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Abstract
In this investigation, we concentrate on solving the regularized long-wave (RLW) and extended Fisher–Kolmogorov (EFK) 
equations in one-, two-, and three-dimensional cases by a local meshless method called radial basis function (RBF)–finite-
difference (FD) method. This method at each stencil approximates differential operators such as finite-difference method. In 
each stencil, it is necessary to solve a small-sized linear system with conditionally positive definite coefficient matrix. This 
method is relatively efficient and has low computational cost. How to choose the shape parameter is a fundamental subject 
in this method, since it has a palpable effect on coefficient matrix. We will employ the optimal shape parameter which results 
from algorithm of Sarra (Appl Math Comput 218:9853–9865, 2012). Then, we compare the approximate solutions acquired 
by RBF–FD method with theoretical solution and also with results obtained from other methods. The numerical results show 
that the RBF–FD method is suitable and robust for solving the RLW and EFK equations.

Keywords  Nonlinear regularized long-wave (RLW) equation · Extended Fisher–Kolmogorov (EFK) equation · Radial basis 
functions (RBFs) · Local meshless method · RBF–FD method · Shape parameter
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1  Introduction

Partial differential equations which have one or more nonlin-
ear terms are called nonlinear partial differential equations 
(NLPDEs). Their application is extensive in many branches 
of sciences such as physics, chemistry, and engineering, 
since many phenomena can be modeled using the NLPDEs 
[17]. The most fundamental difficulty in studying NLPDEs 
is lack of a general technique for solving such equations, so 
any equation must be examined singly. Note that because the 
exact solution of NLPDEs is not easily obtained, numerical 
methods must be used to solve these equations [21].

1.1 � A glance over the RLW equation

Here, we focus on one of the most important nonlinear equa-
tions which is called regularized long-wave (RLW) equation 
[12, 17]:

with boundary condition

and initial condition

where Ω ⊂ ℝ
d , d ≤ 3 , and � is positive constant. Equation 

(1.1) was first presented to model the treatment of the undu-
lar bore by Peregrine [54]. It plays a serious role in describ-
ing physical model with nonlinear dispersive waves. We 
mention some of them below [16, 47]:

•	 ion-acoustic and magneto-hydrodynamic waves in 
plasma;

(1.1)ut + ∇.u − 𝜇Δut + u.∇u = 0, � ∈ Ω, 0 < t ≤ T ,

u(�, t) = g1(t), � ∈ �Ω,

u(�, 0) = g2(�), � ∈ Ω,
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•	 pressure waves in liquid bubbles;
•	 rotating flow down a tube;
•	 longitudinal dispersive waves in elastic rods;
•	 phonon packets in nonlinear crystals.

The solution of Eq. (1.1) is special type of solitary wave 
which is called soliton. Solitons are localized waves of 
permanent form, they can collide with other solitons, so 
that they will appear unchanged after the collision. The 
reader can refer to [35] for more information about solitons. 
Authors of [6] found an analytical solution under the lim-
ited initial and boundary conditions for the one-dimensional 
RLW equation. Since this solution is not effective, the need 
for a suitable numerical method is highlighted. Hence, the 
RLW equation has been solved by various numerical meth-
ods including finite-difference scheme [6, 24, 25], finite-ele-
ment method [10, 11], and pseudo-spectral method [22, 32]. 
Some researchers also used several kinds of meshless meth-
ods to find a numerical solution of the 1-D RLW equation. 
A collocation method based on radial basis functions (RBFs) 
has been extended for this equation in [64]. The author of 
[58] used the Petrov–Galerkin method to solve the GRLW 
equation with choosing a linear hat function and a quintic 
B-spline function as the trial and test function, respectively.

The exact solution for two-dimensional RLW equation 
has been presented in [62]. The cnoidal wave solutions of 
this model were found by elliptic integral method in paper 
[73]. The 2-D case of Eq. (1.1) which is appeared in the 
investigation of the Rossby wave in fluid rotating and the 
drift waves in plasma has been solved with a combination of 
the analog equation method and the boundary knot method 
[16]. The main purpose of [17] is to develop element-free 
Galerkin meshless method for solving this equation on a 
non-rectangular region. Author of [52] studied and ana-
lyzed the Crank–Nicolson Galerkin method for the Ben-
jamin–Bona–Mahony (BBM) equation. In [59], two con-
servative difference schemes, one two-level and nonlinear 
implicit and the other three-level and linear implicit have 
been studied for solving the BBM-KdV equation. Authors 
of [60] proposed a high-order nonlinear conservative dif-
ference method for the RLW–KdV equation. Furthermore, 
they indicated the stability and convergence of the presented 
method. Ghiloufi et al. [31] focused on applying a nonlinear 
conservative fourth-order difference technique for a model 
of nonlinear dispersive equations. Moreover, they proved the 
convergence of the used method by employing the energy 
method.

1.2 � A glance over the EFK equation

The Fisher–Kolmogorov (FK) equation is a nonlinear sec-
ond-order differential equation which is used to model many 
phenomena related to reaction–diffusion in chemistry and 

biology fields [1]. Some researchers [9] added an additional 
stabilizing fourth-order derivative term to FK equation and 
called the obtained model as the extended Fisher–Kolmogo-
rov (EFK) equation. It emerges from describing important 
phenomena such as:

•	 pattern formation [15] and spatio-temporal turbulence [9] 
in bistable system;

•	 population genetics [2];
•	 diffusion of domain walls in liquids crystals [74];
•	 traveling waves in reaction–diffusion systems [2];
•	 mesoscopic model of a phase transition in a binary sys-

tem nearby the Lifshitz point [39].

The EFK equation is indicated as follows [40]:

with initial condition

and boundary conditions

where g(u) = u3 − u , � is constant.
Up to now, Eq. (1.2) has attracted the attention of many 

scholars. In [53], its steady state has been surveyed by 
applying shooting technique. Authors of [15] focused on 
dynamics of Eq. (1.2) by choosing various values of � . The 
quintic B-spline collocation scheme is offered for detect-
ing the approximate solution of 1-D EFK equation in [51]. 
Danumjaya and Pani [13, 14] used the orthogonal cubic 
spline collocation technique and the finite-element Galerkin 
method to investigate Eq. (1.2). Authors of [42, 46] rendered 
the discretization for the 2-D EFK model by applying finite-
difference schemes. Moreover, authors of [40] introduced 
various meshless local boundary integral equation (LBIE) 
techniques for solving the extended Fisher–Kolmogorov 
equation. In [43], a nonlinear FD scheme for the 1-D EFK 
equation is implemented. In addition, the convergence analy-
sis of the obtained difference scheme has been proven by 
applying the energy method.

1.3 � A glance over RBFs and RBF–FD schemes

Meshless methods can solve the PDEs with a set of scattered 
points in their computational domain. Their most advantage 
is that they don’t require mesh generation. Radial basis func-
tions (RBFs) which were employed by Hardy [33, 34] for 
the interpolation of scattered points play a significant role 
in meshless methods. Kansa [44, 45] was the first scholar 
that acquired the approximate solution of a PDE by applying 
the RBFs interpolation technique and using all the points in 

(1.2)
ut + 𝛾Δ2u − Δu + g(u) = 0, � ∈ Ω ⊂ ℝ

d, 0 < t ≤ T ,

u(�, 0) = u0(�), � ∈ Ω,

u = f1(t), Δu = f2(t), � ∈ �Ω, t ∈ (0, T],
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the domain. Hence, the RBFs collocation method is called 
Kansa’s method. So far, researchers succeeded in solving 
many PDEs with Kansa’s method, including heat transport 
equation [72], 1-D nonlinear Burgers equation [36], shallow 
water equations [37], Schrödinger equation [19], free bound-
ary problems [38, 49], etc. In the Kansa’s method, an ill-
conditioned and large linear system is created that can lead 
to uncertain results. On the other hand, local RBF (LRBF) 
method has been introduced which for each point (center) 
uses only a limited number of points (stencil) instead of 
applying the entire points. This method produces a better-
conditioned, sparse linear system. Therefore, it has good 
accuracy for bad-posed problems.

The RBF–FD method, combining the meshless and FD 
[20] methods, has attracted the attention of many scholars 
due to its advantage. The RBF–FD, which can fall into the 
category of LRBF techniques, is expanded in [23, 63, 66, 68, 
69]. Shu and his co-authors [65] implemented the RBF–FD 
and LSFD for 2-D case of Poisson and Lid-Driven equa-
tions, and then, by comparing their results, they showed that 
the RBF–FD method has a significant accuracy. The steady 
convection–diffusion equations were solved by the RBF–FD 
method in [8]. The authors of [27] explained how to apply 
the RBF–FD method to the shallow water equations and 
they also established the accuracy and computational effi-
ciency of the RBF–FD method. Bolling and his co-authors 
[7] were the first researchers to focus on the parallel perfor-
mance of the RBF–FD method and introduced paralleliza-
tion strategies. Bayona and his co-workers [4] presented an 
efficient technique for finding the solutions of PDEs using 
the local RBF–FD method. Moreover, they showed that the 
approximation error can be minimized by choosing the opti-
mal shape parameter. The main goals of [41] are to imple-
ment the RBF–FD method for 2-D Navier–Stokes and to 
present an adaptive shape parameter for RBFs to improve 
numerical results. The authors of [67] solved atmospheric 
flow by a scalable RBF–FD and they also concentrated on 
parallelizing of this method. A new method was introduced 
to decrease the CPU time by combining the RBF–FD idea 
with the proper orthogonal decomposition technique [18]. 
Authors of [5] demonstrated that achieving high accuracy 
without choosing optimal shape parameter is possible when 
the RBF–FD approximations are combined with polyhar-
monic splines. Petras and his co-workers [55] solved PDEs 
on moving surface using the least-squares implicit RBF–FD 
method.

1.4 � The main purpose and framework of this article

In current article, we are going to implement the RBF–FD 
for solving 1-, 2-, and 3-D cases of the RLW and EFK equa-
tions. The framework of this paper is as follows:

•	 In Sect. 2, the RBFs and RBF–FD schemes are described.
•	 In Sect. 3, we employ the RBF–FD technique for Eq. 

(1.1) in dimensions one and two.
•	 Section 4 relates to the implementation of RBF–FD tech-

nique for Eq. (1.2).
•	 In Sect. 5, the numerical results of the simulation of 

RBF–FD method are reported for RLW and EFK equa-
tions.

•	 Section 6 is dedicated to the overall conclusion of this 
investigation.

2 � The RBFs and RBF–FD methods

To obtain the RBF–FD formulation, we need to RBF inter-
polants. Hence, we will first review the essential concepts 
of the RBF interpolation.

2.1 � RBF interpolation

A radial function in each point can be defined based on the 
distance from that point to the origin. It should be noted 
that a set of specific centers can be considered as the ori-
gin that we show them with �i for i = 1, 2,… ,N  . On the 
other words, let � ∈ ℝ

d , � ∶ ℝd → ℝ be a radial function, 
then �(�) = �(‖�‖) [26, 70], where � is a real-valued, non-
negative and single variable function and Euclidean norm 
denoted by ‖.‖

We presume that a set of scattered points �i ∈ ℝ
d and 

function values u(�i) for i = 1,… ,N are given. Finding an 
interpolant as below is known as the RBFs interpolation 
problem [26, 28, 70]:

where � is a radial function. The coefficients �i are specified 
by exerting the interpolation conditions:

Thus, the above condition leads to linear system:

P(�) =

N∑
i=1

�i�(‖‖� − �i
‖‖),

P(�i) = u(�i), i = 1,… ,N.

⎡⎢⎢⎢⎣

�(���1 − �1
��) �(���1 − �2

��) ... �(���1 − �N
��)

�(���2 − �1
��) �(���2 − �2

��) ⋯ �(���2 − �N
��)

⋮ ⋮ ⋱ ⋮

�(���N − �1
��) �(���N − �2

��) ... �(���N − �N
��)

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

�1
�2
⋮

�N

⎤⎥⎥⎥⎦
=

⎡⎢⎢⎢⎣

u(�1)

u(�2)

⋮

u(�N)

⎤⎥⎥⎥⎦
.
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The most popular radial functions are listed below [26, 29, 
70]:

•	 Gaussian kernel (GA):

•	 Multiquadric kernel (MQ):

•	 Inverse multiquadric kernel (IMQ):

•	 Inverse quadric kernel (IQ):

In the present investigation, we apply the (MQ) radial func-
tion in 1- , 2-, and 3- D.

2.1.1 � Shape parameter

The RBFs depend on the shape parameter, which greatly 
affects the accuracy and stability of the interpolation. Note 
that when two points are close to each other, the selecting of 
shape parameter can prevent producing the singular problem 
[48, 56]. The shape parameter is considered in two forms :

1.	 Fixed shape parameter
	   In this case, the shape parameter is the same for all 

centers. In fact, the distance between the points and the 
centers does not affect the choice of shape parameter.

2.	 Variable shape parameter
	   In this case, a different shape parameter is considered 

for each center. In fact, the distance between the points 
and the centers plays a role in choosing the shape param-
eter, for example, �(x) =

√
(x − xi)

2
+ �

2
i
 , so that if the 

distance from one point to center is large (small), the 
small (large) shape parameter is considered.

There are two ways to find the optimal shape parameter:

•	 Test and trial
	   This procedure is a completely experimental method.
•	 Optimal algorithms
	   Certain researchers have done many studies to find 

the good shape parameter [56, 61]. Particularly, authors 

�(r) = exp
(
−(�r)2

)
.

�(r) =
(
1 + (�r)2.

)1
2

�(r) =
1

(
1 + (�r)2

)1
2

.

�(r) =
1(

1 + (�r)2
) .

of [3, 4] succeeded in finding an optimal value of the 
constant and variable shape parameters for the RBF–FD 
method which minimize the error of approximation. 
Sarra [61] proposed an algorithm for choosing the opti-
mal shape parameter in which the SVD of interpolation 
matrix is used.

2.2 � RBF–FD method

This section will be devoted to explaining the structure 
of the RBF–FD method. Figures 1 and 2 demonstrate the 
applied stencil in 1- and 2-D situations.

At first, we suppose that N points 
{
�i
}N

i=1
 are scattered on 

the computational domain Ω ⊂ ℝ
d . The main part of 

RBF–FD method is that the values of unknown function, ui 
( i = 1,… ,

|||I(�j)
||| ), are used to approximate any desired lin-

ear differential operator ( L ) as below [29, 57]:

where I(�j) contains the index of the points that are in the 
stencil of �j.

In addition, the local interpolation problem is known as 
[29]

To get RBF–FD formulation [57], we employ the Lagran-
gian form of the local RBF interpolant (2.2):

(2.1)Lu(�j) ≈
∑

i∈I(�j)

wiu(�i),

(2.2)Pl(�) =

|I(�j)|∑
i=1

�i�(‖‖� − �i
‖‖).

Fig. 1   One-dimensional case of considered stencil

Fig. 2   Two-dimensional case of considered stencil
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in which �∗
i
(�j) = �ij, j = 1,… ,

|||I(�j)
|||.

A closed form for �∗
i
(�j) is presented in [30, 57] as

where A = �(
‖‖‖�j − �i

‖‖‖) , i, j = 1,… ,
|||I(�j)

||| and Ai is 
achieved by inserting the ith row of A with vector:

By exerting operator L on (2.3), the approximation of Lu(�j) 
at �j is obtained as [57, 71]

Hence, from Eqs. (2.1) and (2.5), it can be concluded that 
wi = L�∗

i
(�j) . Finally, the weights can be found by solving 

the linear system [29, 57]:

as

(2.3)Pl(�) =

|I(�j)|∑
i=1

�∗

i
(�)u(�i),

(2.4)�∗

i
(�) =

det(Ai(�))

det(A)
,

B =

�
�(��� − �1

��) �(��� − �2
��) ... �(‖� − ��I(�j)�‖)

�
.

(2.5)Lu(�j) ≈ LPl(xj) =

|I(�j)|∑
i=1

L�∗

i
(�j)u(�i).

(2.6)AwT =
[(
LB(�i)

)]T
,

Now, to get the optimal shape parameter, we use the algo-
rithm provided by Sarra [61]. The parameters required for 
Algorithm 1 are defined as

•	 � denotes the interpolation matrix.
•	 �min and �max , which are the smallest and largest singular 

values, are obtained from the singular-value decomposi-
tion (SVD).

•	 Kmin = 102 and Kmax = 104.

•	 �Increment =
1

N
.

(2.7)

⎡
⎢⎢⎢⎢⎢⎣

�(���1 − �
1
��) �(���2 − �

1
��) ... �(

�����I(�i)� − �
1

���)
�(���1 − �

2
��) �(���2 − �

2
��) ⋯ �(

�����I(�i)� − �
2

���)
⋮ ⋮ ⋱ ⋮

�(
����1 − ��I(�i)����) �(

����2 − ��I(�i)����) ... �(
�����I(�i)� − ��I(�i)����)

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

w
1

w
2

⋮

w�I(�i)�

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

L�(��� − �
1
��)��=�i

L�(��� − �
2
��)��=�i

⋮

L�(
���� − ��I(�i)����)��=�i

⎤
⎥⎥⎥⎥⎥⎦

.
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3 � Regularized long‑wave equation

This section is allocated to the discretization of 1-D and 2-D 
RLW equations by RBF–FD procedure.

3.1 � The one‑dimensional RLW equation

We intend to illustrate the discretization of RBF–FD method 
for the 1-D case of Eq. (1.1):

in which u(x, t) shows the horizontal velocity of fluid.
From Eq. (2.1), the approximation solution is written as

also, the first- and second-order derivatives are approxi-
mated as given in the following:

Substituting Eqs. (3.2) and (3.3) in Eq. (3.1) gives

(3.1)

𝜕u

𝜕t
+

𝜕u

𝜕x
− 𝜇

𝜕

𝜕t

(
𝜕2u

𝜕x2

)
+ u

𝜕u

𝜕x
= 0, � = x ∈ ℝ, 0 < t ≤ T ,

(3.2)u(�j, t) =

|I(�j)|∑
i=1

wiui(t),

(3.3)

�u(�j, t)

�x
=

|I(�j)|∑
i=1

wx
i
ui(t),

�2u(�j, t)

�x2
=

|I(�j)|∑
i=1

wxx
i
ui(t).

After collocating the points; we receive the system of ordi-
nary differential equations (ODEs) of the form:

where

The structure of matrices �� and ��� depends on the num-
ber of points in each stencil ( |||I(�j)

||| ). For instance, if three 
points in each stencil are selected, then �� and ��� are 
tridiagonal matrices.

3.1.1 � Time discretization

So far, the spatial derivatives of the RLW equation have been 
discretized by the RBF–FD method, and then, the system 
of ODEs (3.5) has been acquired. There are various meth-
ods for solving this equation, such as Euler, Runge–Kutta, 
etc. However, we preferred to use a command in MATLAB 
software. In the following, Algorithm 2 illustrates the full 
discretization of the RLW equation.

(3.4)

duj(t)

dt
+

�I(�j)��
i=1

wx
i
ui(t) − �

d

dt

⎛
⎜⎜⎝

�I(�j)��
i=1

wxx
i
ui(t)

⎞
⎟⎟⎠

+ uj(t)

⎛⎜⎜⎝

�I(�j)��
i=1

wx
i
ui(t)

⎞⎟⎟⎠
= 0, j = 1, 2,… ,N.

(3.5)
d
(
� − 𝜇���

)
�⃗

dt
+���⃗(t) + �⃗. ∗

(
���⃗(t)

)
= 0,

�(t) =
[
u1(t) u2(t) ... uN−1(t) uN(t)

] T
.
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3.2 � The two‑dimensional RLW equation

We now focus on the 2-D case of Eq. (1.1) and apply the 
RBF–FD procedure to discretize it. Let the 2-D RLW equa-
tion be

According to (2.1), the first- and second-order derivatives 
with respect to x are approximated as

In addition, the same approximations for derivatives in y 
direction are applied:

Substituting Eqs. (3.7)–(3.8) in (3.6) leads to

(3.6)

𝜕u

𝜕t
+

𝜕u

𝜕x
+

𝜕u

𝜕y
− 𝜇

𝜕

𝜕t

(
𝜕2u

𝜕x2

)
− 𝛾

𝜕

𝜕t

(
𝜕2u

𝜕y2

)
+ u

𝜕u

𝜕x

+ u
𝜕u

𝜕y
= 0, � = (x, y) ∈ Ω ⊂ ℝ

2, 0 < t < T .

(3.7)

�u(�j, t)

�x
=

|I(�j)|∑
i=1

wx
i
ui(t),

�2u(�j, t)

�x2
=

|I(�j)|∑
i=1

wxx
i
ui(t).

(3.8)

�u(�j, t)

�y
=

|I(�j)|∑
i=1

w
y

i
ui(t),

�2u(�j, t)

�y2
=

|I(�j)|∑
i=1

w
yy

i
ui(t).

Consequently, we can attain the matrix-vector form of (3.9) 
as

in which ��� is Kronecker product � in ��� (��� = �⊗���) , 
��� = ��� ⊗ � , �� = �⊗�� , �� = �� ⊗ � and

3.2.1 � Time discretization

So far, the spatial derivatives of the RLW equation have 
been discretized by the RBF–FD method. Now, the fourth-
order Runge–Kutta method is applied to solve the system of 
ODEs (3.10). Hence, we introduce Algorithm 3 for the full 
discretization of the RLW equation.

(3.9)

duj(t)

dt
+

�I(�j)��
i=1

wx
i
ui(t) +

�I(�j)��
i=1

w
y

i
ui(t)

− �
d

dt

⎛⎜⎜⎝

�I(�j)��
i=1

wxx
i
ui(t)

⎞⎟⎟⎠
− �

d

dt

⎛⎜⎜⎝

�I(�j)��
i=1

w
yy

i
ui(t)

⎞⎟⎟⎠

+ uj(t)

⎛
⎜⎜⎝

�I(�j)��
i=1

wx
i
ui(t)

⎞
⎟⎟⎠

+ uj(t)

⎛⎜⎜⎝

�I(�j)��
i=1

w
y

i
ui(t)

⎞⎟⎟⎠
= 0, j = 1, 2,… ,N.

(3.10)
d
(
� − 𝜇��� − 𝛾���

)
�⃗�

dt
+ �� �⃗�(t) + �� �⃗�(t)

+ �⃗�. ∗
(
�� �⃗�(t)

)
+ �⃗�. ∗

(
�� �⃗�(t)

)
= 0,

�(t) =
[
u
1
(t) u

2
(t) ... u

N2−1(t) u
N2(t)

] T

.
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4 � Extended Fisher–Kolmogrov equation

To solve 1-D and 2-D extended Fisher–Kolmogorov (EFK) 
equations, we employ the RBF–FD technique. First, how 
to apply the RBF–FD method for the 1-D case of the EFK 
equation is explained. Then, the attention is paid on its 2-D 
case.

4.1 � The one‑dimensional EFK equation

The one-dimensional EFK equation is

which can be rewritten by changing the variable as the fol-
lowing system:

(4.1)

𝜕u

𝜕t
+ 𝛾

𝜕4u

𝜕x4
−

𝜕2u

𝜕x2
+ g(u) = 0, � = x ∈ Ω ⊂ ℝ, 0 < t ≤ T ,

(4.2)

⎧⎪⎪⎨⎪⎪⎩

v =
�2u

�x2
,

�u

�t
= −�

�2v

�x2
+ v − g(u).

According to Eq. (2.1), second-order derivatives are approx-
imated as below:

By substituting Eq. (4.3) in (4.2), we acquire

for j = 1, 2,… ,N . Finally, the matrix-vector form of (4.4) 
is written as

(4.3)

�2u(�j, t)

�x2
=

|I(�j)|∑
i=1

wxx
i
ui(t),

�2v(�j, t)

�x2
=

|I(�j)|∑
i=1

zxx
i
vi(t).

(4.4)

⎧⎪⎪⎨⎪⎪⎩

vj(t) =

�I(�j)��
i=1

wxx
i
ui(t),

duj(t)

dt
= −�

�I(�j)��
i=1

zxx
i
vi(t) + vj(t) − g(uj(t)),

(4.5)

⎧⎪⎨⎪⎩

�⃗(t) = �xx�⃗(t),

d�⃗(t)

dt
= −𝛾�xx�⃗(t) + �⃗(t) − g(�⃗(t)),
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where

4.1.1 � Time discretization

So far, we have discretized the spatial derivatives of EFK 
equation by the RBF–FD method and have arrived at the 
system of (4.5). In the following, the full discretization of 
the 1-D EFK equation is introduced in Algorithm 4.

�(t) =
[
u1(t) u2(t) ... uN−1(t) uN(t)

] T
,

�(t) =
[
v1(t) v2(t) ... vN−1(t) vN(t)

] T
.

4.2 � The two‑dimensional EFK equation

The two-dimensional EFK equation

may be rewritten as the following system:

From Eq. (2.1), we consider the approximation of second-
order derivatives with respect to x as

(4.6)ut + �Δ2u − Δu + g(u) = 0,

(4.7)

⎧⎪⎨⎪⎩

v =
�2u

�x2
+

�2u

�y2
,

�u

�t
= −�

�
�2v

�x2
+

�2v

�y2

�
+ v − g(u).

(4.8)

�2u(�j, t)

�x2
=

|I(�j)|∑
i=1

wxx
i
ui(t),

�2v(�j, t)

�x2
=

|I(�j)|∑
i=1

zxx
i
vi(t),

and similarly with respect to y as

By substituting Eqs. (4.8) and (4.9) in (4.7), the following 
system was obtained

(4.9)

�2u(�j, t)

�y2
=

|I(�j)|∑
i=1

w
yy

i
ui(t),

�2v(�j, t)

�y2
=

|I(�j)|∑
i=1

z
yy

i
vi(t).

for j = 1, 2,… ,N  . At the end, we can write the matrix-
vector form:

in which ��� is Kronecker product � in ��� , ��� = ��� ⊗ � 
and

(4.10)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

vj(t) =

�I(�j)��
i=1

wxx
i
ui(t) +

�I(�j)��
i=1

w
yy

i
ui(t),

duj(t)

dt
= −�

⎛⎜⎜⎝

�I(�j)��
i=1

zxx
i
vi(t) +

�I(�j)��
i=1

z
yy

i
vi(t)

⎞⎟⎟⎠
+ vj(t) − g(uj(t)),

(4.11)

⎧⎪⎨⎪⎩

�⃗�(t) =
�
��� + ���

�
�⃗�(t),

d �⃗�(t)

dt
= −𝛾

�
��� + ���

�
�⃗�(t) + �⃗�(t) − g( �⃗�(t)),

�(t) =
[
u
1
(t) u

2
(t) ... u

N2−1(t) u
N2(t)

] T

,

�(t) =
[
v
1
(t) v

2
(t) ... v

N2−1(t) v
N2 (t)

] T

.
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4.2.1 � Time discretization

Here, Algorithm 5 is presented to illustrate the full discre-
tization of the 2-D EFK equation.

Table 1   Comparison of the 
error values of the RBF–FD 
method with method of [64] 
with d = 0.03 for Instance 1

T Method of [64] RBF–FD method

N = 1440, dt = 0.1 N = 500,
|||I(�j)

||| = 131 , dt = 0.1

L2 L∞ L2 L∞ CPU time

1 – – 1.0621 × 10
−7

6.8264 × 10
−8 0.16

5 0.3632 × 10
−5

0.1061 × 10
−5 5.8174 × 10

−7
2.4763 × 10

−7 0.25
10 0.7216 × 10

−5
0.2157 × 10

−5
1.2579 × 10

−6 3.5046 × 10
−7 0.32

15 1.0788 × 10
−5

0.3269 × 10
−5

1.8474 × 10
−6 3.9316 × 10

−7 0.39
20 1.4342 × 10

−5
0.4382 × 10

−5
2.3616 × 10

−6 4.5519 × 10
−7 0.46

40 – – 1.6360 × 10
−5

1.5766 × 10
−5 0.78

60 – – 5.3453 × 10
−4

5.2928 × 10
−4 1.04

Table 2   Errors and CPU time acquired by the RBF–FD method with 
d = 0.1 at final time T = 10 for Instance 1

N |||I(�j)
||| L2 L∞ CPU time

50 15 9.0382 × 10
−2

6.1785 × 10
−2 0.41

100 25 2.1532 × 10
−2

1.1598 × 10
−2 0.42

200 51 1.0490 × 10
−3

4.0463 × 10
−4 0.47

300 111 4.4507 × 10
−5

1.4316 × 10
−5 0.56

400 241 4.2354 × 10
−6

3.4316 × 10
−6 0.63

500 341 6.8304 × 10
−8

1.7092 × 10
−8 0.71

600 441 5.4214 × 10
−9

1.3243 × 10
−9 0.94

5 � Numerical results

5.1 � Instance 1

As the first instance, the 1-D RLW equation (3.1) is con-
sidered with parameter � = 1 . The analytic solution of this 
equation introduces a solitary wave as [12]

where 3d and v = 1 + �d represent the amplitude and veloc-

ity of the wave, respectively, and k =
√

�d

4�v
.

We are employing the RBF–FD method for solving men-
tioned model with initial condition

and the boundary conditions

in which x0 = 0 and d = 0.03 or d = 0.1.
The numerical solutions and absolute errors on spatial 

domain [−80, 100] at different final times with dt = 0.1 , 
N = 500 , |||I(�j)

||| = 131 (j = 1,… ,N) and d = 0.1 are plotted 
in Fig. 3. As shown in Fig. 3, the solitary wave moves to the 
right across the space interval [−80, 100] in the time duration 
[0, 20]. The purpose of Table 1 is to compare the introduced 

u(x, t) = 3d sech2
(
k[x − x0 − vt]

)
,

u(x, 0) = 3d sech2
(
k[x − x0]

)
,

u(a, t) = u(b, t) = 0,
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method in [64] with the RBF–FD method for the parameters 
d = 0.03 and dt = 0.1 at different final times. In Table 2, we 
reported the error values and CPU time acquired by 
RBF–FD method with the number of points N and |||I(�j)

||| (j = 1,… ,N) at final time T = 10 for Instance 1. The 
behavior of numerical solution of Instance 1 with d = 0.03 
and dt = 0.01 at time period [0, 20] is demonstrated in Fig. 4. 

5.2 � Instance 2

Here, the one-dimensional RLW equation (3.1) is investi-
gated by considering the initial condition [64]:

u(x, 0) =

2∑
i=1

3 di sech
2
(
ki(x − xi)

)
,

Fig. 3   Illustration of approximate and exact solutions at several final times with N = 500 , |||I(�j)
||| = 131 (j = 1,… ,N) and d = 0.1 for Instance 1

Fig. 4   Illustration of approximate solution in time interval [0, 20] with 
N = 500 , |||I(�j)

||| = 131 (j = 1,… ,N) and d = 0.03 for Instance 1

Fig. 5   Illustration of solution in time interval [0,  25] with 
dt = 0.01,N = 500 and |||I(�j)

||| = 351 (j = 1,… ,N) for Instance 2



1170	 Engineering with Computers (2021) 37:1159–1179

1 3

in which di =
4k2

i

1 − 4k2
i

 . Moreover, its boundary conditions 

are assumed to be zero Dirichlet. The solution of this model 
presents the interaction of two solitary waves. The parame-
ters of this example are � = � = 1 , k1 = 0.4 , k2 = 0.3 , 
x1 = 15 , and x2 = 35.

We are employing the RBF–FD method to simulate the 
behavior of two solitary waves that are moving in opposite 
direction. Figure 5 presents the approximate solution in time 
interval [0, 25] over domain [0, 120] for Instance 2.

The approximate solutions of Instance 2 at different final 
times with dt = 0.01 , N = 500 and |||I(�j)

||| = 341 (j = 1,… ,N) 

are indicated in Fig. 6. As shown in Fig. 6, two waves move 
towards each other, collide at T = 12 and then pass through 
each other.

5.3 � Instance 3

In this problem, we focus on the 1-D RLW equation (3.6) 
which has exact solution as [17]

where q = 3(v − 2), k =

√
q

2p
 and p =

√
6v.

u(x, y, t) =
q

2
sech2

[
k(x + y − x0 − y0 − vt)

]
,

Fig. 6   Graphs of approximate solution at different final times with dt = 0.01 , N = 500 and |||I(�j)
||| = 341 (j = 1,… ,N) for Instance 2
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This model is solved by employing the RBF–FD method 
with various values of N and |||I(�j)

||| (j = 1,… ,N) at several 

final times on region Ω = [−80, 100]2 . Figure 7 indicates the 
approximate solution obtained by RBF–FD method with the 
p a r a m e t e r s  T = 10  ,  dt = 0.001  ,  N = 130  , |||I(�j)

||| = 91 (j = 1,… ,N) , v = 2.2 (right graph) and v = 2.06 
(left graph) for Instance 3.

We compare the introduced numerical results in [17] with 
the RBF–FD method for various values of N and |||I(�j)

||| (j = 1,… ,N) at T = 10, 20 for Instance 3 in Table 3. 
From Table 3, it can be concluded that the same result of 
[17] can be obtained by selecting fewer points.

5.4 � Instance 4

In this problem, the two-dimensional RLW equation (3.6) is 
considered which has exact solution as [17]

where qi = 3(vi − 2) , ki =
√
qi

2pi
 and pi =

√
6vi.

u(x, y, t) =

2∑
i=1

qi

2
sech2

[
ki(x + y − x0i − y0i − vit)

]
,

We used the RBF–FD method for solving this model with 
various values of N and |||I(�j)

||| (j = 1,… ,N) on region 
Ω = [0, 120]2 . We compare the introduced numerical results 
in [17] with the RBF–FD method for various values of N and |||I(�j)

||| (j = 1,… ,N) at T = 2, 10 for Instance 4 in Table 4. 
From Table 4, it can be deduced that the same results of [17] 
can be achieved by selecting fewer points. Figure 8 demon-
strates the approximate solutions obtained from the RBF-FD 
method at different final times.  

5.5 � Instance 5

We consider the 3-D RLW equation as

which has exact solution

By substituting solution (5.2) into Eq. (5.1), we can obtain 
the source function f(x, y, z, t).

Using the RBF method, we obtained approximate solu-
tions for the model mentioned. Figure 9 demonstrates the 
graphs of approximate solution and its absolute error with 

(5.1)
ut − Δut + ∇.u + u.∇u = f (x, y, z, t),

� = (x, y, z) ∈ [−1, 1]3, 0 < t < T ,

(5.2)u(x, y, z, t) = exp(−t) sin(2�x) sin(2�y) sin(2�z).

Fig. 7   Graphs of the approximate solutions at T = 10 with N = 130 , |||I(�j)
||| = 91 (j = 1,… ,N) and dt = 0.001 and v = 2.2 (right graph) and 

v = 2.06 (left graph) for Instance 3

Table 3   Comparison between 
the L∞ error norms of the RBF–
FD method and method of [17] 
with v = 2.06 for Instance 3

T Method of [17] RBF–FD method

N = 540 N = 1080 N = 2160 (N,
|||I(�j)

|||) = (80, 41) (N,
|||I(�j)

|||) = (90, 71)

10 4.9044 × 10
−2

1.4938 × 10
−2

5.9543 × 10
−3

2.2811 × 10
−3

2.0083 × 10
−3

20 2.6745 × 10
−2

1.1374 × 10
−2

4.0899 × 10
−3

6.4818 × 10
−3

5.9434 × 10
−3
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dt = 10−4 , N = 15 and |||I(�j)
||| = 11 (j = 1,… ,N) at final 

time T = 1.

5.6 � Instance 6

In this problem, the 1-D EFK equation (4.1) is considered 
with the initial condition [13, 50, 51]

and the boundary conditions

We found the approximate solution of Eq. (4.1) using 
RBF–FD method for various values of � . The numerical 
results at different final time (T = 0, 0.05, 0.1, 0.15, 0.2) for 

u(x, 0) = − sin(�x), x ∈ [−4, 4],

u(−4, t) = u(4, t) = 0, t ∈ [0, T].

Fig. 8   Graphs of the approximate solutions at several final times with N = 80 , |||I(�j)
||| = 41 (j = 1,… ,N) and dt = 0.01 for Instance 4

Table 4   Comparison between 
the L∞ error norms of the RBF–
FD method and method of [17] 
with v

1
= 2.04 and v

2
= 2.06 for 

Instance 4

T Method of [17], dt = 0.1 RBF–FD method, dt = 0.01

N = 540 N = 1080 N = 2160 (N,
|||I(�j)

|||) = (80, 41) (N,
|||I(�j)

|||) = (90, 71)

2 1.0284 × 10
−2

5.1198 × 10
−3

1.8342 × 10
−3

5.5684 × 10
−4

5.2737 × 10
−4

10 5.5711 × 10
−2

3.2873 × 10
−3

6.6394 × 10
−3

1.3871 × 10
−3

1.2591 × 10
−3
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� = 0, 10−4, 10−1 are shown in Figs. 10 and 11. It is clear 
that the behavior of the solutions for � = 0, 10−4 is the same, 
while the numerical solution related to � = 10−1 decays fast 
to zero. Hence, the effect of � is defined as the stabilization 
parameter for the EFK equation. These numerical results are 
consistent with the results obtained in [13, 50, 51].

5.7 � Instance 7

We consider the two-dimensional EFK model as

(5.3)
ut + 𝛾Δ2 u − Δu + g(u) = f (x, y, t), (x, y) ∈ Ω ⊂ ℝ

2, t ∈ [0, T],

with

The exact solution of Eq. (5.3) is  [40]

The initial condition can be obtained from (5.4) by substitut-
ing t = 0 and the boundary conditions for this problem are 
considered as follows:

f (x, y, t) = exp(−t) sin(2�x) sin(2�y)
(
64��4 + 8�2

+exp(−2t) sin(2�x)2 sin(2�y)2 − 2
)
.

(5.4)u(x, y, t) = exp(−t) sin(2�x) sin(2�y).

u = 0, Δu = 0.

Fig. 9   Graphs of approximation solution and its absolute error applying the RBF–FD method with N = 15 , |||I(�j)
||| = 11 and dt = 10−4 on region 

[−1, 1]3 for Instance 5
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We solved this model with parameter � = 0.01 using 
RBF–FD technique. In Table 5, the L∞ error and the CPU 
time used at final time T = 1 are reported with considering 
dt = 0.1 . Moreover, the plot of numerical solution and its 

contour with N = 40,
|||I(�j)

||| = 25 (j = 1,… ,N) at T = 1 is 
shown in Fig. 12.

5.8 � Instance 8

We consider the two-dimensional EFK equation (5.3) which 
has the following exact solution [40]:

The source term f(x, y, t) is obtained by substituting exact 
solution (5.5) into model (5.3). Moreover, the initial and 
boundary conditions are acquired from exact solution (5.5).

This problem is investigated with � = � = 0.01 by 
RBF–FD technique. The graphs of numerical solution are 
presented in Fig. 13. We compare the introduced numerical 
results in [40] with the RBF–FD method for various values 
of N and |||I(�j)

||| (j = 1,… ,N) at T = 1 for Instance 8 in 
Table 6.

5.9 � Instance 9

In this example, the three-dimensional case of model (4.6) 
is considered which has the exact solution:

(5.5)u(x, y, t) = exp(−t) exp

(
−
(x − 0.5)2

�
−

(y − 0.5)2

�

)
.

(5.6)u(x, y, z, t) = exp(−t) sin(2�x) sin(2�y) sin(2�z).

Fig. 10   Graphs of numerical solution with dt = 0.01 , N = 400 , |||I(�j)
||| = 55 and � = 10−4 (right graph) and � = 0 (left graph) on region [−4, 4] at 

different final times for Instance 6

Fig. 11   Graphs of numerical solution with dt = 0.01 , N = 400 , |||I(�j)
||| = 55 and � = 0.1 on region [−4, 4] at different final times for 

Instance 6
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The initial and boundary conditions are acquired from the 
exact solution (5.6).

This instance in 3-D case is solved by RBF–FD method 
with � = 0.01 , N = 14 , |||I(�j)

||| = 7 and dt = 0.001 at T = 1 . 

Table 5   Comparison between 
L∞-error and CPU Time earned 
by techniques introduced in 
[40] and RBF–FD method for 
Instance 7

N |||I(�j)
||| DLBIE method of [40] LBIE-MK method of [40] RBF–FD method

dt = 10−3 dt = 10−3 dt = 10−1

L∞ CPU time L∞ CPU time L∞ CPU time

10 3 6.0212 × 10
−3 0.12 3.1204 × 10

−3 3.61 2.9918 × 10
−4 0.24

20 7 1.3589 × 10
−3 2.38 7.5035 × 10

−4 20.37 3.1051 × 10
−5 0.94

30 11 – – – – 1.1755 × 10
−5 8.02

40 11 2.3295 × 10
−4 35.95 2.0228 × 10

−4 121.53 3.0037 × 10
−6 15.84

50 11 – – – – 2.0485 × 10
−6 62.20

60 11 – – – – 1.9801 × 10
−6 167.97

Fig. 12   Graphs of approximation solution and its contour using the RBF–FD method with N = 40 , |||I(�j)
||| = 25 and dt = 0.1 on region 

[0, 1] × [0, 1] for Instance 7

Table 6   Comparison between 
L∞ error and CPU time earned 
by techniques introduced in 
[40] and RBF–FD method for 
Instance 8

N |||I(�j)
||| DLBIE method of [40] LBIE-MK method of [40] RBF–FD method

dt = 10−3 dt = 10−3 dt = 10−1

L∞ CPU time L∞ CPU time L∞ CPU time

10 3 5.4336 × 10
−1 0.31 5.4469 × 10

−1 3.81 5.3902 × 10
−1 0.35

20 7 5.3776 × 10
−3 2.88 8.1634 × 10

−4 21.07 7.5489 × 10
−4 3.88

30 11 – – – – 2.4014 × 10
−4 8.79

40 15 1.9977 × 10
−3 40.54 3.6261 × 10

−4 120.30 4.6914 × 10
−5 54.35

50 15 – – – – 2.5926 × 10
−6 211.92

60 15 – – – – 1.2951 × 10
−6 716.13
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Figure 14 demonstrates various slices of the approximate 
solution and its absolute error.

6 � Conclusion

This paper is devoted to solving two nonlinear equations 
using the RBF–FD method, which is a combination of mesh-
less idea and finite-difference method. Unlike the finite-
difference method, this method does not require any mesh 

generating. Rather, it is only necessary to consider a set of 
scattered points over the computational region of the prob-
lem. Furthermore, each differential operator of problem at a 
point is approximated by the values of the unknown function 

Fig. 13   Graphs of approximation solution and its contour using the RBF–FD method with N = 40 , |||I(�j)
||| = 25 and dt = 0.1 on region 

[0, 1] × [0, 1] for Instance 8

Fig. 14   Graphs of approximation solution (left graph) and absolute 
error (right graph) at T = 1 employing the RBF–FD method with 
N = 14 , |||I(�j)

||| = 7 and dt = 0.001 on region [0, 1] × [0, 1] × [0, 1] for 
Instance 9

◂
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in the points that are in stencil of considered point. This pro-
cedure is performed for all points within the computational 
region. This method is examined on the one-, two-, and 
three-dimensional EFK equations. According to numerical 
results obtained for EFK equation, this method can achieve 
high-order accurate results compared to the recent methods. 
On the other hand, this method is employed to approximate 
the solitary waves of the one- and two-dimensional RLW 
equations. Numerical results show that this method can well 
simulate the behavior of a single solitary wave and interac-
tion two solitary waves.
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