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Abstract
Micro-drilling using lasers finds widespread industrial applications in aerospace, automobile, and bio-medical sectors for 
obtaining holes of precise geometric quality with crack-free surfaces. In order to achieve holes of desired quality on hard-
to-machine materials in an economical manner, computational intelligence approaches are being used for accurate predic-
tion of performance measures in drilling process. In the present study, pulsed millisecond Nd:YAG laser is used for micro 
drilling of titanium alloy and stainless steel under identical machining conditions by varying the process parameters such as 
current, pulse width, pulse frequency, and gas pressure at different levels. Artificial intelligence techniques such as adaptive 
neuro-fuzzy inference system (ANFIS) and multi gene genetic programming (MGGP) are used to predict the performance 
measures, e.g. circularity at entry and exit, heat affected zone, spatter area and taper. Seventy percent of the experimental data 
constitutes the training set whereas remaining thirty percent data is used as testing set. The results indicate that root mean 
square error (RMSE) for testing data set lies in the range of 8.17–24.17% and 4.04–18.34% for ANFIS model MGGP model, 
respectively, when drilling is carried out on titanium alloy work piece. Similarly, RMSE for testing data set lies in the range 
of 13.08–20.45% and 6.35–10.74% for ANFIS and MGGP model, respectively, for stainless steel work piece. Comparative 
analysis of both ANFIS and MGGP models suggests that MGGP predicts the performance measures in a superior manner 
in laser drilling operation and can be potentially applied for accurate prediction of machining output.

Keywords Artificial intelligence · Laser drilling · Genetic programming · ANFIS · Stainless steel · Surface cracks · 
Ti6Al4V

1 Introduction

Lasers find wide range of applications in various sectors 
such as manufacturing, aerospace and aviation, automobile, 
electrical and electronics and medical sectors. Lasers are 
used in various material processing techniques like laser 
peening, laser forming, laser welding, laser cutting, laser 
milling, laser drilling and laser-assisted machining due to 
its benefits such as less machining time, high precision 
and repeatability of the processes. Among all laser beam 
machining processes, laser drilling has engrossed attention 

recently [1, 2]. Due to the short interface time between the 
materials and laser, millisecond laser and ultrafast lasers 
have been considered as the preeminent techniques for 
drilling of brittle and hard-to-machine materials such as 
Inconel, titanium alloys and stainless steels. Stainless steel 
and titanium alloys are widely used in various fields such 
as electrical and electronics, petrochemical, shipping, avia-
tion and aerospace, automobile and manufacturing indus-
tries and medical science due to their favorable mechanical, 
thermal and chemical properties. However, laser drilling of 
such materials is difficult because it induces various defects 
viz. micro-cracks, spatter, heat-affected zone, circularity 
and taper. Extensive research works have been carried out 
for optimization of process parameters so as to improve the 
performance measures, e.g. geometric and surface quality 
and heat-induced characteristics of laser-drilled holes [3–5]. 
Since laser drilling process is a costly process, development 
of such defects causes loss in economy. To overcome such 
difficulties, it is imperative to develop predictive models 
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based on artificial intelligence techniques embedded with 
meta-heuristic approaches for optimization of the quality 
characteristics.

Casalino [5] have presented potential application of 
computational intelligence techniques for prediction, mod-
eling and optimization of various laser material processing 
methods. The study shows that computational intelligence 
algorithms are capable of determining the hidden knowledge 
from experimental data to make complex decisions without 
human intervention. Hajihassani et al. [6] have proposed 
artificial and meta-heuristic approaches for prediction and 
optimization of the construction processes. Parandoush and 
Hossain [7] have presented a detailed study on scope for 
prediction and optimization of machining responses during 
laser beam machining (LBM) using artificial intelligence 
techniques such as artificial neural network, genetic algo-
rithm and fuzzy expert system. The study states that artificial 
intelligence techniques have good potential to understand the 
machining behavior with less human effort. As laser drilling, 
especially micro- and nano-scale machining process, is a 
complicated process, prediction of process behavior makes 
the way to understand the difficult process behavior for the 
practitioners. Vijayaraghavan et al. [8] have proposed genetic 
programming (GP) and artificial neural network (ANN) 
approach for predicting the quality characteristics during 
drilling of grapheme sheets. The study shows that results 
obtained using genetic programming have good agree-
ment with the experimental results as compared to ANN 
approach. Sibalija et al. [9] have conducted laser drilling 
on nickel-based super alloys having thickness of 1.2 mm 
using Nd:YAG laser varying two process parameters such 
as pulse frequency and pulse duration to analyze the seven 
drilling responses. Sibalija et al. [9] have proposed artificial 
intelligence method like artificial neural network technique 
and statistical approach such as Taguchi’s quality loss func-
tion, gray relation analysis (GRA) and principal component 
analysis (PCA) for prediction and optimization of the seven 
process outputs in laser drilling of nimonic alloy. The results 
suggest that prediction capability of ANN is superior to sta-
tistical methods. Bello et al. [10] have reported that artificial 
intelligence techniques are potentially suitable to be applied 
in the field of drilling. Gill and Singh [11] have proposed 
adaptive neuro-fuzzy inference system (ANFIS) to develop 
a predictive model for estimation of material removal rate 
(MRR) during drilling of ceramic alloys. Pérez et al. [12] 
have adopted adaptive neuro-fuzzy inference system for 
modeling of quality measures in laser surface treatment 
process.

As drilling is a complex process, researchers have pro-
posed various computational approaches such as regression 
analysis, support vector machine (SVM) and artificial neural 
network [13] to achieve better prediction capability. Garg 
et al. [13] have proposed a predictive model based on multi 

gene genetic programming (MGGP) to estimate the burr 
height in drilling of AISI 316L and compared the results 
with regression analysis, support vector machine and arti-
ficial neural network. The results suggest that MGGP pos-
sesses reasonable potential to be treated as a good predictive 
model. Abhishek et al. [14] have demonstrated prediction 
capability of genetic programming (GP) and ANFIS models 
in drilling of composites. Abidin et al. [15] have used vari-
ous soft computing approaches to obtain optimum paramet-
ric setting for estimating drilling path in various drilling 
methods.

Desai and Shaikh [16] have conducted a comparative 
study on prediction capability of different predictive models 
such as artificial neural network, semi-analytical technique 
and genetic programming while measuring the depth of cut 
in laser micro milling of thermoplastics. The study shows 
that GP produces less prediction error as compared to other 
models although all the techniques have reasonable accuracy 
in predicting the depth of cut. To predict the performance 
measures during turning of stainless steel, Garg and Tai [17] 
have preferred computational techniques using fuzzy logic, 
support vector regression, regression analysis, artificial neu-
ral network and genetic programming over physics-based 
models for predicting the performance measures. It is stated 
that genetic programming is quite robust in prediction over 
other methodologies. González et al. [18] have proposed an 
ANN model for predicting the dimensional error during ball 
end milling process. Khandelwal et al. [19] have proposed 
two different predictive models such as non-linear multi 
regression model and genetic programming for the estima-
tion of properties of rock and suggest the superiority of the 
GP model over non-linear multi regression model. Asiltürk 
and Çunkaş [20] have used artificial neural network and mul-
tiple regression analysis for prediction of surface roughness 
during turning of stainless steel. It is observed that artificial 
neural network predicts the output with greater accuracy as 
compared to statistical method.

Extensive literature survey indicates that prior works are 
limited to identify the significant process parameters and 
their effect on the performance measures, predict quality 
characteristics and optimize the process parameters using 
statistical, computational and meta-heuristic approaches in 
different machining processes. However, potential of appli-
cation of computational intelligence and meta-heuristic 
approaches is hardly explored for prediction and optimiza-
tion of performance measures in laser drilling operation. 
With growth in miniaturization of existing products, there 
is rapid demand in production of micro machined products 
with high geometric quality and crack-free surfaces. To 
achieve the desired quality holes for hard-to-machine mate-
rials in an economical manner, it is imperative that com-
putational intelligence approaches can predict the process 
behavior in an effective manner. The purpose of the present 
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study was to propose a model to predict quality character-
istics of micro holes made on hard-to-machine materials 
like AISI 316 and Ti6Al4V using pulsed Nd:YAG laser. 
Pulsed millisecond Nd:YAG laser is used for micro drill-
ing of Ti6Al4V and AISI 316 under identical machining 
conditions (same parametric setting) varying the process 
parameters such as current, pulse width, pulse frequency 
and gas pressure at three different levels to determine the 
performance measures, e.g. circularity at entry and exit, heat 
affected zone, spatter area and taper. Artificial intelligence 
techniques such as adaptive neuro-fuzzy inference system 
(ANFIS) and multi-gene genetic programming (MGGP), are 
used not only to predict the performance measures but also 
to analyze the variation of performance measures with the 
change in process parameters beyond experimental domain 
once the proposed models are converged.

2  Methodology

Artificial and computational intelligence generally involves 
use of computer algorithms to capture the hidden knowledge 
from data and uses them for training “intelligent machine” to 
make decisions without human intervention [5]. As simula-
tion is becoming more prevalent from product design and 
planning manufacturing operations point of view, laser 
material processing can also be benefit from the computer 
generating knowledge through soft computing [5]. Laouissi 
et al. [21] have proposed statistical approach using response 
surface methodology (RSM) and artificial intelligence like 
ANN for predicting the machining outputs during turning 
of EN-GJL-250 cast iron. Laouissi et al. [21] have also 
optimized machining outputs using genetic algorithm (GA) 
after prediction of machining outputs using RSM and ANN. 
The study shows the scope for implementation of heuristic 
approach for optimization after prediction through statisti-
cal and artificial intelligence techniques during high-speed 
machining. Bustillo and Correa [22] have proposed artifi-
cial intelligence method for predicting surface roughness in 
high-speed machining process. Bayesian network approach 
is used to predict the surface roughness of the work piece 
in dry and lubricating (using minimum quantity lubrica-
tion) conditions and the predicted results are quite closer to 
experimented values.

2.1  Adaptive neuro‑fuzzy inference system (ANFIS)

Adaptive neuro-fuzzy inference system is widely applied 
for predicting quality characteristics in the field of manu-
facturing engineering. Gholami et al. [23] have proposed a 
hybrid technique using meta-heuristic approach like particle 
swarm optimization algorithm embedded adaptive neuro-
fuzzy inference system for prediction and optimization of 

threshold bank profile shape using digital laser. The study 
suggests that results obtained using meta-heuristic approach 
embedded with predictive technique have less uncertainty 
in nature. Petković et al. [24] have adopted adaptive neuro-
fuzzy inference system to develop a predictive model to 
forecast the heat-affected zone (HAZ) during laser cutting 
of glass fiber reinforced plastic. Abdulshahed et al. [25] 
and Abdulshahed et al. [26] have proposed adaptive neuro-
fuzzy inference system to predict the thermal error devel-
oped in the machine tool during computerized numerical 
control (CNC) milling process. Al-Ghamdi and Taylan [27] 
have adopted an adaptive neuro fuzzy inference system for 
predicting the material removal rate in electrical discharge 
machining (EDM) process. Sohrabpoor [28] have proposed 
a response model based on ANFIS and meta-heuristic 
approach known as imperialist competitive algorithm (ICA) 
to optimize process parameters in laser cladding process. 
Sohrabpoor [29] have adopted ANFIS to predict the perfor-
mance of graphene-metal alloys in laser cladding process.

Adaptive neuro fuzzy inference system (ANFIS) is a 
mixed pattern of two artificial intelligence techniques known 
as artificial neural network (ANN) and fuzzy inference sys-
tem (FIS). Fuzzy logic and neural network are two com-
plementary techniques. Neural network has the capability 
of learning from both data and feedback without getting 
involved in understanding the pattern in the data sets. But, 
fuzzy logic model patterns are easy to comprehend because 
they use linguistic terms in the form of IF–THEN rules. A 
neural network with their learning proficiencies can be used 
to learn the fuzzy decision rules; this helps in development 
of a hybrid intelligent system network.

The fuzzy system provides expert knowledge to be used 
by the neural network. ANFIS consists of five layers and 
each layer consists of some nodes like artificial neural net-
work (ANN). Figure 1 indicates the adaptive network struc-
ture for ANFIS. The structure for adaptive neuro-fuzzy infer-
ence system is characterized as follows. The details of each 
layer have been already discussed in the past literature [11, 
23–28, 30]:

• Layer 1 consists of fuzzification layer.
• Layer 2 is known as product layer.
• Layer 3 is called as normalized layer.
• Layer 4 is the defuzzification layer.
• Layer 5 is known as output layer.

2.2  Multi gene genetic programming (MGGP)

In the present study, multi gene genetic programming is 
proposed for development of a predictive model for predic-
tion of quality measures in laser drilling process. Genetic 
programming (GP) is first introduced by Koza in early 
1990s [31–33]. GP is probably the most general approach 
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of evolutionary computation methods and applied for 
simple and complex systems in all aspects of engineering 
problem [34]. Sharma et al. [35] have proposed Taguchi 
method embedded with genetic programming method for 
prediction of compaction strength in powder metallurgy 
(PM) process. Panda et al. [36] have used genetic pro-
gramming-based model for predicting the bead dimen-
sions in wire and arc additive manufacturing. Kok et al. 
[37] have proposed a predictive model for estimation of 
surface roughness using genetic expression programming. 
Garg and Lam [38] have proposed multi gene genetic pro-
gramming approach to develop an empirical relationship 
between input parameters and performance measures such 
as surface roughness, tool life and power consumption 

while turning of stainless steel and aluminum alloy. 
Brezocnik et al. [39] have proposed genetic programming 
to develop a model for prediction of surface roughness of 
drilled holes produced through milling process.

Multi gene genetic programming is a robust modified 
version of genetic programming. It successfully integrates 
the model structure selection ability of the standard GP 
with the parameter estimation power of classical regres-
sion [34]. Instead of complex rules and mathematical rou-
tines, MGGP is able to learn the key information patterns 
within the multidimensional information domain with high 
speed [34]. The steps (pseudo code) for the MGGP have 
been illustrated as follows (Table 1). The more detailed 

Fig. 1  Basic network structure for ANFIS

Table 1  Steps (pseudo-code) 
involved in MGGP [13]
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explanations about multi gene genetic programming 
(MGGP) are available in literature [13, 34, 36, 38].

3  Materials and methods

3.1  Materials

Laser beam micro-drilling is performed on commercially 
available stainless steel (AISI 316) and titanium alloy 
(Ti6Al4V) having dimension of 50 × 50 × 0.45 mm3. The 
materials have been procured from Manohar Metal Corpo-
ration (Mumbai, India) for laser beam drilling purpose. The 
selection of materials and thickness is based on applications, 
commercial availability and economic reasons. Field emis-
sion scanning electron microscopy with energy dispersive 
spectroscopy (FESEM-EDS) has been performed to obtain 
the weight percentage of constituents present in the work 

piece and confirms the chemical composition of the as 
received work piece of AISI 316and Ti6Al4V. Figures 2 and 
3 indicate the weight percentage of constituents available 
in work piece 1 (AISI 316 stainless steel) and work piece 
2 (Ti6Al4V titanium alloy), respectively, and confirms the 
material composition of the available materials.

3.2  Methods

Laser beam micro drilling is a thermal ablation process 
in which high-intensity energy beam is focused at a point. 
This laser guided beam helps in melting and evaporation 
of molten material from the focus zone of the work piece. 
The molten materials from the drilled area are flushed away 
with the help of assistant gas pressure. Since laser guided 
beam can be focused on a very small diameter with high 
accuracy, it helps in attaining precise micro-drilled holes 
[5]. In the present study, laser drilling is performed on a 

Fig. 2  FESEM-EDS graph for work piece 2 (AISI 316 as received)
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pulsed millisecond (ms) Nd:YAG laser machine devel-
oped at Raja Ramanna Centre for Advanced Technology 
(RRCAT), Indore, India. Pulsed Nd:YAG laser system with 
250 W average power, 5 kW maximum peak power, 1–20 ms 
pulse duration and 1–100 Hz repetition rate has been used 
for micro-drilling process. Laser beam has been delivered 
through a 200 µm-core diameter and 0.22 numerical aperture 
(NA) silica–silica fiber. Argon gas is used as an assistant 
gas to protect the laser lens from any damage and flushing 
of molten material during laser beam micro-drilling pro-
cess. Schematic layout for the present experimentation (laser 
drilling process) has been shown in Fig. 4. Here, offset dis-
tance of 3 mm has been considered. The process parameters 

Fig. 3  FESEM-EDS graph for work piece 1 (Ti6Al4V as received)

Fig. 4  Schematic layout of the laser drilling process
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considered after extensive literature survey [40–43] and 
control parameters available with the laser drilling setup in 
RRCAT, Indore.

The process parameters considered for the laser beam 
micro-drilling process are current, pulse frequency, pulse 
width and gas pressure and each at three levels (low, medium 
and high) as shown in Table 2. The laser beam drilling setup 
and their parametric levels are discussed in Table 2 below. If 
all the probable factor combinations would have been con-
sidered, it would require  34 experimental runs. To determine 
the influence of process parameters on performance meas-
ures with less number of experimental runs, Taguchi method 
has been employed. Taguchi’s  L27 orthogonal array is used 
to design the experimental matrix (Tables 3 and 4) and each 
experimental trial is repeated twice.  

4  Results and discussion

Laser beam micro drilling is a thermal ablation process in 
which high-intensity energy beam is focused at a point. Laser 
guided beam helps in melting and evaporation of molten mate-
rial from the focused zone on the work piece. The remaining 
molten material from the machined area is flushed away using 
assistant gas pressure. The improper flushing of molten materi-
als may cause expelled materials to be deposited on the sur-
face area of the drilled holes leading to several irregularities in 
terms of circularity at entry and exit, heat-affected zone, spat-
ter area and taper. Drilled samples are tested under optical and 
scanning electron microscope (SEM) to determine the quality 
characteristics such as circularity at entry (Cent), circularity at 

exit (Cexit), heat-affected zone (HAZ), spatter area (SA) and 
taper of laser drilled micro holes. The experiments have been 
conducted according to experimental layout using Taguchi’s 
 L27 orthogonal array. The experimental conditions are shown 
in Tables 3 and 4 for AISI 316 and Ti6Al4V, respectively. 
Each experiment is repeated twice and average value is noted 
down. The normalized values of performance measures under 
each treatment combination are shown in Tables 3 and 4. The 
normalization of performance measures is carried out using 
Eqs. 1 and 2. Let xij be the experimental response value for jth 
response in ith trial and xmin and xmax are the maximum and 
minimum experimental response for jth response.

Normalization:

“Larger the better” characteristic is preferred for perfor-
mance measures like circularity at entry and exit, whereas 
“Lower the better” characteristic is recommended for heat 
affected zone, spatter area and taper.

Improper flushing of molten materials may cause expelled 
material to be deposited on the surface area of the drilled 
holes, known as spatter area. Spatter area is calculated as 
shown in Fig. 5. The surface area of the total molten material 
deposited on the surface of each hole, known as spatter area, 
is calculated for both the materials.

For the calculation of circularity at entry, circularity at exit 
and HAZ, spatter deposition on the surface of the laser drilled 
samples are removed by emery polishing with paper III grade 
1/0 (Kohinoor Products, India). To calculate the circularity 
of the hole and its dimensions, the drilled samples are taken 
under optical microscope (Carl Zeiss, GERMANY) and ana-
lyzed. The circularity is defined as the ratio of minimum diam-
eter (Dminimum) to maximum diameter (Dmaximum) of Ferret’s 
hole diameter as expressed in Eq. 3. Figure 6a and b indicates 
the calculation of circularity of laser drilled holes for AISI 
316 and Ti6Al4V, respectively, using Ferret’s hole diameter 
concept:

Figure 7a and b indicates the pictographic representa-
tion of laser drilled holes at entry and exit, respectively, 
for AISI 316 for experiment number 5. Similarly, Fig. 7c 

(1)Lower the better =
xmax − xij

xmax − xmin
,

(2)Higher the better =
xij − x

imin

xmax − xmin
.

(3)Circularity =
Dminimum

Dmaximum

.

Table 2  Laser drilling setup and the parametric levels

Settings Ranges

Focal position 0 (on the surface) (fixed)
Gas flow rate (lpm) 10
Average Power (W) 250
Offset distance (mm) 3
Work piece (for laser drilling) Ti6Al4V and AISI 316

Control parameters Symbols Levels

1 2 3

Laser beam micro-drilling parameters and their levels
Pulse width (ms) A 4 6 8
Current (A) B 200 230 260
Pulse frequency (Hz) C 1 4 7
Gas pressure (Argon gas) (bar) D 4 6 8
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Table 3  Experimental layout 
and normalized performance 
measures (AISI 316)

Cent circularity at entry, Cexit circularity at exit, HAZ heat-affected zone, SA spatter area

Exp. no. A B C D Cent Cexit HAZ SA Taper

1 1 1 1 1 0.7112 0.6491 0.7941 0.6757 0.7963
2 1 1 2 2 0.8534 0.7518 0.9000 0.4039 0.3930
3 1 1 3 3 0.7091 0.7118 0.8306 0.5147 0.2528
4 1 2 1 2 0.2294 0.2203 0.6999 0.7696 0.7726
5 1 2 2 3 0.4923 0.4907 0.6440 0.6988 0.3665
6 1 2 3 1 0.7263 0.6445 0.6598 0.4967 0.1143
7 1 3 1 3 0.1000 0.1000 0.4144 0.9000 0.8001
8 1 3 2 1 0.6021 0.5218 0.3683 0.7008 0.6484
9 1 3 3 2 0.6993 0.6496 0.4222 0.6921 0.2705
10 2 1 1 2 0.5779 0.5265 0.7694 0.6354 0.7781
11 2 1 2 3 0.7655 0.7007 0.7451 0.4860 0.3891
12 2 1 3 1 0.8946 0.9000 0.7245 0.2511 0.1017
13 2 2 1 3 0.1490 0.3095 0.5758 0.8827 0.7714
14 2 2 2 1 0.9000 0.7866 0.5633 0.2975 0.6468
15 2 2 3 2 0.6993 0.6282 0.5330 0.4649 0.2451
16 2 3 1 1 0.4911 0.3983 0.3271 0.7732 0.9028
17 2 3 2 2 0.5538 0.3774 0.2650 0.7280 0.6324
18 2 3 3 3 0.5254 0.7592 0.2354 0.7086 0.3317
19 3 1 1 3 0.5375 0.4684 0.6311 0.7438 0.7709
20 3 1 2 1 0.8811 0.8707 0.6168 0.1000 0.6705
21 3 1 3 2 0.7545 0.6803 0.6484 0.3999 0.1999
22 3 2 1 1 0.6096 0.5214 0.3986 0.6437 0.8757
23 3 2 2 2 0.7382 0.6566 0.4170 0.5153 0.6335
24 3 2 3 3 0.8149 0.7718 0.4680 0.4673 0.2754
25 3 3 1 2 0.3063 0.2645 0.1000 0.8269 0.8890
26 3 3 2 3 0.5242 0.4930 0.1378 0.7468 0.6120
27 3 3 3 1 0.6524 0.8717 0.1217 0.5409 0.2749

and d indicates the pictographic representation of laser 
drilled holes at entry and exit, respectively, for Ti6Al4V 
for experiment number 5. From the figures, difference of 
hole diameter at entry and exit for both the work pieces 
can be clearly observed. This indicates that the presence 
of taper on laser drilled micro-holes. Taper of the drilled 
holes is calculated by Eq. 4 stated below:

After analysis of geometrical features of the laser drilled 
hole, the samples are cloth polished and etched to reveal 
the HAZ of each hole for both the materials. Scanning 
electron microscope (SEM) (JEOL JSM-6480LV, USA) 
has been used to calculate the HAZ. In laser beam drill-
ing process, a high amount of thermal energy is developed 
during machining operation. The thermal energy leads to 

(4)Taper =
(Diameter at entry) − (Diameter at exit)

2 × (thickness ofworkpiece)
.

change in microstructure near the drilled holes, known as 
heat affected zone (HAZ). Figure 8a and b indicates the 
HAZ for AISI 316 and Ti6Al4V work piece, respectively. 
While comparing Fig. 8a with Fig. 8b, it is observed that 
HAZ value is higher for Ti6Al4V work piece as compared 
to AISI 316 work piece under identical experimental con-
ditions (experiment number 5). Higher value of HAZ is 
observed in case of titanium alloy work piece. It may be 
attributed to low thermal conductivity of titanium alloys 
as compared to stainless steel. As heat is not properly dis-
sipated and localized near the machining zone, it results 
in higher HAZ value at parametric setting at 4 ms of pulse 
width, 230 A of laser current, 4 Hz of pulse frequency and 
8 bar gas pressure (experiment number 5). Figure 8c indi-
cates formation of burrs and surface erosion in drilled hole 
for AISI 316 workpiece. The formation of burrs may occur 
due to insufficient flushing pressure. Surface cracking may 
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be due to prolonged heating effect on the material. Fig-
ure 8d indicates development of micro-cracks in the HAZ 
of the micro-drilled holes for Ti6Al4V alloy. As thermal 
conductivity of Ti6Al4V is low, it leads to localization 
of heat near the machined area resulting in development 
of thermal stress near the drilled region. The thermal 
stresses cause formation of micro-cracks (distortion) near 
the drilled zone. It is clearly observed that the hole quality 
differs for both the materials during laser beam drilling of 
AISI 316 and Ti6Al4V under same experimental paramet-
ric setup (experiment number 5).

The development of micro-cracks in the machining zone 
of Ti6Al4V is an important issue that needs to be addressed. 
The present study is further extended to analyze the for-
mation micro-cracks near the drilling zone. Figure 9 helps 
to understand the parametric effect on formation of micro-
cracks near the drilled area of Ti6Al4V alloy. Figure 9 

indicates that thermal input energy (due to factor A and B), 
pulse frequency (C) and assistant gas pressure (D) have huge 
contribution in development of micro-cracks near the drilled 
holes. It is clearly observed that drilled hole with less ther-
mal input energy, less crack intensity is observed as com-
pared to drilled holes with higher thermal input energy. The 
development of micro-cracks and their propagation occur 
due to several reasons like development of thermal stress in 
machined zone, gas pressure, increment of pulse frequency 
and fracture toughness. Increase in thermal input energy 
causes increase in thermal stress within the machined region. 
When thermal stress exceeds the limit of ultimate strength 
of the workpiece, it results in development of cracks in the 
machined zone. Increase in pulse frequency leads to reduc-
tion of pulse-off-time and escalation of rate of heat input 
during laser beam drilling process. If thermal conductivity 
of the material is less and the developed thermal energy is 

Table 4  Experimental layout 
and normalized performance 
measures (Ti6Al4V)

Cent circularity at entry, Cexit circularity at exit, HAZ heat-affected zone, SA spatter area

Exp. no. A B C D Cent Cexit HAZ SA Taper

1 1 1 1 1 0.2962 0.2853 0.8449 0.5690 0.5917
2 1 1 2 2 0.4962 0.9000 0.8629 0.6933 0.6345
3 1 1 3 3 0.9000 0.6937 0.9000 0.8465 0.7379
4 1 2 1 2 0.1731 0.1674 0.7782 0.6529 0.8434
5 1 2 2 3 0.3923 0.3779 0.6921 0.7377 0.8414
6 1 2 3 1 0.6192 0.5926 0.6607 0.9000 0.1697
7 1 3 1 3 0.1000 0.1000 0.7115 0.6948 0.9000
8 1 3 2 1 0.4269 0.4116 0.2933 0.7871 0.3166
9 1 3 3 2 0.5231 0.5042 0.3131 0.8516 0.3848
10 2 1 1 2 0.3192 0.3105 0.8103 0.1550 0.6814
11 2 1 2 3 0.5423 0.5211 0.7844 0.3558 0.5331
12 2 1 3 1 0.7692 0.7358 0.6754 0.4559 0.2269
13 2 2 1 3 0.2154 0.2137 0.6037 0.3245 0.6448
14 2 2 2 1 0.5462 0.5253 0.5100 0.3314 0.3345
15 2 2 3 2 0.6423 0.6179 0.6037 0.4795 0.3110
16 2 3 1 1 0.2538 0.2474 0.3468 0.2793 0.7338
17 2 3 2 2 0.4538 0.4368 0.2772 0.3751 0.5917
18 2 3 3 3 0.5692 0.5463 0.2360 0.5809 0.5917
19 3 1 1 3 0.3346 0.3232 0.5357 0.1000 0.5593
20 3 1 2 1 0.6654 0.6389 0.4870 0.2817 0.3634
21 3 1 3 2 0.7828 0.7490 0.6631 0.4505 0.3387
22 3 2 1 1 0.4706 0.4514 0.4331 0.2841 0.4563
23 3 2 2 2 0.6123 0.5869 0.5078 0.3807 0.4236
24 3 2 3 3 0.6548 0.6300 0.4758 0.5635 0.4722
25 3 3 1 2 0.3762 0.3639 0.3473 0.3527 0.7314
26 3 3 2 3 0.5416 0.5204 0.2817 0.5033 0.6380
27 3 3 3 1 0.6588 0.6338 0.5650 0.4685 0.4876
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not easily dissipated (or concentrated near the machining 
zone), it may lead to distortion near machined zone in form 
of cracks. Increase in gas pressure leads to increase in cool-
ing rate. Change in sudden temperature difference leads to 
increase the crack intensity [44].

4.1  Prediction of hole quality through ANFIS

To predict the performance measures such as circularity at 
entry (Cent), circularity at exit (Cexit), heat affected zone 
(HAZ), spatter area (SA) and taper for laser beam drilling 
on AISI 316 and Ti6Al4V, adaptive neuro fuzzy inference 
system (ANFIS) toolbox available with MATLAB 2017b 
has been used. Sugeno model has been used for the analysis 

(Fig. 10). The ANFIS analysis has been performed in two 
phases, namely training and testing. 70% experimental 
data (20 sets of data) considered for training and remain-
ing 30% (7 data) which are not included in training of the 
network taken for testing of the developed network. The four 
input parameters and Gaussian type membership function 
(gaussmf) are considered for prediction model in ANFIS. 
Subtractive clustering has been selected for generating the 
fuzzy inference system (FIS). In training phase, the model 
become stable after three iterations where 0.01 is the error 
tolerance value (20 experimental data are taken). This states 
that the model is well developed. Now to check the adequacy 
of the developed model, the testing of the model has been 
performed using seven experimental data from experiment 
numbers 21 to 27 (Tables 6, 7). The proposed steps for 

Fig. 5  Deposition of spatter on surface area of the drilled holes for a 
AISI 316 and b Ti6Al4V

Fig. 6  a Ferret hole diameter for AISI 316 drilled sample and b Fer-
ret’s hole diameter for Ti6Al4V drilled sample
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the ANFIS model can be easily observed in Figs. 10, 11, 12, 
13, and 14. Figure 10 indicates the proposed Sugeno model 
for the fuzzy system (for AISI 316 laser drilled samples), 
Fig. 11 shows the developed clustering rules for the mem-
bership functions and Fig. 12 indicates the developed adap-
tive network for the ANFIS model (for AISI 316 laser drilled 
samples). Figures 13 and 14 show the comparative graph 
plot between the predicted data (training and testing) and 
actual data (for AISI 316 laser drilled samples). Figures 12 
and 13 also represent the obtained training and testing errors, 
respectively, for HAZ of AISI 316 laser drilled sample. Sim-
ilarly, the analysis is performed for other performance meas-
ures for both the work pieces for each performance measures 

and they are depicted in Tables 6 and 7 for AISI 316 and 
Ti6Al4V samples, respectively.

4.2  Prediction of hole quality through MGGP

To predict the performance measures for laser beam drill-
ing on AISI 316 and Ti6Al4V, multi-gene genetic program-
ming (MGGP) has been used using MATLAB 2017b. The 
code is available in the open source [45]. The experimented 
data have been divided into two parts viz. training data and 
testing data. 70% experimental data (20 sets of data) is con-
sidered for training and remaining 30% (7 data) which not 
contributed in training of the network taken for testing of 

Fig. 7  Laser drilled hole images for experimental run number 5 a and b for AISI 316 and c and d for Ti6Al4V work piece
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the proposed methodology. The control parameters and their 
settings are the predominant factor in instigating MGGP 
algorithm effectively. Trial and error methodology has 
been adapted to decide the parametric settings (Table 5). 
The function set consists of broader set of elements so as to 
evolve variety of non-linear forms of mathematical models. 
The values of population size and number of generations 
fairly depend on the complexity of the data. Based on lit-
erature review by Garg and Tai [17], the population size 
and number of generations should be fairly large for data of 
higher complexity so as to find the models with minimum 
error. Maximum number of genes and maximum depth of 
the gene influence the size and the number of models to 
be searched in the global space. The maximum number of 
genes and maximum depth of gene are chosen at eight and 
six, respectively. GPTIPS-2 [45] software is used for the 
implementation of MGGP algorithm. The preeminent multi 

gene genetic programming (MGGP) model is selected based 
on minimum root mean square error (RMSE) obtained from 
testing data trails as shown in Tables 8 and 9.

The detailed analysis for MGGP model has been pre-
sented through Figs. 15, 16, and 17. Figure 15 indicates the 
multi-gene regression model for the population size in pro-
posed MGGP model. Figure 16 indicates the residual plots 
for the training and testing data for HAZ (AISI 316 sam-
ple). The residual plot suggests the adequacy of the proposed 
MGGP model. Figure 17 shows the comparative graph plots 
between the predicted data and experimental data in training 
and testing phase of the MGGP algorithm. The root mean 
square error (RMSE) of 0.06531 and comparative plot sug-
gests the adequacy of the proposed model for the analysis. 
Similarly, the analysis is performed for other performance 
measures for both the work pieces depicted in Tables 6 and 
7 for AISI 316 and Ti6Al4V samples, respectively.

Fig. 8  HAZ for AISI 316 and Ti6Al4V laser drilled hole at experimental run number 5
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To analyze the effectiveness of both the proposed predic-
tive models, a comparative analysis is made in Tables 6 and 
7 for stainless steel (AISI 316) and titanium alloy (Ti6Al4V) 
work pieces. From the study, it is observed that both the 
techniques are quite adequate in predicting the performance 
measures in training phase. To determine the adequacy of 
the models during testing phase, comparative graphs for 

testing data are shown in Figs. 18 and 19 for AISI 316 and 
Ti6Al4V, respectively. It is noted that MGGP model shows 
minimum root mean square error (RMSE) as compared 
to ANFIS model for the chosen performance measures 
(Tables 8 and 9). The results suggest that MGGP is poten-
tially superior and adequate in predicting the performance 
measures for laser beam micro-drilling process.

Fig. 9  Formation of micro-cracks on Ti6Al4V laser drilled samples
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Fig. 10  Layout of ANFIS Sug-
eno model for HAZ (AISI 316)

Fig. 11  Fuzzy rule for the pro-
posed ANFIS model (AISI 316)
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Fig. 12  Network model struc-
ture for the proposed ANFIS 
model (AISI 316)

Fig. 13  Representation of train-
ing experimental data vs train-
ing predicted data and obtained 
average error for the training 
data for HAZ (AISI 316)
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5  Conclusion

In the present study, laser beam drilling on AISI 316 and 
Ti6Al4V of 0.45 mm thickness has been performed using 
millisecond pulsed Nd:YAG laser using Taguchi’s experi-
mental plan to collect experimental data. The study is 
intended to propose a predictive model using artificial intel-
ligence techniques. After extensive literature review, it is 
observed that ANFIS and MGGP are two potential com-
peting artificial techniques for predicting the performance 

measures in laser material processing techniques [13, 16, 
29]. A comparative study has been performed to analyze the 
adequacy of the ANFIS and MGGP models for predicting 
the performance measures of the laser drilled holes. Laser 
drilling on AISI 316 and Ti6Al4V has been performed under 
identical experimental conditions (same parametric settings). 
Following are the outcomes of the present investigation:

• Laser beam micro-drilling on AISI 316 and Ti6Al4V 
is possible under identical experimental parametric set-
tings.

• Under identical machining conditions (for example 
experiment number 5), AISI 316 resists thermal shocks 
although micro-cracks are observed for few machin-
ing conditions. However, micro-cracks on the drilled 
surface for all the machining condition when Ti6Al4V 
work piece is used. The development of micro-cracks 
in Ti6Al4V work piece may be attributed to low ther-
mal conductivity of the material and fracture toughness 

Fig. 14  Representation of test-
ing experimental data vs testing 
predicted data and obtained 
average error for the training 
data for HAZ (AISI 316)

Table 5  Parameter settings for 
proposed MGGP model

Parameters Ranges

Population size 270
Timeout 10 s
Iterations 3
Tournament size 25
Maximum genes 6
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Fig. 15  Multi-gene regression 
for population size in MGGP for 
HAZ (AISI 316)
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Fig. 16  Residual plots of 
MGGP model for HAZ (AISI 
316)
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and development of high thermal stress in the machining 
zone exceeding the ultimate tensile strength.

• While comparing the hole quality for both materials, 
AISI 316 has low circularity, high spatter area and devel-
opment of surface erosion of the hole. This may be due 
to prolonged heating effect of the materials.

• From the study, it can be concluded that both the artificial 
techniques such as ANFIS and MGGP are quite adequate 
in predicting the performance measures for laser drilling 
of AISI 316 and Ti6Al4V in training phase. To deter-
mine the superior prediction capability among the two 

proposed models, a comparative study for predicting the 
testing data has been performed.

• It is noted that MGGP model shows minimum root mean 
square error (RMSE) as compared to ANFIS model for 
the performance measures. The results suggest that 
MGGP has more potentiality and adequacy in predict-
ing the performance measures for laser beam micro-
drilling process. It can be concluded that MGGP models 
have higher prediction accuracy as compared to ANFIS 
model.

Fig. 17  Representation of pre-
dicted data vs experimental data 
of MGGP model (training and 
testing) for HAZ (AISI 316)
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Table 6  Predicted performance measures using ANFIS and MGGP (AISI 316)

ANFIS adaptive neuro-fuzzy inference system, MGGP multi gene genetic programming, Cent circularity at entry, Cexit circularity at exit, HAZ 
heat-affected zone, SA spatter area

Exp. no. Cent Cexit HAZ SA Taper Data sets

MGGP ANFIS MGGP ANFIS MGGP ANFIS MGGP ANFIS MGGP ANFIS

1 0.6704 0.7112 0.6168 0.6491 0.8504 0.7941 0.6234 0.6757 0.7260 0.7963 Training data
2 0.8070 0.8534 0.6927 0.7518 0.8535 0.9000 0.4659 0.4039 0.4358 0.3930
3 0.7588 0.7091 0.7158 0.7119 0.8353 0.8306 0.5000 0.5147 0.1611 0.2528
4 0.2991 0.2294 0.2948 0.2203 0.6783 0.6999 0.8012 0.7696 0.7672 0.7726
5 0.4683 0.4923 0.5231 0.4907 0.6683 0.6440 0.6491 0.6988 0.5102 0.3665
6 0.7003 0.7263 0.7623 0.6445 0.6497 0.6598 0.4937 0.4967 0.1258 0.1143
7 0.1509 0.1000 0.1587 0.1000 0.4190 0.4144 0.9790 0.9000 0.8086 0.8001
8 0.6978 0.6021 0.5276 0.5218 0.3892 0.3683 0.6052 0.7008 0.5677 0.6484
9 0.6171 0.6993 0.4868 0.6496 0.3832 0.4222 0.6823 0.6921 0.2467 0.2705
10 0.5567 0.5779 0.4812 0.5265 0.7629 0.7694 0.6368 0.6354 0.7613 0.7781
11 0.7259 0.7655 0.6940 0.7007 0.7344 0.7451 0.4726 0.4860 0.4625 0.3891
12 0.9579 0.8946 0.9172 0.9000 0.7384 0.7245 0.2336 0.2511 0.1617 0.1017
13 0.1854 0.1490 0.2975 0.3095 0.5761 0.5758 0.8781 0.8827 0.7608 0.7715
14 0.7323 0.9000 0.7139 0.7866 0.5609 0.5633 0.4160 0.2975 0.6034 0.6468
15 0.6516 0.6993 0.6555 0.6282 0.5426 0.5330 0.4947 0.4649 0.2406 0.2451
16 0.4799 0.4911 0.3474 0.3983 0.3022 0.3271 0.7518 0.7732 0.9680 0.9028
17 0.6166 0.5539 0.4349 0.3774 0.2921 0.2650 0.6672 0.7280 0.6362 0.6324
18 0.5684 0.5254 0.7674 0.7592 0.2467 0.2354 0.7559 0.7087 0.3198 0.3317
19 0.4536 0.5375 0.4775 0.4684 0.6164 0.6311 0.7108 0.7438 0.7197 0.7709
20 0.9000 0.8811 0.9003 0.8707 0.6201 0.6168 0.1063 0.1000 0.6718 0.6705
21 0.9198 0.9368 0.7881 0.9125 0.5853 0.7105 0.1604 0.2951 0.2543 0.3874 Testing data
22 0.5250 0.7330 0.5023 0.6620 0.4452 0.4853 0.5259 0.3740 0.8936 0.7084
23 0.6617 0.8213 0.5941 0.7270 0.4223 0.5410 0.4468 0.4090 0.6497 0.5971
24 0.6135 0.6688 0.7768 0.7402 0.3457 0.4320 0.5169 0.6179 0.2785 0.3071
25 0.3768 0.5650 0.2295 0.4247 0.1776 0.3294 0.8505 0.8242 0.8812 0.8521
26 0.5460 0.5774 0.6167 0.5926 0.1207 0.2739 0.7873 0.7766 0.6277 0.5384
27 0.7780 0.9006 0.6641 0.7561 0.1499 0.5617 0.5554 0.5754 0.4364 0.6273
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Table 7  Predicted performance measures using ANFIS and MGGP (Ti6Al4V)

Cent circularity at entry, Cexit circularity at exit, HAZ heat-affected zone, SA spatter area

Exp. no. Cent Cexit HAZ SA Taper Data sets

MGGP ANFIS MGGP ANFIS MGGP ANFIS MGGP ANFIS MGGP ANFIS

1 0.3428 0.2962 0.3721 0.2853 0.6348 0.8449 0.5848 0.5690 0.8739 0.5917 Training data
2 0.5066 0.4962 0.6677 0.9000 0.5752 0.8629 0.6821 0.6933 0.8707 0.6345
3 0.8525 0.9000 0.7287 0.6937 0.7386 0.9000 0.8541 0.8465 0.8720 0.7379
4 0.2041 0.1731 0.1952 0.1674 0.7592 0.7782 0.5999 0.6529 0.7531 0.8435
5 0.3730 0.3923 0.4832 0.3779 0.8231 0.6921 0.7719 0.7377 0.7951 0.8414
6 0.6173 0.6192 0.5871 0.5926 0.1532 0.6607 0.8725 0.9000 0.6263 0.1697
7 0.1030 0.1000 0.0314 0.1000 0.9077 0.7115 0.6898 0.6948 0.6289 0.9000
8 0.3625 0.4269 0.4295 0.4116 0.3976 0.2933 0.7903 0.7871 0.3791 0.3166
9 0.5466 0.5231 0.4819 0.5042 0.4202 0.3131 0.8876 0.8516 0.3213 0.3848
10 0.3304 0.3192 0.3437 0.3105 0.6941 0.8103 0.1815 0.1550 0.7400 0.6814
11 0.5265 0.5423 0.6410 0.5211 0.5900 0.7844 0.3535 0.3558 0.7529 0.5331
12 0.7980 0.7692 0.6983 0.7358 0.1443 0.6754 0.4541 0.4559 0.6883 0.2269
13 0.1917 0.2154 0.1840 0.2137 0.7287 0.6037 0.2714 0.3245 0.6822 0.6448
14 0.4784 0.5462 0.5356 0.5253 0.4043 0.5100 0.3719 0.3314 0.5157 0.3345
15 0.6897 0.6423 0.5914 0.6179 0.3243 0.6037 0.4692 0.4795 0.5395 0.3110
16 0.3279 0.2539 0.2144 0.2474 0.6642 0.3469 0.2897 0.2793 0.2967 0.7338
17 0.3824 0.4539 0.5030 0.4368 0.5382 0.2772 0.3871 0.3751 0.2750 0.5917
18 0.6190 0.5692 0.5454 0.5463 0.5819 0.2360 0.5591 0.5809 0.2453 0.5917
19 0.3389 0.3346 0.3056 0.3232 0.5062 0.5357 0.1406 0.1000 0.5600 0.5593
20 0.6470 0.6654 0.6105 0.6390 0.4060 0.4870 0.2411 0.2817 0.5111 0.3635
21 0.8798 0.7828 0.6697 0.7490 0.2090 0.6631 0.3384 0.4505 0.5262 0.3387 Testing data
22 0.4374 0.4706 0.2487 0.4514 0.6814 0.4331 0.1589 0.2841 0.3313 0.4563
23 0.5134 0.6123 0.5408 0.5869 0.4529 0.5078 0.2563 0.3807 0.3755 0.4236
24 0.7715 0.6548 0.5925 0.6300 0.3164 0.4759 0.4283 0.5635 0.4313 0.4722
25 0.3363 0.3762 0.3162 0.3639 0.6969 0.3473 0.1741 0.3527 0.1547 0.7314
26 0.4174 0.5416 0.5948 0.5204 0.5093 0.2817 0.3461 0.5033 0.1655 0.6380
27 0.5740 0.6589 0.7454 0.6338 0.1524 0.5650 0.4466 0.4685 0.1672 0.4876
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Fig. 18  Comparative graphs for experimental data and predicted testing data for ANFIS and MGGP (AISI 316 workpiece)
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Fig. 19  Comparative graphs for experimental data and predicted testing data for ANFIS and MGGP (Ti6Al4V work piece)
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