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Abstract
A class of nonlinear Mathieu–Hill equation is established to determine the bifurcations and the regions of nonlinear

dynamic instability of a short double-walled nanobeam, while the emphasis is placed on investigating the effect of residual

surface stress on instability. To achieve this goal, first, a short double-walled nanobeam is modeled and embedded on a

viscoelastic foundation and subjected to an axial parametric force. Second, based on the nonlocal elasticity and nonlinear

von Karman beam theories, the nonlinear governing equation of motion is derived. Finally, Galerkin technique and

multiple time scales method are used to solve the equation. Numerical examples are treated which show various dis-

continuous bifurcations. Also, infinitely stable and unstable solutions are addressed.
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1 Introduction

Knowledge and application of that knowledge are two

different sides of the same coin. Recent advances in the

application of nanotechnology have resulted in the manu-

facture of nanoelectromechanical devices. The attractive-

ness of them is due to their excellent and distinctive

mechanical and electrical properties. Among them, carbon

nanotubes (CNTs) have been regarded as a class of smart

materials and attracted the attention of many researchers

for application in optical transparency [1, 2], resonators

[3–5], diagnosis of gas atoms [6], memory devices [7] and

composite material [8].

In the following, it has been proved that the mechanical

characteristics of nanostructures such as nanobeams are

size dependent [9]. An investigation presented by Eringen

and Edelen [9] revealed that the classical continuum theory

is longer eligible for studying nanostructures. Thanks to

recent advances in the technology of nanostructures, many

researchers in their investigations [10–16] applied the

nonlocal elasticity theory proposed and developed by

Eringen and Edelen [9, 17]. The results emphasize that

nanostructures are size dependent and the considered

interaction between atoms should not be ignored.

Many studies have treated the problem with the effect of

surface energy. It is well-known that due to increasing the

ratio of surface area to bulk, the effect of surface energy

becomes crucial and significant. Therefore, it should be

taken into consideration. It is worth mentioning that after

proposing a new theory of surface effects on nanoscale

structures by Gurtin and Murdoch [18, 19], great attention

was given to surface effects including high-order and

residual surface stress in nanostructures. A two-dimen-

sional theory of piezoelectric plates and shells by surface

effects was established by Zhang et al. [20, 21]. Recently,

Shaat et al. [22] realized that the effect of surface energy

should be taken into consideration using Gurtin and Mur-

doch theory. Developing a continuum model, Dingreville

et al. [23] took free surface energy into account and studied

the effects of surface layers on the elastic behavior of

nanowires. In another study, applying nonlocal strain gra-

dient theory, Lu and his co-workers [24] found that the

surface effects can influence the critical buckling at a high

length-to-thickness ratio. To achieve this goal, they
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developed a size-dependent nanoplate. Effects of surface

elasticity and residual surface stress on vibration behavior

of microbeams were illustrated by Wang and Feng [25].

Karimi and Shahidi [26] demonstrated the effect of surface

energy on buckling analysis of skew nanoplates. It was

concluded that by increasing the skew angle, the surface

layers have less effect on the buckling of nanoplate.

Moreover, emphasizing the surface effects on nonlinear

vibration characteristics, Ebrahimi and Hosseini [27]

developed a double-layered viscoelastic nanoplate. Flexo-

electricity and surface effects on vibration and mechanical

behavior of nanoplates were studied by Ebrahimi and

Barati [28, 29]. They found that considering the surface

effect enhances the stiffness of flexoelectric nanoplate as

well as natural frequency. Using couple stress and surface

elasticity theories, Shaat and Mohamed [30] investigated

the size-dependent results of nonlinear electrostatic model

of actuated beams. Mechanical properties and buckling of

nanowires incorporating surface elasticity and residual

surface tension were investigated by Wang and Feng [31].

Chen et al. [32] modeled a Timoshenko beam to study the

effects of surface stresses on the natural frequencies of

functionally graded (FG) nanobeams (Table 1).

There are literatures devoted to dynamic instability

including linear and nonlinear characteristics. She et al.

[33, 34] investigated the effect of nonlinearity on the

mechanical characteristics and buckling of FG porous

nanobeams. Recently, Krylov and his co-workers [35]

concluded that parametric excitation is able to make a

stable region larger and instability of the system consid-

erably depends on the damping coefficient. Wang et al.

[36] used CNTs to study the effect of parametric excitation

on instability. It was found that parametric excitation

produces a gap between positive and negative detuning

parameters. Other researches [37–39] also demonstrated

the influence of parametric excitation on energy harvesting

system. According to their results, amplitude in energy

harvesting systems is considerably affected by parametric

excitation. Wang [40] and Yan et al. [41] also explained the

effect of parametric excitation on the characteristics of

beams including Timoshenko beam model. The influence

of thermo-magneto-mechanical loads in nonlinear insta-

bility of a short nanobeam exposed to an external para-

metric was conducted by Ghadiri and Hosseini [42]. The

above literature survey in dynamic instability of

micro/nanostructures clarifies that dynamic instability of

micro- and nanostructures has been untouched in many

aspects [43, 44].

Motivated by the lack of sufficient accuracy in the effect

of residual surface stress on nonlinear dynamics and

instability of double-walled nanobeams caused by an axial

force producing parametric excitation, in the present study,

the effect of considering residual surface stress on non-

linear dynamics and instability of double-walled nano-

beams subjected to an external parametric excitation is

investigated. A short double-walled nanobeam is modeled

Table 1 Parameter definitions

Symbol Expression Symbol Expression

E Young’s modulus L Length of the beam

skl The classical stress tensor b1; b2 Inner and outer width of nanobeam

s0 Residual surface stress h1; h2 Inner and outer thickness of nanobeam

Es Surface elastic modulus c van der Waals coefficient

rxx The axial normal stress A1;A2 Cross-sectional area of inner and outer layers

exx The axial normal strain e0 Nonlinear strain vector

l1;l2 Damping coefficient of inner and outer layers T0;T1 Time scales

r1 Detuning parameter of inner layer cd Viscous damping coefficient

r2 Detuning parameter of outer layer d1 Parametric excitation amplitude of inner layer

e0a Nonlocal parameter d2 Parametric excitation amplitude of outer layer

b1;b2 Nonlinearity coefficient of inner and outer layers I1; I2 The moment of inertia of outer and inner layers

e Strain vector kw Winkler foundation coefficient

j Variation of curvature vector f1; f2 Transverse load

F1;F2 Force amplitude X Frequency excitation

t Time � Scaling parameter

q Mass density u Displacement of neutral layer

x10 Natural frequency of inner layer w Nanobeam deflection

x20 Natural frequency of outer layer
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and embedded on a viscoelastic foundation. In the next

step, nonlinear governing equation of motion is derived,

while the nonlocal elasticity theory and nonlinear von

Karman beam theory are applied. To solve the equations,

Galerkin technique and multiple time scales method are

employed as well. A class of nonlinear Mathieu–Hill

equation is established to analyze the nonlinear instability

of the system while the emphasis is placed on study of

bifurcations.

2 Problem formulation

In Fig. 1, the schematic of double-walled nanobeam

embedded on a viscoelastic foundation under an axial force

is shown. For each layer of nanobeam, an axial force is

employed as a function with a harmonic excitation with

frequency Xð Þ. The thermo-magneto-mechanical loads are

applied to expose the outer layer. Besides, the viscoelastic

foundation is a combination of viscous damping coefficient

cdð Þ and Winkler coefficient kwð Þ. The length of nanobeam

taken is L and the inner and outer diameters of nanobeam

are di and do, respectively.

2.1 Constitutive relations

Referring to the nonlocal elasticity theory presented by

Eringen [45, 46], the key idea of the Eringen theory is that

the nonlocal stress tensor rkl;l at point X can be defined as

below:

rkl;k � q€ul ¼ 0; ð1Þ

rkl Xð Þ ¼ r
V

K X;X0ð Þskl X0ð ÞdV X0ð Þ; ð2Þ

rkl ¼
1

2
uk;l þ ul;k
� �

; ð3Þ

where K X;X0ð Þ is the Kernel function and represents the

nonlocal modulus. Eringen [46] demonstrated that it is

possible to represent the integral constitutive relation in an

equivalent differential form as:

1 � e0að Þ2r2
� �

r ¼ s; ð4Þ

where r2 ¼ o2

ox2 is the Laplacian operator. In addition, e0að Þ
is the nonlocal parameter in which e0 is a constant deter-

mined by experiments and proportionate to each material

and a denotes internal characteristic length. According to

nonlocal constitutive relations, it yields for nanobeams as:

rxx � e0að Þ2o
2rxx
ox2

¼ Eexx: ð5Þ

Here we can define new terms as the axial force and the

resultant bending moment so that:

N;Mf g ¼ r
A

rx 1; zð ÞdA; ð6Þ

in which z depicts the transverse coordinate in the deflec-

tion direction. The displacements can be written as below:

u1 x; z; tð Þ ¼ u x; tð Þ � z
ow

ox
; u2 ¼ 0; u3 x; z; tð Þ ¼ w x; tð Þ:

ð7Þ

Here applying the nonlinear von Karman strain, it

yields:

e ¼ e0 þ zj: ð8Þ

Using Eqs. (7) and (8), it yields:

e0 ¼ ou

ox
þ 1

2

ow

ox

� �2

; j ¼ � o2w

ox2
: ð9Þ

From Eqs. (6)–(9), it can be written as:

Fig. 1 The double-walled nanobeam embedded in a viscoelastic foundation subjected to parametric excitation
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1 � e0að Þ2r2
� �

N ¼ EAe0

1 � e0að Þ2r2
� �

M ¼ EIj;
ð10Þ

where Ii ¼ r
Ai

z2dAi i ¼ 1; 2ð Þ. Finally, the equation of

motion is derived as follows [47, 48]:

EI1
o4w1

ox4
� o

ox
N1

ow1

ox

� �
þ e0að Þ2 o

3

ox3
N1

ow1

ox

� �

þ qA1

o2

o t
2

w1 � e0að Þ2o
2w1

ox2

� 	

¼ f1 � e0að Þ2o
2f1
ox2

;

ð11aÞ

EI2
o4w2

ox4
� o

ox
N2

ow2

ox

� �
þ e0að Þ2 o

3

ox3
N2

ow2

ox

� �

þ qA2

o2

o t
2

w2 � e0að Þ2o
2w2

ox2

� 	

¼ f2 � e0að Þ2o
2f2
ox2

;

ð11bÞ

in Eqs. (11a) and (11b), Ni i ¼ 1; 2ð Þ are defined as below:

N1 ¼ F1 cosX~t � EA1

2L

� 	 ZL

0

ow1

ox

� �2

dx; ð12aÞ

N2 ¼ F2 cosX~t � EA2

2L

� 	 ZL

0

ow2

ox

� �2

dx ð12bÞ

in Eqs. (12a), (12b), the term of axial force

Fi cosX~ti ¼ 1; 2ð Þ is the reason of parametric excitation of

the nanobeam. In Eqs. (11a) and (11b), fi i ¼ 1; 2ð Þ is

defined as below:

f1 ¼ c w1 � w2ð Þ; ð13aÞ

f2 ¼ kww2 þ cd
ow2

o~t
þ c w2 � w1ð Þ: ð13bÞ

Compared to bulk atoms in nanostructures, surface

atoms have different properties and characteristics so that

the surface effects should be considered when there is a

high ratio of surface to bulk. It is possible to link surface

stress rsð Þ and axial strain exxð Þ by defining the following

equation [49]:

rs ¼ ~s0 þ Esexx: ð14Þ

It can be shown that an effective distributed transverse

loading along the nanobeam length can be generated by the

effects of the residual surface tensions on the surfaces of

the Euler–Bernoulli nanobeam [25] so that:

q ¼ 2~s0bi
o2wi

ox2
: ð15Þ

Now, for Euler–Bernoulli nanobeam with surface

effects, Eq. (10) for the longitudinal force and the nonlocal

stress–strain relation can be written as follows [50]:

N ¼ EAið Þ�
ZL

0

owi

ox

� �2

dx

2

4

3

5þ 2~s0bi

M � e0að Þ2o
2M

ox2
¼ EIið Þ�o

2w

ox2
:

ð16Þ

Here (EI2)* and (EAi)* can be expressed as follows

[51, 52]:

EIið Þ�¼ E
bih

3
i

12

� �
þ Es h3

i

6
þ bih

2
i

2

� 	
;

EAið Þ�¼ EAi

2L
þ Es hi þ bi

L

� 	
;Ai ¼ hibi; i ¼ 1; 2:

ð17Þ

According to Eqs. (11a, 11b–17), the governing equa-

tion of motion of Euler–Bernoulli nanobeam including

surface effects is derived as:

� EI1ð Þ�o
4w1

ox4
� F1 cosX�t � EA1ð Þ�r

L

0

ow1

ox

� �2

dx

( )
o2w1

ox2

þ e0að Þ2o
4w1

ox4
F1 cosX�t � EA1ð Þ�r

L

0

ow1

ox

� �2

dx

( )

þ 1 � e0að Þ2r2
� �

c w1 � w2ð Þ � 2~s0

o2w1

ox2
� e0að Þ2o

4w1

ox4

� 	

¼ qA1

o2w1

o�t2
� e0að Þ2 o4w1

o�t2ox2

� �
;

ð18aÞ

� EI2ð Þ�o
4w2

ox4
� F2 cosX�t � EA2ð Þ�

ZL

0

ow2

ox

� �2

dx

8
<

:

9
=

;
o2w2

ox2

þ cd
ow2

o�t
þ kww2

þ e0að Þ2o
4w2

ox4
F2 cosX�t � EA2ð Þ�r

L

0

ow2

ox

� �2

dx

( )

þ 1 � e0að Þ2r2
� �

c w2 � w1ð Þ

� 2~s0

o2w2

ox2
� e0að Þ2o

4w2

ox4

� 	

� e0að Þ2kw
o2w2

ox2
� e0að Þ2cd

o3w2

o�tox2

¼ qA2

o2w2

o�t2
� e0að Þ2 o4w2

o�t2ox2

� �
:

ð18bÞ

Now, nondimensional parameters can be used for better

understanding as follows:
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X ¼ x

L
;Wi ¼

wi

L
; c ¼ e0a

L
;Kw ¼ kwL

4

EIið Þ� ;

Cd ¼ cd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L4

qAi EIið Þ�

s

; s0 ¼ ~s0bL
2

EIið Þ� ; t ¼
�t

L2

ffiffiffiffiffiffiffiffiffiffiffiffi
EIið Þ�

qAi

s

C ¼ cL4

EIi
i ¼ 1; 2:

ð19Þ

In Eqs. (18a) and (18b), the Winkler-type foundation is

taken from Ref. [53]. Substituting nondimensional param-

eters into Eqs. (18a) and (18b), it yields:

o4W1

oX4
� F1 cosXt � r

L

0

oW1

oX

� �2

dX

( )
o2W1

oX2
þ c2 o

4W1

oX4

F1 cosXt � r
L

0

oW1

oX

� �2

dX

( )

� 2s0

o2W1

oX2
� c2 o

4W1

oX4

� 	
þ C W1 �W2ð Þ

� Cc2 o2W1

oX2
� o2W2

oX2

� �

¼ o2W1

ot2
� c2 o4W1

ot2oX2

� �

ð20aÞ

o4W2

oX4
� F2 cosXt � r

L

0

oW2

oX

� �2

dX

( )
o2W2

oX2

þ Cd
oW2

ot
þ KwW2

þ c2 o
4W2

oX4
F2 cosXt � r

L

0

oW2

oX

� �2

dX

( )

� 2s0

o2W2

oX2
� c2 o

4W2

oX4

� 	

� c2Kw
o2W2

oX2
� c2Cd

o3W2

otoX2
þ C W2 �W1ð Þ

� Cc2 o2W2

oX2
� o2W1

oX2

� �

¼ o2W2

ot2
� c2 o4W2

ot2oX2

� �
:

ð20bÞ

For a simply supported double-walled nanobeam, the

corresponding boundary conditions would be:

Wi ¼ 0;
o2Wi

oX2
¼ 0; at X ¼ 0;X ¼ L i ¼ 1; 2ð Þ: ð21Þ

2.2 Galerkin technique

Now, Galerkin technique is employed to solve the equa-

tions so that an approximate solution is substituted into

Eqs. (20a) and (20b). Therefore, the approximate solution

is assumed as follows:

Wj x; tð Þ ¼
X1

k¼1

wjk tð Þ sin
kpx
L

ð22Þ

In Eq. (22), w tð Þ and sin kpx
L are time-dependent function

and the spatial basis function, respectively. It is noted that

for fundamental frequency, we assume k ¼ 1. Now, sub-

stituting Eq. (22) into Eqs. (20a) and (20b), it yields:

€w1 þ x2
10w1 þ b1w

3
1 � d1 cos Xtð Þw1 � v1w2 ¼ 0 ð23aÞ

€w2 þ x2
20w2 þ 2l2

_w2 þ b2w
3
2 � d2 cos Xtð Þw2 � v2w1 ¼ 0;

ð23bÞ

in Eqs. (23a) and (23b), � � � 1ð Þ is known as scaling

parameter. For other parameters, it can be written as:

x2
10 ¼ C þ 1

1 þ c2
p
L

� �2
� �

p
L

� �4

8
>><

>>:

9
>>=

>>;
;

x2
20 ¼ C þ kw þ 2s0½ � p

L

� �2

þ 1

1 þ c2
p
L

� �2
� �

p
L

� �4

8
>><

>>:

9
>>=

>>;
;

b1 ¼ 1

2

p
L

� �4

; b2 ¼ 1

2

p
L

� �4

; l2 ¼ Cd

2
; d1 ¼ F1

p
L

� �2

;

d2 ¼ F2

p
L

� �2

; v1 ¼ v2 ¼ C:

ð24Þ

2.3 Multiple scale method

In this section, to solve Eqs. (23a) and (23b), a set of first-

order approximations is applied as [54]. This set of first-

order approximations is known as multiple time scales

approach and proposed by Nayfeh and Mook [54]. There-

fore, it yields:

w1 t;ð Þ ¼ w10 T0; T1ð Þ þ w11 T0; T1ð Þ ð25aÞ
w2 t;ð Þ ¼ w20 T0; T1ð Þ þ w21 T0; T1ð Þ: ð25bÞ

For T0 and T1 in Eqs. (25a) and (25b), we have:

T0 ¼ t; T1 ¼ �t: ð26Þ

And also, we define operators as:

d

dT
¼ d

dT0

þ d

dT1

þ � � � ¼ D0 þ D1 þ � � � ; ð27aÞ

d2

dT2
¼ d2

dT2
0

þ 2

Z
d

dT0

d

dT1

þ � � � ¼ D2
0 þ 2

Z
D0D1 þ � � � :

ð27bÞ

At first, substituting Eqs. (25a), (25b) and (27a), (27b)

into Eqs. (23a) and (23b) then, for the coefficients of �0 and

�1, it can be obtained as:
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�0 : D2
0w10 þ x2

10w10 ¼ 0 ð28aÞ

D2
0w20 þ x2

20w20 ¼ 0 ð28bÞ

�1 : D2
0w11 þ x2

10w11

¼ �2D0D1w10 � b1w
3
10 þ v1w20 þ d1w10 cosXT0

ð29aÞ

D2
0w21 þ x2

20w21 ¼ �2D0D1w20 � 2l2D0w20 � b2w
3
20

þ v2w10 þ d2w20 cosXT0:

ð29bÞ

To solve Eqs. (28a) and (28b), a general solution may be

introduced as:

w10 ¼ A T1ð Þeix10T0 þ �A T1ð Þe�ix10T0 ; ð30aÞ

w20 ¼ B T1ð Þeix20T0 þ �B T1ð Þe�ix20T0 : ð30bÞ

Now, A and B are unknown and �A and �B are the complex

conjugate of A and B. Using Eqs. (30a), (30b) and substi-

tuting in Eq. (28a) and (28b), it yields:

D2
0w11 þ x2

10w11 ¼ �2ix10A
0eix10T0 � b1A

3e3ix10T0

� 3b1A
2 �Aeix10T0 þ v1Be

ix20T0

þ 1

2
d1Ae

i Xþ1ð ÞT0 þ 1

2
d1Ae

i X�1ð ÞT0 þ CC;

ð31aÞ

D2
0w21 þ x2

20w21 ¼ �2ix20B
0eix20T0 � il2x20Be

ix20T0

� b2B
3e3ix20T0 � 3b2B

2 �Beix20T0 þ v2Ae
ix10T0

þ 1

2
d2Be

i Xþx20ð ÞT0 þ 1

2
d2Be

i X�x20ð ÞT0 þ CC:

ð31bÞ

It is noted that there will be internal resonance when

x20 � 1. Now, by definition X ¼ 2x20 þ �r1;ð x20 ¼ 1 þ
�r2Þ that r1 and r2 are detuning parameters, we eliminate

the secular terms in Eqs. (31a) and (31b).

2ix10A
0 þ 3b1A

2 �A� v1Be
ir2T1 � 1

2
d1Ae

i r1þ2r2ð ÞT1 ¼ 0;

ð32aÞ

2ix20B
0 þ il2x20Bþ 3b2B

2 �B� v2Ae
�ir2T1 � 1

2
d2Be

ir1T1

¼ 0

ð32bÞ

To define a polar form for A and B as below, one can

write:

A T1ð Þ ¼ 1

2
a1 T1ð Þeik1 T1ð Þ ¼ 1

2
a1 cos k1 þ i sin k1ð Þ; ð33aÞ

B T1ð Þ ¼ 1

2
a2 T1ð Þeik2 T1ð Þ ¼ 1

2
a2 cos k2 þ i sin k2ð Þ: ð33bÞ

Substituting Eqs. (33a), (33b) into Eqs. (32a) and (32b),

it yields:

a
0

1 ¼ 1

2
v1a1 sin cþ d1

4x10

a1 sin rT1ð Þ ð34aÞ

a1c
0 ¼ a1k

0

2 þ a1r2 �
3

4x10

b1a
3
1 þ

1

2x10

v1a2 cos c

� d1

4x10

a1cos rT1ð Þ ð34bÞ

a
0

2 ¼ � 1

2
l2a2 þ

1

2x20

v2a1 sin gþ d2

4x20

a2 sin r1T1ð Þ

ð35aÞ

a2g
0 ¼ a2k

0

1 � a2r2 �
3

4x20

b2a
3
2 þ

1

2x20

v2a1 cos g

þ d2

4x20

a2cos r1T1ð Þ ð35bÞ

where,

c ¼ k2 � k1ð Þ þ r2T1

r ¼ r1 þ 2r2

g ¼ k1 � k2ð Þ � r2T1

8
<

:
: ð36Þ

According to Eqs. (34a, 34b)–(36), three different cases

can occur:

Case I: a1 ¼ 0; a2 6¼ 0

9b2
2a

4
2 þ 24x20r2b2a

2
2 þ 4x2

20l
2
2 þ 16x2

20r
2
2 � d2

2 ¼ 0

ð37Þ

Case II: a1 6¼ 0; a2 ¼ 0

9b2
1a

4
1 � 24b1r2a

2
1 þ 16r2

2 � d2
1 ¼ 0 ð38Þ

Case III: a1 6¼ 0; a2 6¼ 0

9b2
1a

6
1 � 24b1r2a

4
1 þ 16r2

2 � d2
1

� �
a2

1 � 4v1d1a2a1 � 4v2
1a

2
2

¼ 0;

ð39aÞ

9b2
2a

6
2 þ 24x20r2b2a

4
2 þ 4x2

20l
2
2 þ 16x2

20r
2
2 � d2

2

� �
a2

2

� 4v2d2a1a2 � 4v2
2a

2
1

¼ 0:

ð39bÞ

Finally, assuming l2 [ 0ð Þ, the stability of the system

can be evaluated. Therefore, defining Cartesian form of the

solution A ¼ 1
2
p1 � iq1ð Þeir1T1 ;B ¼

�
1
2
p2 � iq2ð Þeir2T1Þ and

based on Eqs. (32a) and (32b), it yields:

2ix10A
0 � v1Be

ir2T1 � 1

2
d1Ae

i r1þ2r2ð ÞT1 ¼ 0; ð40aÞ

2ix20B
0 þ il2x20B� v2Ae

�ir2T1 � 1

2
d2Be

ir1T1 ¼ 0: ð40bÞ

Substituting A and B in Eqs. (40a) and (40b), we rewrite

the process of the solution as below:
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p
0

1 � r1 þ
d1

4

� �
q1 �

v1

2
q2 ¼ 0 ð41aÞ

q
0

1 þ r1 þ
d1

4

� �
p1 þ

v1

2
p2 ¼ 0 ð41bÞ

p
0

2 þ
l2

2
p2 � r2 þ

d2

4x20

� �
q2 �

v2

2x20

q1 ¼ 0 ð42aÞ

q
0

2 þ
l2

2
q2 þ r2 þ

d2

4x20

� �
p2 �

v2

2x20

p1 ¼ 0 ð42bÞ

Now, it is assumed and substituted

p1 ¼ q1 ¼ p2 ¼ q2 ¼ 0ð Þ. Thus, Eqs. (41a), (41b) and

Eqs. (42a), (42b) are determined as follows:

D ¼ 1

16x2
20

2d1l
2
2r1x

2
20 þ

1

4
d2

1l
2
2x

2
20 þ d2

1r
2
2x

2
20 þ

1

2
d2d

2
1r2x20 þ 8d1r1r

2
2x

2
20

�

x2
20 þ 4d2d1r1r2x20 þ 8d2r

2
1r2x20 þ

1

2
d2

2d1r1 þ d2
2r

2
1 þ

1

16
d2

2d
2
1

þ 4l2
2r

2
1x

2
20 þ 16r2

1r
2
2x

2
20 � v2

1v
2
2

�
:

ð43Þ

The amplitude response for different cases can be

derived from Eqs. (37)–(39a, 39b). In addition, whenever,

D[ 0 in Eq. (43), the system is stable and D\0 means the

system is unstable. Equations (37)–(39a, 39b) and Eq. (43)

emphasize that outer layer of nanobeam plays an important

role in nonlinear instability of the inner layer in the system.

3 Results and discussion

In this section, numerical results of the present study are

presented and discussed in figures. Anterior to the major

discussion of this study, the formulation and the numerical

should be checked and validated. To achieve this goal,

some available literatures are used to have a comparison

between results. In the next step, the numerical results for

nonlinear dynamics and instability of double-walled

nanobeams are presented while it is focused on the effect of

residual surface stress on dynamic instability and bifurca-

tions in nonlinear instability of the system. In addition,

material properties of the nanobeam is taken as Young’s

modulus E = 1100 Gpa, the mass density q = 2.3 g/cm3,

the residual surface stress s0 = 0.89 N/m and the surface

elasticity Es= 1.22 N/m. Also, the inner and outer diame-

ters of the nanobeam are di= 0.7 nm and do= 1.4 nm,

respectively.

3.1 Validation of the study

From Fig. 2, the relation between the amplitude response

(ss) and detuning parameter (r) in nonlinear instability of a

short nanobeam exposed to an external parametric excita-

tion (d = 6) is observed. It is noted that ss is the amplitude

response of a single layer nanobeam. In fact, it can be

equalized with the amplitude response (ss1)of the double-

layered nanobeam in the present study. The results are also

compared with the results presented by Ghadiri and Hos-

seini [42] is observed. There is a good agreement, as can be

observed, between the results. It is found from Fig. 2 that

due to parametric excitation, stable (solid line) and unsta-

ble (dashed line) curves vary for different values of

amplitude response. In Fig. 2, bifurcations happen ‘‘out of

the clear blue sky’’ for stable and unstable curves. When

the amplitude response is equal to zero, we have two trivial

solutions before -5. After that, there is one trivial (unstable)

and one non-trivial (stable) solutions until 5. After detuning

parameter (r = 6), there are two non-trivial stable and

unstable solutions. It should be noted that Fig. 2 is

achieved when d[ 2l which l represents the damping

coefficient of the system of the single layer nanobeam.

3.2 Numerical results and discussion

As mentioned, in this section, the numerical results of the

effect of residual surface stress on nonlinear dynamics and

instability of double-walled nanobeam caused by an

external axial force is presented while the emphasis is

placed on investigating the effect of parametric excitation,

residual surface stress effect, viscoelastic foundation

coefficients and damping coefficient. To ensure better

understanding of nonlinear instability of the system,

bifurcations are discussed and identified in plots. Bifurca-

tions can be supercritical pitchfork, subcritical pitchfork

and or saddle node. In fact, bifurcations aid in a good view

of stable and unstable situations and regions in nonlinear

dynamics of the system.

-15 -10 -5 0 5 10 15
Detuning Parameter

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

a

Present work

Ghadiri and Hosseini [42]

Fig. 2 The relation between amplitude response að Þ and detuning

parameter rð Þ in nonlinear instability of a nanobeam subjected to an

external parametric excitation d ¼ 6ð Þ [42]
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Figure 3 demonstrates the effect of residual surface

stress on bifurcations in nonlinear instability of the system

for various values of force amplitude (d2) and amplitude

response (a2). As residual surface stress is increased, a shift

in bifurcation points is observed so that for negative values

of detuning parameter r2 [ 0ð Þ, it moves to the left side

and for positive values of detuning parameter r2 [ 0ð Þ, it

has a tendency to move toward the right side.

The effect of nonlinear coefficient b2ð Þ on amplitude

response a2ð Þ in nonlinear instability of the system for both

with surface stress and without surface stress s0ð Þ is dis-

played in Fig. 4. It would be clear from Fig. 4 that com-

pared to residual surface stress effect, the effect of

nonlinear coefficient is completely effective on amplitude

response of the system. As a matter of fact, as the nonlinear

coefficient is increased from 1 to 5, the amplitude response

considerably grows (Eq. (38). On the other hand, by con-

sidering the surface effect, amplitude response gradually

grows. In addition, in both plots, the bifurcations come up

with three situations including the saddle node, the super-

critical pitchfork and the subcritical pitchfork bifurcations.

From Fig. 5, it is observed that the effect of the foun-

dation coefficients Kw;Cdð Þ on the amplitude response a2ð Þ
of the system is considerable. It is noted that the residual

surface stress is taken s0 ¼ 1. In Fig. 5a, it can be seen that

as the Winkler coefficient increases from 0 to 100, the

subcritical pitchfork bifurcations have a considerable shift

along to the left side of the force amplitude d2ð Þ axis

(Eq. (38)). Therefore, for different values of the Winkler

coefficient, different bifurcations include the subcritical

pitchfork and the saddle node ones. For Fig. 5b, all

explanations of Fig. 5a are valid for Fig. 5b, however, the

effects of the viscous damping coefficient are lower than

Winkler coefficient on instability of the system. The pos-

sible reason of such a behavior is the effect of the foun-

dation coefficients Kw;Cdð Þ on the natural frequency of the

system.

To ensure better understanding of the residual surface

stress effect on the nonlinear instability of the system,

Fig. 6 presents the emphasis placed on investigating the

relation between the amplitude response and the residual

surface stress. Figure 6 states the relation between the

amplitude response a2ð Þ, the detuning parameter r2ð Þ and

the force amplitude d2ð Þ for different values of the residual

surface stress s0ð Þ in the nonlinear instability of the system.

As the residual surface stress effect is increased, the

amplitude response grows. It is worth mentioning that the

supercritical pitchfork bifurcation can be seen for various

values of the detuning parameter r2ð Þ. All points on the red

line (see, Fig. 6) introduce bifurcation points (the super-

critical pitchfork). Figure 6 is derived from Eqs. (39a) and

(39b).

In Fig. 7, one of the main results of the present study is

observed so that as the force amplitude d1ð Þ is increased

while other parameters are held constant, stable and

unstable curves (dashed lines and solid lines, respectively)

move far away and make the gap between them larger.

Also, Fig. 7 is obtained from Eq. (37). It means that the

stable region (the region between stable and unsta-

ble curves) become larger. At the same time, the super-

critical and subcritical pitchfork bifurcations would have a

shift towards high values of the detuning parameter r2ð Þ.
Moreover, as the force amplitude d1ð Þ is increased, the

amplitude response slowly decreases.

In contrast to Fig. 7, there is no shift in bifurcations

caused by an increase in the nonlinear coefficient b1ð Þ in

Fig. 8 (please see, Eq. (37)). From Fig. 8, it can be

revealed that the nonlinear coefficient b1ð Þ influences the
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2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
a 2

7.5 8 8.5

-0.05

0

0.05

0.1

0=0
0=1 0=2

Subcritical pitchfork Bif.

Saddle node Bif.

2 4 6 8 10 12 14 16

2

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

a 2

7.6 8 8.4 8.8
-0.1

-0.05

0

0.05

0.1

0=0
0=1

0=2

Supercritical pitchfork Bif.

Fig. 3 Effect of residual surface stress on bifurcations in nonlinear

instability of the system for various values of force amplitude d2ð Þ
and amplitude response a2ð Þ
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amplitude response a1ð Þ in nonlinear instability of the

system for different values of detuning parameter r2ð Þ. As

nonlinear coefficient b1ð Þ is increased, the amplitude

response a1ð Þ considerably decays. It reveals that nonlin-

earity can have more influence on the mechanical charac-

teristics of double-walled structures than the residual

surface stress effect.

The results of the present study in nonlinear dynamics of

double-walled nanobeams illustrate this point that com-

pared to single nanobeams [42], double-walled structures

such as nanobeams have different nonlinear behavior and

bifurcation properties. Furthermore, as can be seen in

derived equations and plots, the outer layer has more effect

on instability than the inner layer. It seems that the residual

surface stress effect on double-walled nanobeams is

inevitable in design of nanoelectromechanical devices.

4 Conclusions

As considering all phenomena associated with nanobeams

seems to be necessary, the literature is devoted to consid-

ering the effect of residual surface stress on nonlinear

dynamics and instability of double-walled nanobeams. A

class of nonlinear Mathieu–Hill equation is established to

determine the bifurcations and the regions of nonlinear

dynamic instability of a short double-walled nanobeam

while the emphasis is placed on investigating the effect of

residual surface stress on instability. In validation of the

numerical results, a good agreement between the results of

the present study and the results of the available literatures

is observed. Numerical examples are treated which show

various discontinuous bifurcations. Also, infinitely

stable and unstable solutions are addressed. It is noted that
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Fig. 5 The effect of foundation coefficients Kw;Cdð Þ on amplitude response a2ð Þ in nonlinear instability of the system with residual surface stress

s0 ¼ 1ð Þ
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Fig. 4 The effect of the nonlinear coefficient b2ð Þ on the amplitude response a2ð Þ in the nonlinear instability of the system for both with the

surface stress and without the surface stress s0ð Þ
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we classify bifurcations as supercritical and subcritical

pitchfork and saddle node bifurcations. Some main out-

comes of the present study can be enumerated as follows:

• We classify the bifurcations as discontinuous

bifurcations.

• All the examples show that a discontinuous bifurcation

is always accompanied by a jump.

In addition, the numerical results show that as force

amplitude d1ð Þ is increased the other parameters are held

constant, stable and unstable curves move far away and

make the gap between them larger. It means that

stable region becomes larger.

At the end, we close this paper by stating that consid-

ering the residual surface stress effect on nanoscale struc-

tures including beams is inevitable in design of the

nanoelectromechanical devices.
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