussed in Sect. 3. Four numerical examples are used to 
validate the efficiency and accuracy of the proposed method 
in Sect. 4. Finally, conclusions and future work are sum-
marized in Sect. 5.

2  Basic theories and formulations

2.1  Kriging model

Kriging model is a statistical theory-based interpolation 
technique, and it consists of a parametric linear regression 
model and a nonparametric stochastic process [51–54]. 
Assuming that those input variables are defined as x and 
the corresponding response is defined as G(x), Kriging is 
given as:

where the averaged approximation response F(�, x) is 
defined as an ordinary polynomial regression of x, and it is 
simplified to be a constant in the ordinary Kriging, which is 
taken as F(�, x) = � . All the following formulas are deduced 
with the simplification of ordinary Kriging, and Ĝ(x) can be 
simplified as

Here �(x) is a zero-mean stationary Gaussian process, 
and the auto-covariance of samples x and w is expressed as

where σ2 is the variance of the process. Auto-correlation 
function R(x,w) can also be considered by several functions, 
such as cubic correlation function, exponential correlation 
function, and gauss correlation function. The gauss correla-
tion function is employed in this paper, and it is defined as 
Eq. (5).

where nx is the dimension of design variables. xi and wi 
denote the ith component of variable x and variable w, 
respectively. �i is the correlation parameter to ensure the 
Kriging model with an high flexibility.

X =
[
x1, x2,… , xNd

]T(
xi ∈ Rn

)
 a n d 

Z =
[
G
(
x1
)
,G

(
x2
)
,… ,G

(
xNd

)]T(
G
(
xi
)
∈ R

)
 indicate Nd 

experimental samples and the true responses of these sam-
ples in DoE. We define R =

[
R
(
xi, xj

)]
Nd×Nd

 and F as a 
Nd × 1 unit vector, and the unbiased estimator �̂  and �̂2 of 
the unknown parameters β and σ2 can be deduced with least 
squares method:

(2)Ĝ(x) = F(�, x) + z(x) = fT (x)� + �(x),

(3)Ĝ(x) = � + �(x),

(4)cov(�(x), �(w)) = �2R(x,w),

(5)R(x,w) = exp

(
−

nx∑
i=1

�i
||xi − wi

||2
)
,

(6)�̂ =
(
FTR−1F

)−1
FTR−1Z,

(7)�̂2 =
1

Nd

(
Z − F�̂

)T

R−1
(
Z − F�̂

)
,
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The parameter β of regression coefficients and the param-
eter σ2 of constant process are dependent on the correlation 
parameters θ through the correlation matrix. Therefore, the 
correlation parameters θ must first be determined by maxi-
mum likelihood estimation with Eq. (8).

After determining θ, β and σ2 are defined, the linear unbi-
ased estimator Ĝ

(
xp
)
 and �̂2

Ĝ

(
xp
)
 of the response and Kriging 

variance for the sample xp to be predicted can be computed 
by Eq. (9) and Eq. (10), respectively.

where r
(
xp
)T is a Nd-dimensional row vector representing 

the dependence between the predicted sample xp and each 
sample in experimental samples X , and it can be expressed 
as r

(
xp
)T

=
[
R
(
xp, x1

)
,R

(
xp, x2

)
,… ,R

(
xp, xNd

)]T  ,  and 
u
(
xp
)T = FTR−1r

(
xp
)
− 1.

The calculating process of the predictor response Ĝ
(
xp
)
 

and the Kriging variance �̂2

Ĝ

(
xp
)
 can be implemented by the 

MATLAB DACE toolbox [52], which has been applied in 
several references [53, 54].

2.2  Markov chain Monte Carlo

Markov Chain Monte Carlo (MCMC) simulation is a power-
ful approach for sampling according to an arbitrary probabil-
ity distribution. In MCMC, samples are simulated as the 
states of a Markov Chain which has the target probability 
distribution as its limit stationary distribution under the Tra-
versal Hypothesis. Since the MCMC method with the 
Metropolis–Hastings algorithm becomes inefficient to simu-
late samples with many independent components, Au and 
Beck [10] proposed a component-wise (or modified M–H) 
algorithm to improve the sampling efficiency of MCMC. 
Instead of using an n-dimensional proposal PDF in the origi-
nal method, each coordinate �j of the pre-candidate � is gen-
erated from a one-dimensional proposal PDF p∗

j

(
�j|xj

)
 , 

which depends on the jth coordinate xj of the current state. 
And the proposal PDF p∗

j

(
�j|xj

)
 has a symmetry property, 

i.e. p∗
j
(�|x) = p∗

j
(x|�).

In this paper, the MCMC simulation with component-
wise algorithm is employed to generate Nm samples that are 
lying in the required safety region. The process of generat-
ing a sequence of samples 

{
x1, x2,… , xNm

}
 from a given or 

randomly generated sample x1 to xNm
 is briefly summarized 

as follows [55, 56]:

(8)�̂ = argmin
�

{
R(�)

[
�̂2
]Nd

}
,

(9)Ĝ
(
xp
)
= �̂ + r

(
xp
)T
R−1

(
Z − F�̂

)
,

(10)
�̂2

Ĝ

(
xp
)
= �̂2

(
1 + u

(
xp
)T(

FTR−1F
)−1

u
(
xp
)
− r

(
xp
)T
R−1r

(
xp
))

,

(1) Generate candidate sample x̃

(a) Generate �j by sampling from the proposal PDF 
p∗
j

(
�j|xkj

)
.

  In the process of Markov Chain, the transfer 
from a state to another state is controlled by the 
proposal distribution. In this paper, an n-dimen-
sional uniform distribution within the interval 
[xkj − lj∕2, xkj + lj∕2](j = 1, 2,… , n) is selected 
as the proposal distribution, that is,

where �j and xkj are the jth component of n dimen-
sional vector � and the kth sample x of MCMC, 
respectively. lj is the side length of xkj component 
of n-dimensional hypercube, and it determines 
the maximum allowable range of the next sam-
ple deviate from the current sample. lj takes the 
empirical value 6N−1∕(n+4)

m .
(b) Accept or reject �j

where qj(⋅) is the jth coordinate xj of the limit sta-
tionary distribution q(x) of Markov Chain.

(2) Accept or reject x̃

where DS is the required safety region. Equation (13) 
expresses that the next sample xk+1 is set to candidate 
sample x̃ or the last sample xk according to whether 
candidate sample x̃ lies in DS or not.

Here, only a brief introduction to MCMC simulation is 
provided. For more details, the reader may refer to the refer-
ences [10, 56].

2.3  Importance sampling for reliability assessment

Generally, failure probability PF can be expressed as follows 
[8, 57],

(11)p∗
j

(
�j|xkj

)
=

{
1∕lj if

|||�j − xkj
||| ≤ lj∕2

0 else
,

(12)

x̃j =

⎧⎪⎨⎪⎩

�j, with probability min
�
1,

qj(�j)
qj(xkj)

�

xkj, with probability1 −min
�
1,

qj(�j)
qj(xkj)

� ,

(13)xk+1 =

{
x̃ x̃inDS

xk x̃not inDS

,

(14)PF = P[G(x) ≤ 0] = �
Rn

IF(x)fx(x)dx,
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where x denotes basic input variables, G(x) is the per-
formance function of constraint function, Rn shows the 
n-dimension variable space, IF is the denoting function, 
IF(x) = 1 when G(x) ≤ 0 and IF(x) = 0 when G(x) > 0 as an 
opposite, and fx(x) is the joint probability density function 
of basic variables.

The basic principle of importance sampling is to shift 
the sampling center towards the failure region to gain infor-
mation more efficiently. Equation (14) can be expressed in 
Eq. (15) by introducing importance the sampling density 
function hx(x).

In this paper, the sampling density function is determined 
by moving sampling center to the design point (also the most 
probable failure point) that obtained by simulation-based 
method.

2.4  Sequential optimization and reliability 
assessment

The sequential optimization and reliability assessment 
(SORA) method was proposed to decouple a double-loop 
process of the conventional RBDO method [3]. The flow-
chart of the SORA approach is shown in Fig. 1.

In SORA, a sequence of deterministic optimization and 
reliability estimation are repeatedly performed at each cycle. 
The PMA method is used to estimate the MPP x∗(k)

j
 with the 

(15)PF = ∫
Rn

IF(x)
fx(x)

hx(x)
dx ≈

1

NIS

NIS∑
i=1

IF
(
xi
) fx

(
xi
)

hx
(
xi
) ,

design variables d(k) of the kth cycle. A shift vector s(k)
j

 is 
calculated as follows:

The failure surface of the probabilistic constraint is 
shifted to the feasible direction based on the obtained shift 
vector s(k)

j
 . Deterministic optimization is performed with 

shifted constraints to find new design variables as follows:

The process continues until the convergence condition is 
satisfied. The SORA method uses the reliability information 
from the previous cycle to shift to the violated deterministic 
constraints in the feasible domain.

3  The proposed RBDO method

3.1  Basic principles

In this paper, the proposed method can be treated as an 
improvement of the sequential optimization and reliabil-
ity assessment (SORA) method by surrogate model and 
importance sampling. It constructs surrogate models of the 
constraint functions and the objective function in original 
RBDO problem and replaces them. Then, the surrogate 
model-based RBDO is solved by the Importance Sampling-
based modified Sequential Optimization and Reliability 
Assessment (IS-based modified SORA) method that is pro-
posed in this paper.

As shown in Fig. 2, the proposed method can be divided 
into three stages: constructing surrogate models of the 
constraint functions, constructing surrogate model of the 
objective function and solving RBDO by IS-based modi-
fied SORA. In the first phase, the surrogate models are 
constructed to approximate the classification boundaries of 
constraint functions with the active learning mechanism, 
which makes the constructed surrogate models with higher 
classification accuracy. In the second phase, a large number 
of samples are generated by the above-mentioned MCMC 
in the safety region with the constructed surrogate models 
of constraint functions. Subsequently, an initial surrogate 
model of the objective function is constructed, and it is 
sequentially updated with another active learning mecha-
nism until the accuracy requirements are satisfied. After the 
first two phases are completed, the objective function and 

(16)s
(k)

j
= d(k) − x

∗(k)

j
,

(17)

Find d(k+1)

min C
�
d(k+1)

�

s.t.

⎧
⎪⎨⎪⎩

Gj

�
d(k+1)

� ≥ 0,

Gj

�
d(k+1) − s

(k)

j

� ≥ 0,

dL ≤ d ≤ dU, j = 1, 2, ny

Calculate 

Find MPP  using PMA

converge?

START

END

Set k = 1 and input 

N

Y

Deterministic optimization

k 
= 

k+
1

Fig. 1  The flowchart of the SORA method
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constraint functions in original RBDO problem are replaced 
by the constructed surrogate models, respectively. At last, 
the third phase is executed with an IS-based modified SORA 
method, and then the original RBDO problem is decoupled 
into a sequence of deterministic optimization problem that 
is solved by a Genetic Algorithm (GA).

Detailed computational steps of each stage in the pro-
posed method are explained in Sects.  3.2, 3.3 and 3.4, 
respectively.

3.2  Phase 1: constructing surrogate models 
of constraint functions

To further reduce the number of calls to the constraint func-
tions and the objective function in the process of RBDO, 
the approximation technique is used to construct available 
surrogate models. Subsequently, the constraint functions 
and the objective function in the original RBDO problem 
are replaced by the corresponding surrogate models, respec-
tively. Kriging model is one of the most popular surrogate 
models currently, and it is used in this paper.

In this section, the ‘Phase 1’ for constructing surrogate 
models of constraint functions in proposed method is intro-
duced as the following steps. The flowchart of ‘Phase 1’ is 
shown in Fig. 2.

Step 1.1  Transform design space For the purpose of 
eliminating the influence of the variable mag-
nitudes, the first step is the transformation 
of design variable or design space 

[
dL, dU

]
 , 

constraint functions 
(
Gj(x)

(
j = 1, 2,… , ny

))
 

and objective function (C(x)) . The optimiza-
tion design interval of each variable is usu-
ally a closed interval that can be determined in 

reliability optimization problems, while the opti-
mization range of half-open or full-open can also 
be determined according to the “6σ criterion”. 
For simplicity, we assume that the optimiza-
tion design interval of each variable is a closed 
interval. The design space 

[
dL, dU

]
 is converted 

to [0, 1]nx ( nx is the number of random variables), 
and the transformation between y ∈ [0, 1]nx and 
x ∈

[
dL, dU

]
 can be expressed as Eq. (18). Then, 

the functions ( gj(y)
(
j = 1, 2,… , ny

)
 ) are also 

converted to the corresponding constraint func-
tions Gj(x)

(
j = 1, 2,⋯ , ny

)
 by Eq. (19), and the 

function (c(y)) is converted to the corresponding 
objective function C(x) by Eq. (20)

Step 1.2  Generate uniform sample set The constructed 
surrogate models ĝj(y) of constraint functions 
gj(y) should have higher classification accuracy 
in reliability analysis, and the training samples 
used to construct surrogate model should be 
updated to improve the accuracy of constructed 
surrogate models. So, a uniform sample set is 
adopted to catch the global capacity of the model 
classification and update the training samples, 
and it is termed as YU . In this paper, the Halton 
sampling approach [58] as the one of available 

(18)y =
x − xL

dU − dL
,

(19)Gj(x) = Gj

(
y
(
dU − dL

)
+ dL

)
= gj(y),

(20)C(x) = C
(
y
(
dU − dL

)
+ dL

)
= c(y).

Phase 1: Constructing surrogate models for  constraint 
functions

Phase 2: Constructing surrogate model for objective 
function

Phase 3: Solving RBDO by IS-based modified SORA

k 
= 

k+
1

Calculate correction factor  and the 
modified shifting vector 

Solve deterministic optimization by GA

END

Set initial point  and construct failed 
sample set

Find MPP  in        and reliability 
assessment with importance sampling

k = 1

START

Generate uniform sample set 

Convert each   and   in  to 
and in 

Construct initial Design of Experiment 
(DoE)     for constraint functions

Build or rebuild Kriging models         

Implement active learning process and 
identify the optimal next sample in 

Update previous DoE 

z = 1

z =
 z 

+1

Determine initial Markov chain sample 

Generate Markov chain with initial sample 
and set up candidate sample set

Construct initial Design of Experiment 
(DoE)      for objective function

Implement active learning process and 
identify the optimal next sample in 

Update previous DoE 

Inverse convert each   and   in 
 to and in 

Build or rebuild Kriging models       

z =
 z 

+1

z = 1

N

Y

N

YN

Y

Fig. 2  The flowchart of the proposed method
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uniform sampling approaches is employed to gen-
erate Nus uniform samples for constructing the set 
YU =

[
y1
U
, y2

U
,… , y

Nus

U

]T
 in [0, 1]nx . The reference 

value of Nus is recommended to be set as 
�
a
√
nx

�
 

(the symbol ‘ [⋅] ’ is an upwardly integer operator 
symbol), and it means that the average number of 
samples projected on the unit diagonal is equal to 
a . As a result of the inexpensive calculations of 
constructed surrogate models for constraint func-
tions, the parameter a can be set to a larger value, 
and a = 105 is sufficient for a more accurate result 
in the proposed method.

Step 1.3  Construct initial Design of Experiment (DoE) 
for constraint functions An initial DoE is 
required to construct the initial surrogate models 
of constraint functions, and set z = 1. To ensure 
the spatial filling characteristics of the initial 
samples, the Maximum Minimum Distance Cri-
terion is adopted to select Nd samples in YU , 
sequentially. The number Nd of initial DoE is 
taken as 

�
b
√
nx

�
 . b can generally be selected as 

6–12, and it is taken as 6 in this paper. For more 
accurate initial surrogate model, a larger one 
should be taken. After determining the Nd sam-
ples, the functions gj(y)

(
j = 1, 2,… , ny

)
 are 

called to compute the values of corresponding 
constraint functions Gj(x)

(
j = 1, 2,… , ny

)
 . The 

initial DoE S can be expressed as the following 
equation.

Step 1.4  Build or rebuild Kriging models for constraint 
functions In this step, the surrogate model ĝj(y) 
is constructed or reconstructed with the current 
DoE Sj , and Sj expressed in Eq. (22) denotes the 
DoE for the jth function gj(y) corresponding to 
the jth constraint function Gj(x).

Step 1.5  Implement active learning process and iden-
tify the optimal next sample For adaptive sur-
rogate model methods, one of the main concerns 
is to determine the location of the selected new 

(21)

S =

⎡⎢⎢⎢⎢⎣

y1
S
, g1

�
y1
S

�
, g2

�
y1
S

�
,… , gny

�
y1
S

�
y2
S
, g1

�
y2
S

�
, g2

�
y2
S

�
,… , gny

�
y2
S

�
⋮

y
Nd

S
, g1

�
y
Nd

S

�
, g2

�
y
Nd

S

�
,… , gny

�
y
Nd

S

�

⎤⎥⎥⎥⎥⎦
,

(22)Sj =

⎡
⎢⎢⎢⎢⎣

y1
S
, gj

�
y1
S

�
y2
S
, gj

�
y2
S

�
⋮

y
Nd

S
, gj

�
y
Nd

S

�

⎤
⎥⎥⎥⎥⎦
,

training sample in iterations. In the adaptive pro-
cess for constructing surrogate models, it is nec-
essary to select the optimal new training samples 
with a learning strategy. Therefore, a learning 
strategy for constraint functions is developed to 
select the optimal new training samples that not 
only locate far away from the existing training 
samples, but also have a higher chance of being 
misclassified.

  To make the optimal next sample far away from 
the existing training samples, the Euclidean dis-
tance dj

i
 between ith sample yi

U
 in YU and jth sam-

ple yj
S
 in S can be calculated by Eq. (23). Then, 

the distance matrix D is obtained and presented in 
Eq. (24). Let Di

min
 be the minimum value of the 

ith row of distance matrix D , and it denotes the 
Euclidean distance between the sample yi

U
 and 

each existing sample in S . Di

min
 is calculated by 

Eq.  (25), and then the minimum distance 
matrixDmin is obtained as presented in Eq. (26).

   After obtaining the minimum distance matrix 
Dmin , the samples in YU are evaluated by ĝj(y) , 
and the predictor response ĝj

(
yi
U

)
 and the Kriging 

variance �̂ĝj
(
yi
U

)
 can be obtained. The results are 

stored in YP and �P as presented in Eq. (27) and 
Eq. (28), respectively. yi

j
 and �i

j
 denote that the 

predictor response and the standard deviation of 
the ith sample yi

U
 in YU are predicted by the jth 

function ĝj(y) , respectively. Subsequently, the 
misclassification probability pijm of the ith sample 
yi
U

 in YU for the jth function ĝj(y) can be calcu-
lated by Eq. (29) [50, 54], and then the misclas-
sification probability matrix Pm is obtained as 
presented in Eq. (30).

(23)d
j

i
=∥ yi

U
− y

j

S
∥,

(24)D =

⎡
⎢⎢⎢⎢⎣

d1
1
d2
1

d1
2
d2
2

⋯
d
Nd

1

d
Nd

2

⋮ ⋱ ⋮

d1
Nus

d2
Nus

⋯ d
Nd

Nus

⎤
⎥⎥⎥⎥⎦
,

(25)Di
min

= min[D(i, ∶)], i = 1, 2,… ,Nus,

(26)Dmin =
[
D1

min
,D2

min
,… ,D

Nus

min

]T
,
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Step 1.6  For the purpose of meeting the requirement of 
the aforementioned learning strategy, the prod-
uct LDP(i, j) of minimum distance Dmin(i) and 
Pm(i, j) is calculated by Eq. (31), and then the 
matrix LDP is obtained as presented in Eq. (32). 
The maximum value Lmax of matrix LDP is com-
puted by Eq. (33). Then, the element LDP

(
iopt, jopt

)
 

in the matrix LDP can be positioned by judging 
whether its value is equal to the maximum value 
Lmax , that is, LDP

(
iopt, jopt

)
= Lmax . Finally, the 

optimal next sample is determined in YU , and it 
is named as yiopt

U
 . Based on this learning strategy, 

it can be ensured that the selected optimal sam-
ple with a higher chance of being misclassified 
is located far away from the existing training 
samples.

Step 1.7  Calculate convergence index and judge conver-
gence criteria for Kriging models of constraint 

(27)YP =

⎡
⎢⎢⎢⎢⎣

y1
1
y1
2

y2
1
y2
2

⋯
y1
ny

y2
ny

⋮ ⋱ ⋮

y
Nus

1
y
Nus

2
⋯ y

Nus

ny

⎤
⎥⎥⎥⎥⎦
,

(28)�P =

⎡
⎢⎢⎢⎢⎣

�1
1
�1
2

�2
1
�2
2

⋯
�1
ny

�2
ny

⋮ ⋱ ⋮

�
Nus

1
�
Nus

2
⋯ �

Nus

ny

⎤
⎥⎥⎥⎥⎦
,

(29)pij
m

�
yi
U

�
= �

⎛
⎜⎜⎝
−

���yij
���

�i
j

⎞
⎟⎟⎠
,

(30)Pm =

⎡⎢⎢⎢⎢⎣

p11
m

p12
m

p21
m

p22
m

⋯
p
1ny
m

p
2ny
m

⋮ ⋱ ⋮

p
Nus1
m p

Nus2
m ⋯ p

Nusny
m

⎤⎥⎥⎥⎥⎦
,

(31)LDP(i, j) = Di

min
pij
m
,

(32)

LDP =

⎡
⎢⎢⎢⎣

LDP(1, 1) LDP(1, 2)

LDP(2, 1) LDP(2, 2)
⋯

LDP
�
1, ny

�
LDP

�
2, ny

�
⋮ ⋱ ⋮

LDP
�
Nus, 1

�
LDP

�
Nus, 2

�
⋯ LDP

�
Nus, ny

�

⎤
⎥⎥⎥⎦
,

(33)
Lmax = max

i,j

[
LDP(i, j)

]
,

i = 1, 2,… ,Nus, j = 1, 2,… , ny,

functions The DoE and the constructed Kriging 
models of constraint functions are successively 
updated, and a stopping criteria is required. To 
fully utilize the binary classification feature in 
reliability analysis with constraint functions, a 
misclassification index between two adjacent 
iterations is proposed to judge whether the clas-
sification boundary of the constructed Kriging 
model is stable.

   At the zth iteration, the classification label 
C
(z)

label
(i, j) with the prediction value yi

j
 at the ith 

sample yi
U

 in YU by the jth Kriging model ĝj(y) 
should be calculated by Eq. (34). Assume that 
C
(0)

label
(i, j) equals to 0. Subsequently, the classifica-

tion label matrix C(z)

label
 can be written as Eq. (35) 

according the Eq.  (27). The misclassification 
index �(z)

mis
(j) can describe the difference of clas-

sification boundary between jth constructed Krig-
ing model ĝj at the zth iteration and the one at the 
(z-1)th iteration, and it can be calculated by 
Eq. (36).

   For the purpose of making the constructed Krig-
ing model of each constraint function meet the 
requirements of classification accuracy, the stop-
ping criterion can be defined as

where �max
mis

= max
[
�
(z)

mis
(j)
]
,
(
j = 1, 2,… , ny

)
,.Δ� . is a small 

positive number that can be set by user. To balance accuracy 
and efficiency, Δ� can be taken as a number in the range: 
1 × 10−5 ∼ 1 × 10−4 . A smaller value should be taken for a 
more accurate result. In this paper, Δ� is set to 5 × 10−5 , 
which is sufficient for obtaining Kriging models of each con-
straint function with an accurate and efficient classification 
result in the proposed method.

(34)C
(z)

label
(i, j) =

{
1 yi

j
> 0

−1 yi
j
≤ 0

,

(35)

C
(z)

label
=

⎡⎢⎢⎢⎢⎢⎣

C
(z)

label
(1, 1) C

(z)

label
(1, 2)

C
(z)

label
(2, 1) C

(z)

label
(2, 2)

⋯
C
(z)

label

�
1, ny

�
C
(z)

label

�
2, ny

�
⋮ ⋱ ⋮

C
(z)

label

�
Nus, 1

�
C
(z)

label

�
Nus, 2

�
⋯ C

(z)

label

�
Nus, ny

�

⎤⎥⎥⎥⎥⎥⎦

,

(36)�
(z)

mis
(j) =

1

2Nus

Nus∑
i=1

|||C
(z)

label
(i, j) − C

(z−1)

label
(i, j)

|||,

(37)�max
mis

≤ Δ�,
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  If the stopping criterion is satisfied, the active 
learning process is stopped, and the algorithm 
goes to next step, otherwise it goes to next Step 
1.7.

Step 1.8  Update previous DoE If the stopping criterion 
is not satisfied, the previous Kriging models of 
each constraint function are not considered to 
be precise enough to approximate classifica-
tion boundaries of the actual constraint func-
tions. Consequently, previous DoE S should be 
updated. Firstly, the optimal next sample identi-
fied in Step 1.5 is evaluated by calling the func-
tions gj(y)

(
j = 1, 2,… , ny

)
 , and then the evalua-

tions and the sample are added to previous DoE 
S . Simultaneously, set z = z + 1 and Nd = Nd + 1.

3.3  Phase 2: constructing surrogate model 
of objective function

Since the optimal design needs to meet the requirements 
of reliability constraints, it should be located in the safety 
domain determined by the constraint functions. There-
fore, it is necessary that the constructed surrogate model 
of objective function has sufficient prediction accuracy for 
evaluating samples within the safety domain, and the pre-
diction accuracy for samples within the failure domain can 
be relaxed. In this section, the ‘Phase 2’ for constructing 
surrogate models of objective function in proposed method 
is introduced in the following steps, and the flowchart of 
‘Phase 2’ is presented in Fig. 2.

Step 2.1  Determine initial sample of each Markov chain 
In general, at least one constraint function is 
included in RBDO problem. To more uniformly 
simulate the samples in the safety domain, the 
samples are uniformly simulated using Markov 
chain Metropolis algorithm with multiple Markov 
chains, and the number of Markov chains is equal 
to the number ny of constraint functions. The 
initial point y0 of the optimization iteration is 
defined as the mean point of the optimized design 
space, which is y0 = [0.5, 0.5,… , 0.5]1×nx . The 
joint probability density value of each sample 
in YU is evaluated with this initial point as the 
mean point of the reliability analysis, and then 
the maximum possible failure point yj

MPP
 in YU 

is determined by each Kriging model ĝj(y).
Step 2.2  Generate Markov chains and set up candidate 

sample set ny Markov chains are generated, and 
each chain contains Nm samples with the initial 
point yj

MPP
 of each constraint function. Subse-

quently, all samples in these Markov chains are 
used to set up the candidate sample set YM , and 

so the number of samples in YM is NM = 3Nm . In 
this work, the reference value of Nm is recom-
mended to set as 

�
h
√
nx

�
 . This means that the 

average number of samples projected on the unit 
diagonal is equal to h . As a result of the inexpen-
sive calculations of constructed surrogate models 
for constraint functions in generating Markov 
chains, the parameter h can be set to a larger 
value. To balance the generation efficiency and 
filling ability of each Markov chain, h = 104 is set 
in the proposed method.

Step 2.3  Construct initial Design of Experiment (DoE) 
for objective function As mentioned in Step 
1.3, an initial DoE is also required to construct 
the initial surrogate model of objective function, 
and set z = 1. To ensure the spatial filling char-
acteristics of the initial samples, the maximum 
minimum distance criterion is adopted to select 
Nc samples in YM , sequentially. The number Nc 
of initial DoE is the same as Nd in Step 1.3. After 
determining the Nc samples, the function c(y) is 
called to compute the values of corresponding 
objective function C(x) . The initial DoE Sc can 
be expressed as

Step 2.4  Build or rebuild Kriging model for objective 
function In this step, the surrogate model ĉ(y) 
is constructed or reconstructed with the current 
DoE Sc.

Step 2.5  Implement active learning process and identify 
the optimal next sample As constructing sur-
rogate models for constrained functions, con-
structing surrogate model for objective function 
also requires an adaptive strategy to determine 
the optimal next sample. A learning strategy for 
constructing surrogate model of the objective 
function is also developed to select the optimal 
new training samples that not only locate far away 
from the existing training samples, but also have 
a higher chance to change current surrogate mod-
elUsing the same calculation method in Step 1.5, 
the minimum distance matrix Dc

min
 between 

samples in YM and samples in Sc is calculated, 
and it is presented in Eq. (39).

(38)Sc =

⎡⎢⎢⎢⎢⎢⎣

y1
Sc
, c
�
y1
Sc

�

y2
Sc
, c
�
y2
Sc

�

⋮

y
Nc

Sc
, c
�
y
Nc

Sc

�

⎤⎥⎥⎥⎥⎥⎦

,

(39)Dc

min
=
[
Dc1

min
,Dc2

min
,… ,D

cNM

min

]T
,
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    After obtaining the minimum distance matrix Dc

min
 , the 

samples in YM are evaluated by ĉ(y) . Then, the predictor 
response ĉ

(
yi
M

)
 and the Kriging variance �̂ĉ

(
yi
M

)
 can be 

obtained. The results are stored in Yc and �c as presented in 
Eq. (40) and Eq. (41). yi

c
 and �i

c
 denote that the predictor 

response and the standard deviation of the ith sample yi
M

 in 
YM are predicted, respectively. 

    For the purpose of meeting the requirement of the afore-
mentioned learning strategy for objective function, the prod-
uct LD�(i) of minimum distance Dc

min
(i) and �C(i) is calcu-

lated by Eq. (42), and then the NM × 1 matrix LD� is obtained 
as presented in Eq.  (43). The maximum value Lmax of 
matrix LDP is computed by Eq.  (44). Then, the element 
LD�

(
iM
opt

)
 in the matrix LD� is positioned by judging whether 

its value is equal to the maximum value Lmax
D�

 , that is, 
LD�

(
iM
opt

)
= Lmax

D�
 . Finally, the optimal next sample for 

updating the surrogate model of objective function is deter-
mined in YM , and it is termed as y

iM
opt

M
.

Step 2.6  Calculate convergence index and judge conver-
gence criteria for surrogate model of objective 
function The DoE and the constructed Kriging 
model of objective function are sequentially 
updated, a stopping criterion is required. To 
obtain a Kriging model with global precision for 
objective function in safety domain, a relative 
error between two adjacent iterations is used as 
an indicator to judge whether the prediction accu-
racy of the constructed Kriging model is enough 
at the zth iteration. The predictor response vec-
tor Yc in Step 2.5 is stored in another vector Y(z)

c
 . 

Assume that Y(0)
c
(i) = 0

(
i = 1, 2,… ,NM

)
 . The 

relative error r(z)(i) describes the difference of 
predictor response between constructed Krig-
ing model ĉ(y) at the zth iteration and the one at 
the (z-1)th iteration, and it can be calculated by 
Eq. (45).

(40)YC =
[
y1
c
, y2

c
,… , yNM

c

]T
,

(41)�C =
[
�1
c
, �2

c
,… , �NM

c

]T
,

(42)LD�(i) = Dci

min
�i
c
,

(43)LD� =
[
LD�(1), LD�(2),… , LD�

(
NM

)]T
,

(44)Lmax
D�

= max
i

[
LD�(i)

]
, i = 1, 2,… ,NM ,

   For the purpose of making the constructed Krig-
ing model of the objective function meet the accu-
racy requirement, the stopping criterion can be 
defined as

where r(z)max = max
[
r(z)(i)

]
,
(
i = 1, 2,… ,NM

)
 , Δr is a small 

positive number that can be set by user. In order to balance 
accuracy and efficiency, Δr can usually be taken as a number 
in the range: 1 × 10−5 ∼ 1 × 10−4 . A smaller value should 
be taken for a more accurate result. In this paper, Δr is set 
to 5 × 10−5 , which is sufficient to obtain an accurate and 
efficient Kriging model of the objective function.

  If the stopping criterion is satisfied, the active 
learning process is stopped, and the algorithm 
goes to Step 2.8, otherwise it goes to Step 2.7.

Step 2.7  Update previous DoE If the stopping criterion 
is not satisfied, the previous Kriging model for 
objective function is considered not to be precise 
enough to approximate the function c(y) . Con-
sequently, previous DoE Sc should be updated. 
Firstly, the optimal next sample identified in Step 
2.5 is evaluated with the function c(y) . Then, the 
sample and its evaluation is added to update pre-
vious DoE Sc . Simultaneously, set z = z + 1 and 
Nc = Nc + 1.

Step 2.8  Inverse transform design space After the 
Kriging model ĉ(y) for objective function is 
determined, all constructed Kriging models 
should be converted to the original design space 
so as to replace the objective function and the 
constraint functions in original RBDO prob-
lem. Therefore, the Kriging models ĉ(y) and 
ĝj(y)

(
j = 1, 2,… , ny

)
 are converted to the func-

tions Ĉ(x) and Ĝj(x)
(
j = 1, 2,… , ny

)
 by Eq. (47) 

and Eq. (48). Subsequently, the function Ĉ(x) and 
the functions Ĝj(x)

(
j = 1, 2,… , ny

)
 are used to 

replace the objective function C(x) and the con-
straint functions Gj(x)

(
j = 1, 2,… , ny

)
 in original 

RBDO problem as presented in Eq. (1), and then 
go to next phase for solving the RBDO problem 
with surrogate models as presented in Eq. (49).

(45)r(z)(i) =
|||||
Y(z)
c
(i) − Y(z−1)

c
(i)

Y(z)
c
(i)

|||||
,

(46)r
(z)

max ≤ Δr,

(47)ĉ(y) = ĉ

(
x − xL

dU − dL

)
= Ĉ(x),
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3.4  Phase 3: solving RBDO by IS‑based modified 
SORA

After the first two phases of the proposed method being 
executed, objective function C(x) and the constraint func-
tions Gj(x)

(
j = 1, 2,… , ny

)
 in the original RBDO problem 

(as presented in Eq. (1)) are replaced with the function Ĉ(x) 
and the functions Ĝj(x)

(
j = 1, 2,… , ny

)
 (as presented in 

Eq. (49)), respectively. In this section, the RBDO problem as 
presented in Eq. (49) is solved by IS-based modified SORA. 
The IS-based modified SORA method can be treated as an 
improvement of SORA. The proposed IS-based MSORA 
method consists of the following steps, and the flowchart of 
‘Phase 3’ is shown in Fig. 2.

Step 3.1  Set initial point and construct failed sample set 
of each constraint function Like most analytical 
methods of RBDO, the initial point for solving 
the RBDO problem is also needed, in the pro-
posed IS-based MSORA method. So, set k = 1, 
and the initial point d(1) is defined as the mean 
point of the optimization design space, which is 
d(1) = 0.5

(
dL + dU

)
 . To avoid the disadvantages 

of solving the MPP-based gradient information 
of performance function in traditional method, 
the simulation-based method is used to find the 
MPP with the highest probability density value in 
the failure domain. Therefore, the failed sample 
sets Xj

F

(
j = 1, 2,… , ny

)
 can be constructed. All 

samples in YU are converted to the design space [
dL, dU

]
 with Eq. (50), and the sample set XU is 

obtained. Then, all samples in XU are classified 
by the sign of the response value that is calculated 
by calling the function Ĝj(x) , and the samples 
with negative response value are stored in Xj

F
.

Step 3.2  Find MPPs and reliability assessment with 
importance sampling The sample x∗(k)

j
 with the 

highest probability density value in Xj

F
 for the cor-

responding function Ĝj(x) is found at the current 

(48)ĝj(y) = ĝj

(
x − xL

dU − dL

)
= Ĝj(x),

(49)

Find d

min Ĉ(d)

s.t.

⎧
⎪⎨⎪⎩

P
�
Ĝj(x) ≤ 0�d

� ≤ Φ
�
−� t

j

�
,

j = 1, 2,… , ny,

dL ≤ d ≤ dU

(50)x = y
(
dU − dL

)
+ dL.

optimal solution d(k) , and it is considered the MPP 
of the function Ĝj(x) . Subsequently, NIS important 
samples at each x∗(k)

j
 are generated by executing 

importance sampling algorithm, and these samples 
are stored in Xj

IS
 , respectively. Then, all samples in 

X
j

IS
 are classified by the sign of the response value 

that is calculated by calling the function Ĝj(x) , and 
the samples with negative response value are added 
in Xj

F
 . Simultaneously, the failure probability Pj

IS
 

of the function Ĝj(x) is calculated by Eq. (15). In 
this paper, the number NIS of important samples is 
taken as 1 × 105 , and it is sufficient to obtain an 
accurate assessment for failure probability.

Step 3.3  Calculate correction factors and modified 
shifting vectors Failure probability evaluated by 
MPP is based on linear assumption in the tradi-
tional SORA method, and it is accurate if and 
only if the performance function is a linear func-
tion. Therefore, the SORA should be modified to 
obtain an accurate optimal design in the RBDO 
problem with the non-linear constraint function. 
In this paper, the shifting vector s(k)

j
 is modified 

with a correction factor �j . The correction factor 
�j can be calculated by Eq. (51), and the shifting 
vector s(k)

j
 can be calculated by Eq. (52).

Step 3.4  Solve deterministic optimization by GA After 
determining each shifting vector s(k)

j
 , the failure 

surfaces of the probabilistic constraints of the 
RBDO problem in Eq. (49) can be shifted to the 
feasible direction. Deterministic optimization is 
performed with shifted constraints to find a new 
design as presented in Eq. (53), and it is solved 
by GA in the proposed method.

Step 3.5  Check stopping criterion The stopping criterion 
is defined as Eq. (54), and � can be calculated by 

(51)�j =
∥
(
d(k) − x

∗(k)

j

)
�−1 ∥

�−1

(
1 − P

j

IS

) ,

(52)s
(k)

j
= −� t

j
�j

[(
d(k) − x

∗(k)

j

)
�−1

]

∥
(
d(k) − x

∗(k)

j

)
�−1 ∥

�,

(53)

Find d(k+1)

min Ĉ
�
d(k+1)

�

s.t.

⎧
⎪⎨⎪⎩

Ĝj

�
d(k+1)

� ≥ 0,

Ĝj

�
d(k+1) − s

(k)

j

� ≥ 0,

dL ≤ d ≤ dU, j = 1, 2,… , ny
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Eq. (55). If it is satisfied, then stop and go to Step 
3.6, otherwise set k = k + 1 and go to Step 3.2. In 
this paper, the allowable value is taken as 1 × 10−3.

Step 3.6  End the algorithm of the proposed RBDO 
method The last design d(k+1) is considered as 
the final result of the proposed RBDO method, 
which is accurate enough for the original RBDO 
problem

The proposed method not only guarantees the classification 
accuracy of the constructed surrogate models for the constraint 
function and the approximation accuracy of the constructed 
surrogate model for the objective function, but also inherits 
the accuracy of important sampling and the high efficiency of 
SORA for solving RBDO problem. Compared with other con-
ventional RBDO methods based on the MPPs or gradient, its 
computational efficiency and accuracy can be increased greatly.

4  Numerical examples

4.1  A nonlinear 2D test problem

To better illustrate the proposed method, a two-dimensional 
example is tested, and it has been used as the verification 
example in the literatures [32, 42, 44, 45, 59]. This RBDO 
problem contains three constraints, the second one is highly 
nonlinear and others are weakly nonlinear. There are two 
random variables which obey the normal distribution 
xi ∼ N

(
di, 0.3

2
)
 , i = 1, 2 . The target reliability index is 

� t
j
= 3, j = 1, 2, 3.

The formulation for RBDO can be given by Eq. (56).

(54)� ≤ Δ�,

(55)� =

nx∑
i=1

|||||
d(k+1)(i) − d(k)(i)

d(k+1)(i)

|||||
,

(56)

Find d =
�
d1, d2

�

min f (d) = −

�
d1 + d2 − 10

�2
30

−

�
d1 − d2 + 10

�2
120

s.t.

⎧⎪⎨⎪⎩

P
�
Gj(x) ≤ 0�d� ≤ �

�
−� t

j

�
, � t

j
= 3, j = 1, 2, 3

0 ≤ d1 ≤ 10, 0 ≤ d2 ≤ 10,

xi ∼ N
�
di, 0.3

2
�
, i = 1, 2

where G1(x) = x2
1
x2∕20 − 1,

G2(x) = 1 −
�
(Y − 6)2 + (Y − 6)3 − 0.6(Y − 6)4 + Z

�
,

G3(x) = 80∕
�
x2
1
+ 8x2 + 5

�
− 1,

Y = 0.9063x1 + 0.4226x2

Z = 0.4226x1 − 0.9063x2

To better illustrate the proposed method, these main 
processes of constructing surrogate models of constraint 
functions, constructing a surrogate model of the objective 
function and solving RBDO by IS-based modified SORA 
are separately shown in Figs. 3, 4 and 5. Figure 3a shows 
the initial surrogate models for constraint functions with 
the initial DoE S which contains 9 samples. As the num-
ber of samples in DoE S is constantly increased, the sur-
rogate models for constraint functions gradually converge. 
The surrogate models for the first, the second and the third 
constraint function are considered stable at the 11th itera-
tion (Fig. 3b), at the 27th iteration (Fig. 3c) and at the 40th 
iteration (Fig. 3d), respectively. Subsequently, the surrogate 
models for constraint functions obtained at the 40th itera-
tion are used to generate Markov chains and set up candi-
date sample set YM , as shown in Fig. 4a. Then, the DoE 
Sc is constructed as presented in Fig. 4b, and the surrogate 
model of objective function is constructed. After surrogate 
models of the constraint functions and objective function are 
determined, these surrogate models are used to replace the 
original constraint functions and objective function. Here-
after, the IS-based modified SORA method is executed to 
solve the optimal solution. Figure 5 shows the variation of 
the optimal solution with optimization process.

The probabilistic constraints at the optimal solution are 
evaluated by the Monte Carlo simulation (MCS) with ten 
million samples and listed in Table 1 in comparison with 
those methods by previous publications. The reliability opti-
mization results are captured based on the methods listed in 
Table 1, and the optimal design variables, optimal value of 
objective function, and the total number of constraint func-
tion calls and objective function calls are also summarized. 
Ntotal , Ncon and Nobj represent the total evaluation number 
of constraint function calls and objective function calls, 
the evaluation number of constraint function calls and the 
evaluation number of objective function calls in the original 
RBDO problem, respectively.

It can be seen that almost all reliability optimization 
methods listed in Table 1 converge to a similar optimum 
result. The optimum result of the AC-SLA is less than that 
of the other methods including the proposed method, but it is 
much more than the proposed method in the evaluation num-
ber of constraint function calls and objective function calls. 
In addition, the optimum result of AC-SLA does not satisfy 
the reliability constraint with � t ≥ 3 for the first constraint 
function. Therefore, the proposed method is more efficient 
and accurate than the other methods.

4.2  Optimal design of a roof truss

A roof truss subject to the uniform loads is to be designed, 
and it has been studied in the literatures [1, 39, 43, 56]. 
As shown in Fig. 6, top members and compression bars are 
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made by reinforced concrete, and bottom members and ten-
sion bars are made by steel. Table 2 presents parameters 
of random variables. The vertical deflection at the peak of 
structure (node C) is limited to 0.03 m, and the problem is 
given as follows:

(57)

Find d =
[
AS,AC

]
min f (d) = 20224AS + 364AC

s.t.

{
P
[
G(x) = 0.03 −

(
ql2

2

)(
3.81

ACEC

+
1.13

ASES

) ≤ 0|d
] ≤ �(−� t)

0.0006 ≤ AS ≤ 0.0012, 0.018 ≤ AC ≤ 0.063, � t = 3

Fig. 3  Constructing surrogate models of constraint functions for example 1. a The initial surrogate models; b The surrogate models at the 11th 
iteration; c The surrogate models at the 27th iteration; d The surrogate models at the 40th iteration or the final surrogate models
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This example involves four normal random variables and 
two normal random design variables i.e. AS,AC . The dis-
tribution parameters of the random variables are listed in 
Table 2.

Similar to example 1, the optimal results with the pro-
posed method and those methods by previous publications 
are listed in Table 3. It can be seen that the HCC, RMV, 
MMV, AAMV, DMV, HDMV and ESMV method con-
verge to the similar unreliable optimal results, which does 
not satisfy the reliability constraint with � t ≥ 3 ; while the 
DCC, RBDO + WAM and the proposed method converges 
to the reliable optimal results with � t ≥ 3 . The result of 
RBDO + WAM is better than that of DCC and proposed 
method on the objective function, but it is less efficient than 
all other methods for this example. As presented in Table 3, 
the total number of constraint function calls and objective 
function calls of the proposed method is much less than that 
of other methods for obtaining a reliable and nearly optimal 
result. So, the proposed method is more efficient than the 
other methods listed in Table 3.

Fig. 4  Constructing surrogate model of objective function for example 1. a Generate Markov chains and set up candidate sample set; b The final 
DoE for constructing surrogate model of objective function

Fig. 5  The variation of the optimal solution with optimization pro-
cess of the phase 3 for example 1
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4.3  Welded beam problem

As shown in Fig. 7, this example considered is the welded 
beam problem, which has been used as a benchmark to 
compare with some previous publications by many scholars 
such as Yi et al. [30], Chen et al. [33] and Keshtegar et al. 
[37, 40, 45, 60]. The problem has five probabilistic con-
straints involving four random variables. The probabilistic 
constraints are related to limitation of shear stress, bending 
stress, buckling, and displacement. The objective of this 
problem is to minimize the welding cost. All random vari-
ables are statistically independent and follow normal distri-
bution. The fixed system parameters z and c of the welded 
beam problem are listed in Table 4.

The RBDO model of the welded beam problem can be 
formulated as:

Table 1  The reliability 
optimization results for example 
1

Methods Design variables Objective Ntotal

(
Ncon + Nobj

)
�MCS
1

�MCS
2

�MCS
3

PMA [32] (4.569, 1.956) − 1.728 1754(1690 + 64) 2.98 3.02 –
SLSV [32] (4.575, 1.954) − 1.729 839(617 + 222) 2.99 3.05 –
SORA [32] (4.559, 1.964) − 1.725 679(577 + 102) 2.97 3.02 –
SLSVCG [32] (4.557, 1.964) − 1.726 371(276 + 95) 2.97 3.06 –
RMV [42] (4.558, 1.965) − 1.725 762 2.95 3.20 +∞

HCC [42] (4.558, 1.964) − 1.725 312 2.95 3.21 +∞

AC-SLA [42] (4.606, 1.935) − 1.737 162 2.98 3.03 +∞

ACC [28] (4.558, 1.965) − 1.725 861 2.95 – +∞

ASSA [44] (4.558, 1.965) − 1.725 729 2.96 – +∞

HCMV [45] (4.558, 1.965) − 1.725 699 2.96 – +∞

DCC [59] (4.558, 1.965) − 1.725 567 2.95 – +∞

The proposed method (4.623, 1.946) − 1.732 66(49 + 17) 3.01 3.01 +∞

q N/m

A B

C

E

F

G

D

A B

C

E

F

G

D

P

PP

0.278l 0.222l 0.25l 0.25l

l/12

l/12

3AS

AC

AC AC

AC0.75AC 0.75AC

2AS 3AS

ASAS

Fig. 6  Loads, reinforced concrete and steel bares of the roof truss for 
example 2

Table 2  Basic random variables of the roof truss for example 2

Random variable Description Distribution Mean Standard deviation

q(N∕m) Load Normal 20,000 1400
l(m) Length of truss Normal 12 0.12
AS

(
m2

)
Sectional area of steel bars Normal Design variable 5.892 × 10−5

AC

(
m2

)
Sectional area of reinforced concrete bars Normal Design variable 4.8 × 10−3

ES(Pa) Elastic modulus of steel Normal 1 × 1011 6 × 109

Ec(Pa) Elastic modulus of reinforced concrete Normal 2 × 1010 1.2 × 109
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The RBDO results of this problem with the proposed 
method and previous methods are summarized in Table 5. 
It is seen that the objective function values of the optimal 
results obtained by the proposed method agree relatively 
well with those of other previous publications. Among these 
methods listed in Table 5, the SORA, ASORA, ADA, ESM, 
HCMV and the proposed method are relatively efficient in 
terms of the total number of constraint function calls and 
objective function calls. It can be seen that the proposed 
method is the best one in terms of the total number and the 
objective function value. So, the proposed method is more 
efficient than other methods to be employed for solving the 
RBDO problem of the welded beam.

(58)

Find d =
�
d1, d2, d3, d4

�

min f (d) = c1d
2
1
d2 + c2d3d4

�
z2 + d2

�

s.t.

⎧⎪⎪⎨⎪⎪⎩

P
�
Gj(x) ≤ 0�d� ≤ �

�
−� t

j

�
, � t

j
= 3, j = 1, 2,… , 5

3.175 ≤ d1 ≤ 10, x1 ∼ N
�
d1, 0.1693

2
�

150 ≤ d2 ≤ 254, x2 ∼ N
�
d2, 0.1693

2
�

200 ≤ d3 ≤ 220, x3 ∼ N
�
d3, 0.0107

2
�

3.175 ≤ d4 ≤ 10, x4 ∼ N
�
d4, 0.0107

2
�

where G1(x) = 1 − �(x)∕z6,G2(x) = 1 − �(x)∕z7,

G3(x) = 1 − x1∕x4,G4(x) = 1 − �(x)∕z5,

G5(x) = Pc(x)∕z1 − 1,

�(x) =

�
t(x)2 +

2t(x)tt(x)x2

2R(x)
+ tt(x)2

�0.5
,

t(x) =
z1√
2x1x2

, tt(x) =
M(x)R(x)

J(x)
,

M(x) = z1
�
z2 + 0.5x2

�
,R(x) =

��
x2
2
+
�
x1 + x3

�2�
∕4,

J(x) =
√
2x1x2

�
x2
2
∕12 +

�
x1 + x3

�2
∕4

�
,

�(x) =
6z1z2

x2
3
x4

, �(x) =
4z1z

3
2

z3x
3
3
x4
,

Pc(x) =
4.013x3x

3
4

√
z3z4

6z2
2

�
1 −

x3

4z2

�
z3

z4

�
4.4  Speed reducer RBDO problem

A speed reducer illustrated in Fig. 8 is used to rotate the 
engine and propeller with efficient velocity in light plane, 
and it is commonly studied by researchers as a benchmark 
example [2, 26, 30, 33, 36, 42, 45–47]. This RBDO problem 
has 11 probabilistic constraints involving 7 random vari-
ables. The probabilistic constraints are related to physical 
quantities such as bending stress, contact stress, longitudinal 
displacement, stress of the shaft, and geometry constraints. 
The random design variables are gear width ( d1 ), gear mod-
ule ( d2 ), the number of pinion teeth ( d3 ), distance between 
bearings ( d4, d5 ), and diameter of each shaft ( d6, d7).

All random variables are statistically independent and 
have normal distributions. The objective function is to 

Table 3  The reliability 
optimization results for example 
2

Methods Design variables Objective Ntotal

(
Ncon + Nobj

)
�MCS

HCC [39] (1.1202 × 10−3, 3.640 × 10−2) 35.90 6929 2.86
RMV [39] (1.0886 × 10−3, 3.836 × 10−2) 35.98 11,012 2.90
MMV [39] (1.0915 × 10−3, 3.820 × 10−2) 35.98 22,836 2.92
AAMV [39] (1.0808 × 10−3, 3.880 × 10−2) 35.98 5764 2.91
DMV [39] (1.0752 × 10−3, 3.896 × 10−2) 35.99 3141 2.91
HDMV [39] (1.0886 × 10−3, 3.836 × 10−2) 35.98 1405 2.92
ESMV [43] (1.0676 × 10−3, 4.004 × 10−2) 36.16 2102 2.98
DCC [59] (1.1008 × 10−3, 3.865 × 10−2) 36.33 1102 3.00
RBDO + WAM [1] (1.0680 × 10−3, 4.046 × 10−2) 36.24 40,000 3.01
The proposed method (1.0879 × 10−3, 3.944 × 10−2) 36.36 126(110 + 16) 3.02

d3

d2

d1

d4

Beam

Structure
weldment

F F

Fig. 7  The welded beam structure for example 3

Table 4  System parameters of the welded beam problem for example 
3

z
1

2.6688 × 104 (N) z
6

9.377 × 101 (MPa)
z
2

3.556 × 102 (mm) z
7

2.0685 × 102 (MPa)
z
3

2.0685 × 105 (MPa) c
1

6.74135 × 10−5 ($/mm3)
z
4

8.274 × 104 (MPa) c
2

2.93585 × 10−6 ($/mm3)
z
5

6.35 (mm)
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minimize the weight. The RBDO formulation of the speed 
reducer can be expressed as

The optimization results are summarized in Table 6. The 
optimal results of all the approaches are almost identical to 
those in the Ref. [36]. The probabilistic constraints at the 

(59)

Findd =
�
d1, d2, d3, d4, d5, d6, d7

�

minf (d) = 0.7854d1d
2
2

�
3.3333d2

3
+ 14.9334d3 − 43.0934

�

− 1.508d1
�
d2
6
+ d2

7

�
+ 7.477

�
d3
6
+ d3

7

�

+ 0.7854
�
d4d

2
6
+ d5d

2
7

�

s.t.

⎧⎪⎪⎨⎪⎪⎩

P
�
Gj(x) ≤ 0�d� ≤ �

�
−� t

j

�
, � t

j
= 3, j = 1, 2,… , 11

2.6 ≤ d1 ≤ 3.6, 0.7 ≤ d2 ≤ 0.8, 17 ≤ d3 ≤ 28,

7.3 ≤ d4 ≤ 8.3, 7.3 ≤ d5 ≤ 8.3, 2.9 ≤ d6 ≤ 3.9,

5.0 ≤ d7 ≤ 5.5, xi ∼ N
�
di, 0.005

2
�
, i = 1, 2,… , 7

where G1(x) = 1 −
27

x1x
2
2
x3
, G2(x) = 1 −

397.5

x1x
2
2
x2
3

,

G3(x) = 1 −
1.93x3

4

x2x3x
4
6

, G4(x) = 1 −
1.93x3

5

x2x3x
4
7

,

G5(x) = 1 −

��
745x4∕

�
x2x3

��2
+ 16.9 × 106

110x3
6

,

G6(x) = 1 −

��
745x5∕

�
x2x3

��2
+ 157.5 × 106

85x3
7

,

G7(x) = 1 − x2x3∕40, G8(x) = x1∕
�
5x2

�
− 1,

G9(x) = 1 − x1∕
�
12x2

�
, G10(x) = 1 −

1.5x6 + 1.9

x4
,

G11(x) = 1 −
1.1x7 + 1.9

x5

optimal solutions of these methods listed in Table 6 are evalu-
ated by the Monte Carlo simulation (MCS) with ten million 
samples, respectively. It can be seen that almost all the proba-
bilistic constraints satisfy the target reliability at the optimum 
of each method. Among them, the LAS, IBS, and the pro-
posed method are more efficient with fewer than 100 in terms 
of the total number of constraint function calls and objective 
function calls. Although the SSRBO method is also efficient 
in the RBDO problem, the sixth probabilistic constraint at the 
optimal solution with it does not satisfy the target reliability. 
Therefore, the efficiency of the proposed method is verified.

5  Conclusions

In this paper, an efficient method combining adaptive surro-
gate model and importance sampling-based modified SORA 
method is proposed for reliability-based design optimization. 

Table 5  The reliability optimization results for example 3

Methods Design variables Objective Ntotal

(
Ncon + Nobj

)
�MCS
1

�MCS
2

�MCS
3

�MCS
4

�MCS
5

RIA [30] (5.730, 200.91, 210.60, 6.239) 2.591 9613(9590 + 23) 3.01 3.01 3.00 +∞ 3.01
PMA [30] (5.728, 200.97, 210.71, 6.238) 2.592 1122(1105 + 117) 3.01 3.53 3.01 +∞ 2.98
SLSV [30] (5.728, 200.99, 210.72, 6.238) 2.592 715(650 + 65) 3.01 3.58 3.01 +∞ 2.98
SORA [30] (5.731, 200.93, 210.64, 6.242) 2.592 198(125 + 73) 3.01 3.58 3.01 +∞ 2.98
ASORA [30] (5.731, 200.93, 210.64, 6.242) 2.592 167(90 + 77) 3.01 3.58 3.01 +∞ 2.98
SORA–ICDE [31] (5.730, 201.00, 210.63, 6.240) 2.593 2119 3.01 3.29 3.00 +∞ 3.12
ADA [33] (5.730, 200.91, 210.60, 6.239) 2.591 479(404 + 75) 3.00 3.00 3.00 +∞ 3.00
AMV [37] (5.730, 200.90, 210.60, 6.239) 2.591 1365(1350 + 15) – – – – –
HMV [37] (5.730, 200.90, 210.60, 6.239) 2.591 1365(1350 + 15) – – – – –
MCC [37] (5.730, 200.90, 210.60, 6.239) 2.591 12,185(12,170 + 15) – – – – –
MMV [37] (5.730, 200.90, 210.60, 6.239) 2.591 1144(1135 + 9) – – – – –
ESM [40] (5.730, 200.90, 210.60, 6.239) 2.591 371(360 + 11) – – – – –
HCMV [45] (5.730, 200.90, 210.60, 6.239) 2.591 854 – – – – –
SCG [60] (5.730, 200.90, 210.60, 6.239) 2.591 987(975 + 12) – – – – –
The proposed method (5.730, 200.90, 210.60, 6.239) 2.591 91(46 + 45) 3.00 3.02 3.00 +∞ 3.01

d4
d5

d7 d6

d3
Gear Pinion

Shaft 1

Shaft 2

Fig. 8  The speed reducer for example 4
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In the proposed method, this optimization process is cleverly 
divided into three phases: 1) constructing surrogate models 
of the constraint functions, 2) constructing surrogate model 
of the objective function and 3) solving RBDO by IS-based 
modified SORA. The proposed method is adopted to solve 
four classical RBDO examples, and its accuracy and effi-
ciency are verified by comparisons with previous methods.

The accuracy and efficiency of the proposed method 
depend on the accuracy and efficiency in constructing sur-
rogate models phase and the optimization solution phase. 
So, there are two main directions in our efforts for practical 
engineering in the future. The first is how to further improve 
the accuracy and efficiency of constructing surrogate models 
in a more efficient way or with a more efficient surrogate 
model, such as radial basis function (RBF) and Support 
Vector Machine (SVM). The second is to employ a more 
efficient analytical method in the third phase of the proposed 
method, such as the ASORA method, the AHA method, the 
AC-SLA method, etc.
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RMV [42] (3.577, 0.7, 17, 7.3, 7.754, 3.365, 5.302) 3038.86 1472 – – – – –
HCC [42] (3.577, 0.7, 17, 7.3, 7.754, 3.365, 5.302) 3038.86 1208 – – – – –
AC-SLA [42] (3.577, 0.7, 17, 7.3, 7.754, 3.365, 5.302) 3038.85 484 – – – – –
HCMV [45] (3.577, 0.7, 17, 7.3, 7.754, 3.365, 5.302) 3038.60 961 – – – – –
SQP–WSM [2] (3.577, 0.7, 17, 7.3, 7.761, 3.365, 5.302) 3038.89 25,032 3.00 3.02 3.00 3.90 +∞
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The proposed method (3.577, 0.7, 17, 7.3, 7.754, 3.365, 5.302) 3038.61 72(35 + 37) 3.00 3.01 3.01 3.00 +∞
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