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Abstract
The present investigation is focused on the buckling behavior of strain gradient nonlocal beam embedded in Winkler elastic 
foundation. The first-order strain gradient model has been combined with the Euler–Bernoulli beam theory to formulate the 
proposed model using Hamilton’s principle. Three numerically efficient methods, namely Haar wavelet method (HWM), 
higher order Haar wavelet method (HOHWM), and differential quadrature method (DQM) are employed to analyze the 
buckling characteristics of the strain gradient nonlocal beam. The impacts of several parameters such as nonlocal parameter, 
strain gradient parameter, and Winkler modulus parameter on critical buckling loads are studied effectively. The basic ideas 
of the numerical methods, viz. HWM, HOHWM, and DQM are presented comprehensively. Also, a comparative study has 
been conducted to explore the effectiveness and applicability of all the three numerical methods in terms of convergence 
study. Finally, the results, obtained by this investigation, are validated properly with other works published earlier.

Keywords Buckling behavior · Strain gradient model · Nonlocal beam · HWM · HOHWM · DQM

1 Introduction

Nowadays, numerical methods and algorithms have come 
to help the engineers and researchers to open the way for 
solving complex scientific problems such as molecular 
structural analysis, meteorology and weather forecasting, 
system dynamics, and many other essential topics. In gen-
eral, numerical calculations use the practical results of com-
puting to find new ways to analyze problems. In engineering 

problems, the analysis of structures using modern numerical 
methods is one of the most widely used problems [1].

More recently, the mechanical and structural analyses of 
nanostructures due to their widespread applications with 
the help of modern numerical methods has received much 
attention [2–25]. Among these numerical methods, the 
Haar wavelet method [26–28] and higher order Haar wave-
let method [29, 30] and also differential quadrature method 
[31–33] are among the advanced numerical methods with 
excellent precision. The wavelet is a special series of func-
tions that are now known as the first wavelet. This series was 
presented as the simplest type of the wavelet first introduced 
by Alfred Haar in 1909. Mathematically, the wavelet is a 
set of fixed piece functions that can approximate a func-
tion. Among the published papers, Hein and Feklistova [34] 
investigated Haar wavelets to study free vibrations of non-
uniform and axially functionally graded beams under differ-
ent boundary conditions. They transformed their equations 
based on the simplest wavelets. Their results were appropri-
ately matched with the other presented works. Lepik [35] 
based on the Euler–Bernoulli beam model studied an elastic 
local beam containing a crack subjected to a longitudinal 
in-plane load based on the Haar wavelet method. His results 
proved the high accuracy of the Haar wavelet method. Kirs 
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et al. [36] analyzed dynamically a nonlocal Euler–Bernoulli 
beam model based on the Haar wavelets. They also car-
ried out three boundary conditions, namely pined–pined, 
clamped–clamped, and clamped–pined ones.

As it has been seen so far, the properties of materials such 
as their energy at the nanoscale vary with their large-scale 
state. However, the size reduction is a physical change, and 
it is not expected that the basic properties of the material 
will change with this physical change. This has made the 
nanoscale more attractive than other scales. Properties such 
as electrical conductivity, color, mechanical strength, and 
even weight can be changed at the nanoscale. For example, 
the conductivity of metals is well known. However, metals 
can be a semiconductor or even insulated on a nanoscale. 
Nanomaterials also have a much higher surface-to-volume 
ratio compared to bulk materials. This is a fundamental 
property that is extremely important in all processes that 
occur on the surface of the material (such as reactivity). So it 
can be stated that nano does not just mean a thousand times 
smaller than micro. Investigating the mechanical behavior of 
a nanostructure at the nanoscale is in dire need of a suitable 
theory that to date elasticity theory of nonlocal of Eringen 
[37–42], couple stress [43, 44] and strain gradient theories 
[45–49] predict the behavior of nanostructures extensively as 
a mechanical analysis under different conditions. However, 
in this study, the size-dependent effects have been described 
employing the nonlocal strain gradient theory, which is a 
combination of the Eringen’s nonlocal theory and the sec-
ond-order Mindlin strain gradient theory, which can well 
show the effects of size reduction and atomic interaction 
[50, 51].

More recently, some researchers have focused on the main 
model of nonlocal strain gradient theory, namely its integral 
forms [52, 53]. As a matter of fact, both nonlocal and strain 
gradient terms instead of their differential models have been 
re-considered in their integral models. They have found that 
in some beam analyses, the results of differential models 
may be inconsistent with the integral ones’ results. In addi-
tion, in some valuable researches [54, 55], researchers have 
presented that while considering nonlocal elasticity theory 
of Eringen or nonlocal strain gradient approach, there have 
been more appropriate numerical outcomes if the effect of 
change in the thickness is investigated in the gradients of 
stress and strain, that is, although the effect of changes in 
the thickness has been ignored in the strains by researchers, 
the effect of size-dependent can be crucial in the thickness 
direction. Of some important conclusions within these stud-
ies, they showed that the thickness effect strengthens the c 
effect of nonlocal strain gradient theory and by ignoring the 
effect of thickness the stiffness-hardening effect is underesti-
mated. In fact, the stiffness-hardening and stiffness-softening 
influences are affected by the length to thickness ratio when 
considering the thickness effect.

This research has come to consider profoundly and com-
prehensively various advanced numerical approaches, namely 
Haar wavelet method (HWM), higher order Haar wave-
let method (HOHWM) and differential quadrature method 
(DQM) to analyze a nanobeam under mechanical stability 
situation. To this, the classical beam model is embedded in 
the energy formulation to extract the equilibrium equations and 
the strain gradient nonlocal model reformulates the obtained 
local equations to implement a nanoscale behavior in the 
problem. Moreover, the Winkler elastic matrix is assumed to 
be as an outer effect. Afterward, several diagrams are graphi-
cally plotted with the results of the HWM, HOHWM, and 
DQM for two boundary conditions, namely pined–pined and 
clamped–clamped ones to show the stability behavior of the 
modeled nanobeam.

2  Review of the strain gradient model

The stress field as per the first-order nonlocal strain gradient 
model [19, 50–68] is presented as

w h e r e  �♢

xx
=

L∫
0

E�
(
x, x�, e0a

)
��
xx

(
x�
)
dx�  a n d 

�∗
xx
= l2

L∫
0

E�∗
(
x, x�, e1a

)
��
xx,x

(
x�
)
dx� denote the classical 

nonlocal stress tensor and the higher order nonlocal stress 
tensor, respectively. �

(
x, x′, e0a

)
 and �∗

(
x, x�, e1a

)
 are the 

nonlocal kernel, �xx and �xx,x represent the strain and gradient 
of strain, L and l are the length of nanobeam and material 
length-scale parameter, and e0a , and e1a are the nonlocal 
parameters due to the higher order strain gradient stress 
field. Applying the nonlocal differential operator (
�i = 1 −

(
eia

)2
∇2 , i = 0, 1

)
 on the stress field, viz. 

Eq. (1), the first-order strain gradient model for a one-dimen-
sional elastic material is described as [53]

Considering e0 = e1 , Eq. (2) is converted into [50–68]:

3  Formulation of proposed model

The displacement field of the Euler–Bernoulli beam at any 
point may be defined as [37]
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where u1, u2, and u3 represent displacements along x, y, and 
z directions, respectively, whereas u (x, t) and w (x, t) denote 
axial and transverse deflections of the point on the mid-plane 
of the beam. Using von Kármán hypothesis, the nonlinear 
strain–displacement relation may be expressed as

Hamilton’s principle for the conservative system is pre-
sented as

where U is the strain energy and We is the work done by 
the elastic foundation. The variations in strain energy and 
external work done are given as

where kw is the Winkler modulus, �xx is the normal stress, 
N = ∫

A

�xx dA, and M = ∫
A

�xx z dA are axial force and bend-

ing moment, respectively. Substituting Eqs. (7) and (8) in 
Eq. (6) and setting �

∏
= 0 , we have

On simplification of Eq. (9) and taking Nxx = P , the con-
stitutive relation may be derived as

Multiplying Eq. (3) by zdA and integrating over A , we have

(4a)u1(x, z, t) = u (x, t) − z
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,
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where e0 and a denote material constant and internal charac-
teristic length, respectively, I = ∫

A

z2dA is the second 

moment of inertia and E is Young’s modulus. Inserting 
Eq. (10) in Eq. (11), the nonlocal bending moment Mnl

xx
 can 

be changed into

Putting Eq.  (12) in Eq.  (10), and assuming 
w (x, t) = w0(x) sin�t , the governing equation is given as

Now, using X =
x

L
, W =

w0

L
, Kw =

kwL
4

EI
, P̂ =

PL2

EI
 and � =

l

L
 

in Eq. (13), the normalizing form of governing equation may 
be derived as

4  Preliminaries

4.1  Haar wavelet

The Haar function can be expressed as [28–30, 35, 36, 69, 
70]

where i = m + k + 1 , where m = 2j and k denote the 
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The � th integral of the Haar function (for i > 1 ), pre-
sented in Eq. (1) can be derived analytically as [28–30, 35, 
36, 69, 70]

For i = 1 ,  we have �1 = I1 ,  �2 = �3 = I2  and 
p�, 1(t) =

1

� !
(t − S)�.

The collocation points are considered as [29, 35, 70] 

H, P1, P2, P3,… ,P� are the Haar matrices of dimension 
2J+1 and the elements of these matrices are expressed by 
H(i, k) = hi(xk) and P�(i, k) = p�, i(xk).

4.2  Differential quadrature method

In the present investigation, Quan and Chang’s [71, 72] 
version of Differential Quadrature Method has been imple-
mented. According to this approach, the derivatives of any 
function W(X) at a given discrete point i can be expressed 
as linear sums of functions at discrete grid points, which are 
demonstrated as [31–33]
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where Aij,Bij,Cij , Dij , Eij and Fij are the weighting coefficient 
matrices, and N is the number of discrete grid points. Che-
byshev–Gauss–Lobatto grid points have been used in this 

study which is defined as [31–33]

The weighting coefficient matrices can be computed using 
Lagrange interpolation by the following procedure [31–33].

For i ≠ j,

for i = j

Other weighting coefficients of higher order derivatives can 
be produced by performing matrix multiplications as [31–33]
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5  Implementation of HWM, HOHWM, 
and DQM in the proposed model

For the investigation of buckling behavior of stain gradient 
nonlocal beam, pined–pined (P–P), and clamped–clamped 
(C–C) boundary conditions are taken into consideration which 
is given as [58]
Pined–pined (P–P):

Clamped–clamped (C–C):

5.1  Haar wavelet method

According to HWM, the highest order derivative of the govern-
ing equation, viz. d

6W

dX6
 in Eq. (14) can be expressed as [35, 36]

where N = 2J+1 . Performing sixth-time integration succes-
sively, we have
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Here c =
(
c1, c2, c3,… cN

)T and d1, d2, d3, d4, d5, and 
d6 are integration constants which are different for particular 
boundary conditions. Substituting Eq. (29) with proper bound-
ary condition, the governing Eq. (14) will be converted into an 
Eigenvalue problem as

where the Eigenvalue P̂ is the buckling load parameter.

Theorem 1 Let us assume a square-integrable, finite func-
tion �(x) = d

n�(x)

dxn
 in the interval [0, 1] and ∃ � such that 

|||
d�(x)

dx

||| ≤ � , for all x ∈ [0, 1] , then the HWM based on the 
discretized approach is convergent and the order of conver-
gence is computed as two.

Proof For the proof, one may see an interesting paper [73].□

5.2  Higher order haar wavelet method

From Theorem 1, it is found that the order of convergence of 
HWM is two. To improve the order of convergence, Majak 
et al. [30] proposed another approach. According to this tech-
nique, we have

where n is the highest order derivative and � is the extra 
term which is going to enhance the order of convergence of 
HOHWM. Assigning � = 1 , n + 2 integration constants will 
be generated and the extra two integration constants can be 
handled using the algorithm presented in [30, 74].

Now setting � = 1 and following the procedures of 
HOHWM, we obtain

Integrating successively, we get
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Here C =
(
c1, c2, c3,… cN

)T  and d1, d2, d3, d4, d5, 
d6, d7 and d8 are integration constants. Out of these eight 
constants, six can be obtained from each of the boundary 
condition, presented in Eqs. (26) and (27) whereas the rest 
two can also be obtained from the governing equation as

Plugging Eq. (31) in governing Eq. (14) and performing 
the procedures properly as mentioned in [30, 74], governing 
Eq. (14) will be converted into a generalized Eigenvalue prob-
lem as Eq. (30) where the Eigenvalues represent the buckling 
load parameters.

5.3  Differential quadrature method

Applying Eqs. (21–25) in Eqs. (26–27), the pined–pined (P–P) 
and clamped–clamped (C–C) boundary conditions are given 
as [19]
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Pined–pined:

Clamped–clamped:

in which A, Ā, Ā1 and Ā2 are given as

{W �} = [Ā]{W}

{W ��} = [A] {W �} = [A] [Ā]{W} = [B̄]{W}

{W ���} = [Ā] {W ��} = [Ā] [B̄] {W} = [C̄] {W}

{WIV} = [A] {W ���} = [A] [C̄] {W}

= [B̄] [B̄] {W} = [D̄] {W}
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= [Ā] [B̄] [B̄] {W} = [Ē] {W}

{WVI} = [A] {WV} = [A] [Ē] {W}

= [A] [Ā][B̄] [B̄] {W} = [A] [Ā][D̄] {W} = [F̄] {W}.

{W �} = [Ā] {W}

{W ��} = [Ā] {W �} = [ Ā] [Ā] {W} = [B̄] {W}

{W ���} = [A] {W ��} = [A] [B̄] {W} = [C̄] {W}

{WIV} = [Ā] {W ���} = [Ā] [C̄] {W} = [D̄] {W}

{WV} = [A] {WIV} = [A] [D̄] {W}

= [A] [Ā] [C̄] {W} = [Ē] {W}

{WVI} = [A] {WV} = [A] [Ē] {W}

= [A] [A][Ā] [C̄] {W} = [F̄] {W},

A =

⎡⎢⎢⎢⎣

A11 A12 ⋯ A1,N−1 A1,N

A21 A22 ⋯ A2,N−1 A2,N

⋮ ⋮ ⋮ ⋮

AN1 AN2 ⋯ AN,N−1 AN,N

⎤⎥⎥⎥⎦

Ā =

⎡⎢⎢⎢⎣

0 A12 ⋯ A1,N−1 0

0 A22 ⋯ A2,N−1 0

⋮ ⋮ ⋮ ⋮

0 AN2 ⋯ AN,N−1 0

⎤⎥⎥⎥⎦

Ā1 =

⎡⎢⎢⎢⎣

0 A1,2 ⋯ A1,N

0 A2,2 ⋯ A2,N

⋯ ⋯ ⋯ ⋯

0 AN,2 ⋯ AN,N

⎤⎥⎥⎥⎦

Ā2 =

⎡
⎢⎢⎢⎣

A1,1 A1,2 ⋯ A1,N−1 0

A2,1 A2,2 ⋯ A2,N−1 0

⋯ ⋯ ⋯ ⋯ ⋯

AN,1 AN,2 ⋯ AN−1,N−1 0

⎤
⎥⎥⎥⎦
.
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Substituting Eq. (18) along with the above boundary con-
ditions in Eq. (14), a generalized Eigenvalue problem will 
be formed.

6  Numerical results and discussion

Governing Eq. (14) has been solved by HWM, HOHWM, 
and DQM as an Eigenvalue problem using MATLAB 
codes developed by the authors. The critical buckling load 
parameter 

(
P̂cr

)
 also has been obtained for pined–pined and 

clamped–clamped boundary conditions with E = 1 TPa, 
L = 10 nm, and h = 1 nm.

6.1  Validation

The critical buckling loads, obtained by HWM, HOHWM, 
and DQM for both the PP and CC boundary conditions are 
validated with Wang et al. [75] assigning Kw = 0 and � = 0 

whereas other parameters remain same as Wang et al. [75]. 
The comparisons of results are given in a graphical form 
which is illustrated in Fig. 1. The graphical results are drawn 
by varying the nonlocal parameter 

(
e0a

)
 from 0 to 2 with an 

increase of 0.5. From Fig. 1, it is revealed that the results 
obtained by present methods are showing a decent agree-
ment with the reference.

6.2  Convergence study

Convergence studies are carried out for all the three meth-
ods, viz. HWM, HOHWM, and DQM concerning the critical 
buckling load. In this regard, pined–pined boundary condi-
tion has been considered for the study. The critical buck-
ling loads are calculated with e0a = 0.5 , Kw = 50 , � = 0.2 , 
and L = 20 . For HWM, the convergence is attained at J = 5 
whereas, for HOHWM, the same results are obtained at 
J = 2 . In the case of DQM, the results start converging at 
N = 8 or J = 2 . These investigations are noted in Table 1 

Fig. 1  Validation of present 
results with [75]
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Table 1  Convergence of critical 
buckling load parameter 

(
P̂
cr

)
 

by HWM, HOHWM, and 
DQM with e0a = 0.5 , Kw = 50 , 
� = 0.2 and L = 20 for pined–
pined (P–P) boundary condition

J N = 2J+1 HWM HOHWM DQM o (HWM) o (HOHWM)

1 4 2.314765 2.301424 2.430377 – –
2 8 2.303851 2.300723 2.300684 – –
3 16 2.301451 2.300683 2.300680 2.1851 4.1364
4 32 2.300871 2.300680 2.300680 2.0503 4.0345
5 64 2.300728 2.300680 2.300680 2.0128 4.0086
6 128 2.300692 2.300680 2.300680 2.0032 4.0021
7 256 2.300683 2.300680 2.300680 2.0008 4.0005
8 512 2.300681 2.300680 2.300680 2.0002 4.0000
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and Fig. 2. Also, the order of convergence for HWM and 
HOHWM are calculated based on the formula presented in 
[76], and it is found that the order of convergence is approxi-
mately two and four, respectively. It may also be noted that 
HOHWM converges as fast as DQM exhibiting its suprem-
acy over HWM.

6.3  Effect of nonlocal parameter

The impacts of nonlocal parameters 
(
e0a

)
 are noted on the 

critical buckling load 
(
P̂cr

)
 and critical buckling load ratio 

in forms of tabular result and graphical plot. The criti-
cal buckling load ratio is defined as the ratio of critical 
buckling load parameter using nonlocal theory and criti-
cal buckling load parameter using classical theory. The 
results are calculated with Kw = 100 , � = 0.1 and L = 10 . 
Also, J = 8 for HWM, J = 4 for HOHWM, and N = 25 for 
DQM are taken in the computation. The nonlocal param-
eters 

(
e0a

)
 are varying from 0 to 4 with an increment of 

0.5. The results are demonstrated in Table 2 and Figs. 3 
and 4. From these results, it is observed that the critical 
buckling load parameters are decreasing with an increase 
of 

(
e0a

)
 for both the boundary conditions and this reduc-

tion in critical buckling load is more significant in case 
of clamped–clamped boundary condition.

6.4  Effect of strain gradient parameter

In this subsection, the response of the strain gradient param-
eter (�) on critical buckling load 

(
P̂cr

)
 has been noted with 

Kw = 200 , and L = 10 . Critical buckling loads are calcu-
lated for different nonlocal parameters 

(
e0a

)
 by varying 

strain gradient parameter from 0 to 1 with an increment of 
0.2. Critical buckling loads increase with the increase of 
strain gradient parameters, but this increase is much faster 
in case of clamped–clamped boundary conditions, which 
can be illustrated in Table 3 and Figs. 4 and 5. Also, critical 
buckling load is maximum in the case of classical theory 
with higher values of strain gradient parameters, and this 
trend is equal for both the boundary conditions.

Fig. 2  Convergence study of 
HWM, HOHWM, and DQM
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Table 2  Effect of e0a on critical buckling load parameter 
(
P̂
cr

)
 and 

critical buckling load ratio by HWM, HOHWM and DQM with 
Kw = 100 , � = 0.1 and L = 10

e0a Pined–pined Clamped–clamped

P̂
cr

Critical load ratio P̂
cr

Critical load ratio

0 10.2965 1.0000 30.7494 1.0000
0.5 10.1683 0.9875 28.0985 0.9138
1 9.8183 0.9536 22.3967 0.7284
1.5 9.3292 0.9061 16.8676 0.5486
2 8.7899 0.8537 12.6817 0.4124
2.5 8.2657 0.8028 9.7509 0.3171
3 7.1799 0.6973 7.7219 0.2511
3.5 5.8748 0.5706 6.2973 0.2048
4 4.9377 0.4796 5.2743 0.1715
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6.5  Effect of Winkler modulus parameter

The impacts of Winkler modulus parameters 
(
Kw

)
 on criti-

cal buckling loads are studied through this subsection. The 
results are computed with e0a = 1 , and L = 10 by HOW, 
HOHWM, and DQM by considering J = 8 , J = 4 , and 
N = 20 , respectively. Both the boundary conditions such 
as PP and CC are considered for the study by changing Kw 
from 0 to 500 with an increase of 100 for different values of 
strain gradient parameters. Both the graphical and tabular 
results are presented in Figs. 6 and 7, and Table 4. From 

these results, it can be concluded that the increase of Win-
kler modulus parameter increases the critical buckling load 
for both the boundary conditions. Also, this increases much 
higher in CC boundary condition with higher values of strain 
gradient parameters.

6.6  Buckling mode shape

Buckling mode shape is essential to predict the buck-
ling characteristics of structural members. In this regard, 
mode shapes are plotted by considering the PP boundary 

Fig. 3  a Critical buckling load 
versus nonlocal parameter, 
b critical buckling load ratio 
versus nonlocal parameter
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Fig. 4  Critical buckling load 
versus strain gradient parameter 
for PP case
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Table 3  Effect of � on critical 
buckling load parameter 

(
P̂
cr

)
 

by HWM, HOHWM, and DQM 
with Kw = 200 , and L = 10

� Pined–pined Clamped–clamped

P̂
cr

(
e0a = 0

)
P̂
cr

(
e0a = 1

)
P̂
cr

(
e0a = 2

)
P̂
cr

(
e0a = 0

)
P̂
cr

(
e0a = 1

)
P̂
cr

(
e0a = 2

)

0 14.7919 14.3567 10.0005 26.6948 19.7635 10.7700
0.2 16.7045 16.0975 14.7919 57.4281 41.8764 23.7876
0.4 22.4424 21.3200 18.9057 149.2444 107.7055 59.3884
0.6 32.0055 30.0240 25.7621 302.2572 217.4091 118.7157
0.8 45.3939 42.2097 35.3609 516.4730 370.9927 201.7729
1 62.6075 57.8770 47.7024 791.8928 568.4567 308.5605

Fig. 5  Critical buckling load 
versus strain gradient parameter 
for CC case
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Fig. 6  Critical buckling load 
versus Winkler modulus param-
eter for PP case

0 50 100 150 200 250 300 350 400 450 500
Winkler modulus parameter

0

5

10

15

20

25

30

35

40

45

C
rit
ic
al

bu
ck

lin
g
lo
ad

pa
ra
m
et
er

=0
=0.25
=0.5

Fig. 7  Critical buckling load 
versus Winkler modulus param-
eter for CC case
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Table 4  Effect of Kw on critical 
buckling load parameter 

(
P̂
cr

)
 

by HWM, HOHWM, and DQM 
with e0a = 1 , and L = 10

K
w

Pined–pined Clamped–clamped

P̂
cr
(𝛽 = 0) P̂

cr
(𝛽 = 0.25) P̂

cr
(𝛽 = 0.5) P̂

cr
(𝛽 = 0) P̂

cr
(𝛽 = 0.25) P̂

cr
(𝛽 = 0.5)

0 4.4095 7.1295 15.2896 13.8939 48.1758 151.0215
100 9.3831 12.1031 20.2632 16.8814 51.2004 154.0474
200 14.3567 17.0767 25.2368 19.7635 54.2215 157.0724
300 17.6240 22.0503 30.2104 22.4776 57.2391 160.0965
400 18.8674 27.0239 35.1840 24.9242 60.2529 163.1197
500 20.1108 31.9975 40.1576 26.0613 63.2630 166.1420
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condition with Kw = 100 , � = 0.2 and L = 10 . Mode 
shapes are plotted for different nonlocal parameters such 
as e0a = 0, e0a = 0.5 and e0a = 1 which can be seen in 
Fig. 8. From this figure, it is found that the critical buck-
ling loads are affected significantly by varying different 
scaling parameters.

7  Concluding remarks

Buckling behavior of strain gradient nonlocal beam 
embedded in Winkler elastic foundation is studied using 
HWM, HOHWM, and DQM. The validation of the present 
model is conducted and found to be perfectly agreeing 
with the previously published article. A convergence study 
is also performed to exhibit the superiority of the meth-
ods. The responses of all the scaling parameters on criti-
cal buckling loads are also reported in terms of graphical 
and tabular results for both the boundary condition such 
as pined–pined and clamped–clamped. Followings are the 
main observations regarding the present investigation;

• The HOHWM and DQM are converging much faster 
as compared to HWM. The order of convergence of 
HOHWM is found to be four, whereas the order of con-
vergence of HWM is two.

• The critical buckling loads are decreasing with an 
increase of nonlocal parameters for both the boundary 
condition and this reduction in critical buckling load is 

more significant in case of clamped–clamped boundary 
condition.

• The critical buckling loads increase with the increase 
of strain gradient parameters, but this increase is much 
faster in case of clamped–clamped boundary condi-
tions, and the critical buckling load is maximum in 
case of classical theory with higher values of strain 
gradient parameters, and this trend remains constant 
for both the boundary conditions.

• An increase in Winkler modulus parameter increases 
the critical buckling load for both the boundary condi-
tions, and this increase is much higher in CC boundary 
condition with higher values of strain gradient param-
eters.
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