
Vol.:(0123456789)1 3

Engineering with Computers (2021) 37:1081–1097 
https://doi.org/10.1007/s00366-019-00873-3

ORIGINAL ARTICLE

Upwind skewed radial basis functions (USRBF) for solution of highly 
convective problems over meshfree nodes

Ali Javed1 · Ali Asadullah Baig1   · Kamal Djidjeli2 · Aamer Shahzad1 · Asad Hameed1

Received: 13 May 2019 / Accepted: 9 October 2019 / Published online: 30 October 2019 
© Springer-Verlag London Ltd., part of Springer Nature 2019

Abstract
An upwind skewed radial basis function (USRBF)-based solution scheme is presented for stabilized solutions of convection-
dominated problems over meshfree nodes. The conventional, radially symmetric radial basis functions (RBFs) are multiplied 
with an upwinding factor which skews the RBFs toward the upwind direction. The upwinding factor is a function of flow 
direction, intensity of convection, size of local support domain, and nodal distribution. The use of USRBFs modifies the 
weight values such that the necessary artificial diffusion is added only along the flow direction, whereas the crosswind dif-
fusion is avoided. Subsequently, these skewed radial basis functions are employed in finite difference mode (RBF-FD) for 
derivative approximation. The performance and accuracy of the proposed scheme is studied by solving convection–diffu-
sion problems over uniform and random distribution of meshfree nodes with various convection intensities. The upwinding 
effectively suppresses non-physical perturbation in numerical solution of convection-dominated problems. The results show 
that significant improvement in accuracy can be achieved by using the proposed USRBF-based solution scheme, particularly 
at higher convection intensities.

Keywords  Upwind scheme · Localized meshless method · Radial basis function · Convection–diffusion · Derivatives 
discretization

1  Introduction

Meshfree particle methods refer to the class of numerical 
techniques in which, at least, the connectivity constraint of 
field data points (computational nodes) is alleviated [1]. In 
the absence of connectivity constraints, the data points can 
be added, removed or relocated, during the computational 

process, with greater flexibility and ease compared to tra-
ditional mesh-based methods [2]. Owing to this feature, 
meshfree methods are considered to offer a better solution 
platform for problems which involve large deformation of 
boundaries or require adaptive refinement. Meshfree meth-
ods have, therefore, been the focus of many researchers in 
the recent past [3–10].

Radial basis functions (RBFs) are real-valued functions 
which are used for multivariate data interpolation over 
scattered data points [5]. The use of multiquadric RBFs 
for solution of partial differential equations (PDEs) over 
scattered data points was first proposed by Kansa [11]. 
Subsequently, a number of RBF-based meshfree methods 
have been developed including RBF-collocation methods 
[12] and local RBF methods [13, 14]. RBF-based solution 
schemes are truly meshfree and their applications were later 
explored to solve flow problems by a number of researchers 
[2, 5, 6, 12, 15, 16]. One of the difficulties while solving 
flow problems with RBFs was that the problem became ill-
conditioned by increasing the number of data points in the 
local support domain. In 2003, Tolstykh and Shirobokov 
[14] and Shu et al. [13] simultaneously proposed the use of 
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local RBFs for solving flow and structural problems. Local 
RBF methods compromise on spectral accuracy to result 
in well-conditioned matrix equations with better accuracy. 
RBF in finite difference mode (RBF-FD) [14, 17, 18] and 
RBF-based differential quadrature (RBF-DQ) [13, 16, 19] 
are two commonly used local RBF methods.

Solution of flow problems involves Navier–Stokes equa-
tions which are primarily convective diffusive equations. 
Such problems become convection dominated at high Reyn-
olds number ( Re = �Uc∕� , where � is the flow density, U 
is the flow velocity, c is the characteristic length and � is 
the dynamic viscosity). Accurate and stable modeling of 
convection-dominated flows has always been a challenging 
task. Without the use of artificial viscosity, upwinding or 
any other stabilization technique for such problems, most 
numerical methods result in spurious oscillations which lead 
to inaccurate and unstable solutions [20]. For such prob-
lems, stabilization techniques are very well developed using 
traditional mesh-based methods. For example, in the finite 
difference method, the first- and second-order upwind dif-
ference schemes [21, 22], quadratic upstream interpolation 
for convective kinetics (QUICK) [23], hybrid differencing 
scheme [20], and the power law scheme [24] are some com-
mon stabilization techniques. Similarly, in finite element 
method, a number of stabilization techniques are available 
which include use of anisotropic balancing diffusion, stream-
line upwind Petrov–Galerkin [25] and hierarchical basis 
functions [26].

Development of stabilized solution schemes for convec-
tion-dominated flows, using meshfree methods, is still an 
active area of research [2]. Oñate [10] derived stabilized 
form of governing equations using balance of convective and 
diffusive flux. Shu et al. [27] used flux at midpoint between 
the reference node and its supporting nodes to introduce 
upwinding effect while using meshfree nodal cloud. Gu and 
Liu [28] proposed a number of techniques to improve the 
stabilization of numerical solutions of highly convective 
flows over meshfree data points. They proposed the use of 
nodal refinement, local support domain enlargement, use 
of fully upwind local support domain and adaptive upwind 
support domain. Kee et al. [29] suggested using least square 
regularization to introduce stabilization in the radial point 
collocation method. Fornberg and Lehto [30] proposed the 
use of a filter mechanism to stabilize the solution of purely 
convective flows using the RBF-FD method. Chan et al. [31] 
introduced comet-shaped local support domains for local 
RBFs to deal with highly convective flows. Javed et al. [2] 
proposed a stabilized RBF-FD scheme for solving convec-
tion-dominated flows. They proposed that the stabilization 
term emerge naturally by considering higher-order approxi-
mation of governing equation during force and momentum 
balance.

The conventional flow solution schemes using local 
RBFs do not distinguish between upwind and downwind 
data points while calculating the RBF weights. RBF weights 
between two data points are calculated based on the Euclid-
ean distance only resulting in radially symmetric RBF sur-
faces. The current study proposes the use of upwind skewed 
radial basis function (USRBF) to introduce upwinding in 
the solution scheme for convection-dominated flows over 
meshfree nodes. These upwind-skewed RBFs are obtained 
by multiplying an upwinding factor with the conventional 
RBFs. The upwinding factor is a function of flow direction, 
intensity of convection, size of local support domain, and 
nodal distribution. The use of USRBFs modifies the weight 
values such that the necessary artificial diffusion is added 
only along the flow direction and avoids crosswind diffu-
sion. The performance of the proposed scheme is studied 
by solving one- and two-dimensional convection–diffusion 
equation on uniformly and randomly distributed nodes with 
various convection intensities. The results of the numerical 
tests show a remarkable improvement in the accuracy and 
stability of the solution scheme.

The organization of the paper is as follows. A brief intro-
duction to local RBF is presented in Sect. 2. Formulation of 
the proposed upwind skewed RBFs (USRBFs) is presented 
in Sect. 3. In Sect. 4, numerical tests are performed using 
the conventional and proposed schemes, and comparison is 
made between the results obtained from the two methods. 
Future work and conclusions are discussed in Sects. 5 and 
6, respectively.

2 � Local radial basis functions

Local radial basis function in finite difference mode (RBF-
FD) is a strong-form meshfree method developed indepen-
dently by Shu et al. [13] and Tolstykh and Shirobokov [14]. 
Like the finite difference method, RBF-FD approximates the 
derivatives of a dependent variable, at any spatial location, 
using linear weighted sum of the values of similar variable at 
surrounding data point. A support domain is defined around 
each node, say x1 , which constitutes N neighbouring data 
points as shown in Fig. 1. Classical finite differencing sug-
gests finding the value of the differential operator L of any 
parameter � , at x1 , as the weighted sum of values of � at its 
neighbouring data points xj � �d, j = 1, 2,…N as [3]:

where �(L)

1,j
 is the weight, at x1 for xj , corresponding to the 

differential operator L . Parameter � can also be 

(1)L�(x1) =

N∑

j=1

�
(L)

1,j
�(xj),
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approximated using standard RBF interpolation over a set of 
distinct data points xj � �d, j = 1, 2,…N as:

where � is the radial basis function, ‖.‖ is the standard 
Euclidean norm, and �j and � are the expansion coefficients. 
Some of the common radial basis functions are given in 
Table 1. Equation (2) can also be expressed in Lagrange 
form as

where X
�
‖x − xj‖

�
 satisfies the cardinal conditions as

Applying the differential operator L on Eq. (3) at node x1 
yields:

Using Eqs. (1) and (5), RBF-FD weights �(L)

1,j
 are given by

(2)�(x) ≈ s(x) =

N∑

j=1

�j�(x − xj) + �,

(3)s̄(x) =

N�

j=1

X
�
‖x − xj‖

�
�

�
xj
�
,

(4)X
�
‖xk − xj‖

�
=

�
1, if k = j

0, if k ≠ j
k = 1, 2,…N.

(5)L�
�
x1
�
≈ Ls̄

�
x1
�
=

N�

j=1

LX
�
‖x1 − xj‖

�
�

�
xj
�
.

(6)�
(L)

1,j
= LX

�
‖x1 − xj‖

�
.

In practice, these weights are computed by solving the fol-
lowing linear system [32]:

where Φi,j = �
�
‖xj − xi‖

�
 , i, j = 1, 2,… ,N , e is a row vector 

of integers from 1 to N, LΦ1 represents the column vector of 
L�

�
‖x1 − xi‖

�
, and � is a scalar parameter which enforces 

the condition:

Evaluation of Eq. (7) gives weights �L

1,j
 corresponding to 

all the nodes in the support domain for differential operator 
L . The corresponding weights and values of � are used to 
approximate L(�) at x1.

3 � Formulation of upwind skewed radial 
basis functions (USRBFs)

To introduce an upwinding effect for solution of convection-
dominated problems, upwind-skewed radial basis functions 
(USRBFs) are proposed. Conventional RBFs produce radi-
ally symmetric surfaces as shown in Fig. 3a. USRBFs sur-
faces (Fig. 3b) are obtained by multiplying the conventional 
RBFs with an upwinding factor which skews the RBF sur-
faces in a manner that the data points located at the upwind 
direction of the reference point will have more weight com-
pared to those at the downwind direction. The proposed 
upwinding factor F  is given by

where � is the flow velocity, � is the position vector from the 
reference point �1 to the neighbouring point �j (� = �j − �1) , 
r0 is the size of the local support domain, and � is an upwind-
ing parameter which is a function of the nodal distribution 
Peclet number (Pe) as [2],

The Peclet number, Pe,  is defined as

where Δs is the average spacing between N data points in 
the support domain. When Pe → 0 , � → 0 corresponding to 
zero upwinding, and when Pe → ∞ , � → 1 corresponding to 
maximum upwinding in the solution. The relation of � with 
Pe, shown in Fig. 2, depicts the monotonic increase of � with 

(7)
[
Φ e

eT 0

][
W

�

]
=

[
LΦ1

0

]
,

(8)
N∑

j=1

�
(L)

1,j
= 0.

(9)F = 1 − � sin

(
�

2

� ⋅ �

|�|r0

)
,

(10)� = coth(Pe) −
1

Pe
.

(11)Pe =
|�|(Δs)
2a

,

Fig. 1   Local support domain around data point x1 containing N neigh-
bouring data points

Table 1   Commonly used radial basis functions (r is the Euclidean 
distance and � is the shape parameter)

Types of radial basis function Expression of �(r)

Thin-plate spline (TPS) �(r) = r
2 log(r)

Gaussian (GA) �(r) = exp(−�r2)

Multiquadric (MQ) �(r) =
√
r
2 + �2

Inverse multiquadric (IMQ) �(r) =
1√

r
2+�2
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Peclet number. The upwinding factor F  can be multiplied 
with any conventional RBF and the resulting upwind skewed 
radial basis functions (USRBF) can be used for calculating 
the weights of differential operators as mentioned in Sect. 2. 
In this paper, the RBF-FD method with Inverse multiquadric 
(IMQ) basis function is considered. RBF with IMQ basis 
function is given as

Using the upwinding factor from Eq.  9, the proposed 
upwind-skewed inverse multiquadric radial basis function 
becomes

(12)� =
1

√
r2 + �2.

The plots of conventional RBF and upwind skewed RBF 
(USRBF) with IMQ basis functions are shown in Figs. 4 
and 5 for 1-D and 2-D domains, respectively. The plots of 
conventional RBF are symmetric about the center of the 
RBF, whereas the plots of USRBF are skewed along the 
flow direction (Fig. 3).

Figure 6 shows the weights (Wx ) for convection opera-
tor � d

dx
 , evaluated using conventional RBF and proposed 

USRBF on a sample 1-D domain. The weights from conven-
tional RBF are symmetric about the reference node, x1 = 0 , 
whereas, the weights from USRBF are skewed toward the 
flow direction. For example, the weight of the upstream 

(13)
� =

1
√
r2 + �2

×

�
1 − � sin

�
�

2

� ⋅ �

���r0

��
.

10-5 100 105

 Pe
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10-4
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100

Fig. 2   Variation of � with Peclet number ranging from 10−6 to 106
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point at x = −0.1 is greater than the weight of downstream 
point at x = 0.1 . Similarly, Fig. 7 shows the weights (Wx+y) 
for the convection operator � ⋅ ∇ , evaluated on a sample 
2-D domain using conventional and proposed RBFs. It can 
be observed that USRBF assigns higher weight values to 
the neighbouring nodes upwind to the reference location. 
For example, the weight Wx+y of point 1 is greater than the 
weight Wx+y of point 9, because point 1 lies on the upstream 
side. Similarly, the weights Wx+y of points 2 and 4 are greater 
than the weights Wx+y of points 6 and 8 because points 2 
and 4 lie on the upstream side. The weights of points on 
crosswind direction are equal. For example, the weight Wx+y 

of point 2 and point 4 are equal, because they lie along the 
crosswind direction. Therefore, upwinding is introduced in 
the direction of flow only
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4 � Numerical tests

4.1 � 1‑D test cases

The stability and accuracy of the proposed scheme are tested 
by solving two different convection–diffusion problems in 
one-dimensional space using conventional and upwind 
skewed RBFs, respectively, in finite difference mode. The 
first problem is a standard convection–diffusion problem 
with unit source as

The exact solution of Eq. (14) is given by [20]

The second problem is a convection–diffusion equation with 
trigonometric source function,

The exact solution of Eq. (16) is given by [20]

In both the problems, the boundary layer exists near x = 1 . 
The transport velocity appears as the coefficient of dT / dx 
in the standard equation. In these problems, the transport 
velocity is set as unity and the diffusion coefficient, a, is var-
ied to vary the intensity of convection. The problem is solved 

(14)
dT

dx
− a

d2T

dx2
= 1, x ∈ [0, 1]

T(0) = 1 and T(1) = 0

.

(15)Texact = −
e

x−1

a − 1

1 − e
−

1

a

.

(16)
dT

dx
− a

d2T

dx2
= a�2sin(�x) + �cos(�x), x ∈ [0, 1]

T(0) = 0 and T(1) = 1.

(17)Texact = sin(�x) +

[
e

x

a
−

1

a − e
−1

a

1 − e
−1

a

]
.

using conventional as well as upwind skewed RBFs. For 
this purpose, the domain is represented by n computational 
nodes, each having N nodes in its local support domain. 
Spatially discretized form of Eq. (14) can be written using 
RBF-FD, at node i, as [3],

Discretized equations are formulated at each node in the 
domain. Subsequently, the set of discretized equations is 
solved to get the values of T at all computational nodes. 
The procedure of discretization remains the same for con-
ventional and upwind skewed RBFs. However, the weights 
are calculated differently using the procedure mentioned in 
Sects. 2 and 3. A similar procedure is followed for solution 
of Eq. (16).

Figures 8, 9, 10, and 11 show the the solutions of Eqs. 
(14) and (16) using conventional and upwind skewed RBFs 
along with the exact solutions on uniformly and randomly 
spaced data point over the 1-D domain. The total number of 
data points is set as 40 for all cases. The nodal distribution 
is randomized by adding a noise of the level 0.1Δx in the 
coordinate locations of uniformly distributed interior nodes. 
At higher values of diffusion coefficient (e.g., a = 10−2 ), the 
solutions from conventional as well as upwind skewed RBFs 
produce accurate results. This is because the higher diffusion 
in the problem does not let instabilities arise even if conven-
tional RBFs are employed. However, as the value of diffu-
sion coefficient, a, decreases, the problem becomes more 
convection dominated and the solution from conventional 
RBF starts deviating from the exact solution. For such cases, 
the solution from USRBF remains stable and accurate. This 
is because of the upwinding effect introduced by USRBF for 
the solution of convection-dominated problem.

(18)
N∑

j=1

�
(x)

i,j
Tj − a

N∑

j=1

�
(xx)

i,j
Tj = 1, x ∈ [0, 1].
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Fig. 8   Solution of 1-D convection–diffusion equation with unit source function (Eq.  14) at 0 ≤ x ≤ 1 using N = 40 uniformly spaced nodes. 
Solutions are obtained with conventional and upwind skewed RBFs



1087Engineering with Computers (2021) 37:1081–1097	

1 3

Figures 12 and 13 show the variation of maximum and 
root-mean-square (RMS) errors with diffusion parameter 
(a). For higher diffusion cases, conventional and upwind 
skwered RBFs produce similar results. However, as the 
convection term dominates for 1∕a > 110 , and up to 105 , 

a significant error reduction can be observed from the 
solutions of USRBF. For large values of 1/a, upwinding 
becomes necessary to stabilize the solution and is provided 
by USRBF.
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Fig. 9   Solution of 1-D convection–diffusion equation with unit source function (Eq.  14) at 0 ≤ x ≤ 1 using N = 40 randomly spaced nodes. 
Solutions are obtained with conventional and upwind skewed RBFs
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Fig. 10   Solution of 1-D convection–diffusion equation with trigonometric source function (Eq. 16) at 0 ≤ x ≤ 1 using N = 40 uniformly spaced 
nodes. Solutions are obtained with conventional and upwind skewed RBFs
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Fig. 11   Solution of 1-D convection–diffusion equation with trigonometric source function (Eq. 16) at 0 ≤ x ≤ 1 using N = 40 randomly spaced 
nodes. Solutions are obtained with conventional and upwind skewed RBFs
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The solution of convective–diffusive problems is sought 
on 1-D stencil with varying nodal density to study the effect 
of nodal spacing on error of the solution. The correspond-
ing values of maximum and RMS errors are obtained for 
conventional and upwind skewed RBFs with different con-
vection intensities. The error plots for problem with unit and 
trigonometric source functions are shown in Figs. 14 and 
15, respectively. The computational advantage of using the 
proposed USRBF over conventional (symmetric) RBFs can 
be quantified by comparing the average nodal spacing values 
(Δx) , from conventional and proposed schemes, resulting 
in the same error values. For example, the solution of Eq. 
(14) with a = 10−2 shown in Fig. 14a depicts that an aver-
age nodal spacing value, Δx = 0.045, is required to achieve 
a maximum error of 0.1 with conventional RBF. However, 

the same maximum error is obtained with an average nodal 
spacing value, Δx = 0.09, using the proposed USRBFs. 
Therefore, the proposed scheme requires almost half the 
computational nodes compared to the conventional scheme 
for producing result with a maximum error of 0.1 in this 
case. However, the difference in errors from the two schemes 
varies with nodal densities and value of diffusion coefficient. 
The plots in Figs. 14 and 15 depict a declining trend of maxi-
mum and RMS errors when nodal spacing Δx is reduced. For 
higher values of diffusion coefficient, a, and smaller Δx , the 
errors from conventional RBFs are small. In such cases, the 
advantage of increased nodal density tends to circumvent the 
errors caused by convection terms even for symmetric RBFs. 
However, as the value of diffusion coefficient, a, decreases, 
the convection term dominates. In such cases, error from 
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USRBF is significantly lower than that from conventional 
(symmetric) RBF schemes. The difference becomes even 
more pronounced at higher nodal spacing, (Δx) , when the 
added advantage of higher nodal density is also absent for 
conventional RBFs. Therefore, upwind skewed RBFs offer 
improved accuracy especially for convection-dominated 
problems and with lower nodal densities.

4.2 � 2‑D test cases

The stability and accuracy of the proposed scheme is also 
tested by solving two convection–diffusion problems over 

the 2-D plane. The first problem is described by the follow-
ing equation:

The exact solution of Eq. (19) is given by [20] as

The second problem is represented by a convection–diffu-
sion equation with an exponential source term as

(19)
�T

�x
− a

(
�2T

�x2
+

�2T

�y2

)
= 0, (x, y) ∈ [0, 1] × [0, 1].

(20)

Texact =
sin(�y)

el − em

�
el+mx − elx+m

�
,

where l =

�
a +

√
4�2 + a2

�

2
and m =

�
a −

√
4�2 + a2

�

2

.

(21)�T

�x
+

�T

�y
− a

(
�2T

�x2
+

�2T

�y2

)
=

−e
(x−1)(y−1)

2a

(
x2 + y2 − 2

)

4a
, (x, y) ∈ [0, 1] × [0, 1].
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The exact solution of the problem in Eq. (21) is expressed 
as [20]

Dirichlet boundary conditions at the boundaries of the 
domain are derived from exact solutions of both the prob-
lems. For the first 2-D test case, the boundary layer exists 
near the x = 1 edge, and for the second 2-D test case, the 
boundary layer exists near x = 1 and y = 1 edges of the 
domain. Numerical solutions of the problems are sought 
using inverse multiquadric RBFs over uniformly spaced as 
well as random particles on a 2-D plane. Randomization 
of nodes is achieved by introducing noise in the positions 
of uniformly spaced stencil. A randomized nodal distribu-
tion is shown in Fig. 16. Uniform velocity is assumed in all 
cases for calculation of Peclet number. Therefore, convection 
intensity is varied by varying the value of diffusion coeffi-
cient, a. The problems are solved using conventional RBFs 
as well as upwind skewed RBFs with varying convection 

(22)Texact = e−(1−x)(1−y)∕2a.

intensities to study the effect of upwinding as the convection 
intensity increases. Moreover, the effect of changing nodal 
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spacing is also studied for both conventional and upwind 
skewed RBFs.

The results of 2-D convection diffusion equation with 
zero source term (Eq. 19) on uniformly spaced and rand-
omized stencils are shown in Figs. 17 and 18 respectively. 
The solutions are obtained with conventional as well as 

upwind skewed RBFs and are compared with the exact 
solution at different convection intensities. For higher val-
ues of diffusion coefficient (e.g., (a = 10−2) case), solutions 
from both conventional and upwind skewed RBFs are accu-
rate and smooth. However, as the diffusion reduces (e.g., 
(a = 10−5) case), large perturbations, caused by numerical 

Fig. 17   Solution of 2-D convec-
tion–diffusion equation with 
zero source term (Eq. 19) over 
(x, y) ∈ [0, 1] × [0, 1] using 
N = 40 × 40 uniformly spaced 
nodes. Left column: exact solu-
tion, center column: solution 
using conventional RBF. Right 
colum: solution using upwind 
skewed RBF

Fig. 18   Solution of 2-D convection–diffusion equation with zero source term (Eq. 19) over (x, y) ∈ [0, 1] × [0, 1] using N = 40 × 40 randomly 
spaced nodes. Left column: exact solution, center column: solution using conventional RBF. Right column: solution using upwind skewed RBF
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instabilities, appear with conventional RBFs. These are 
non-physical perturbation caused by numerical instabilities 
in convection-dominated problems. These instabilities are 
more pronounced on random nodal distribution. The results 
indicate that the solution from USRBF remains free from 
perturbations. The upwinding introduced by skewed RBFs 
effectively suppressed the instabilities caused by high con-
vection. The errors of numerical solutions are calculated 
by comparing the results with the exact solution given by 
Eq. 20. The curves of maximum and RMS errors for both 
conventional and upwind skewed RBFs are co-plotted with 
changing convection intensities in Fig. 19. The plots depict 
substantially lower error associated with USRBF particu-
larly at higher convection intensities. At lower convection 
intensity, the errors from the USRBF are almost the same 
as from conventional RBFs. Maximum and RMS error val-
ues are also plotted against varying nodal spacing ( Δx ) for 
both conventional and upwind skewed RBFs, at two different 
values of diffusion parameter, in Fig. 20. At a = 10−5, the 
maximum error from USRBFs is almost 100 times lower 
than that from conventional RBFs.

The solutions of 2-D convection diffusion equation with 
non-zero source term (Eq. 21) on uniformly spaced and ran-
domized stencils are shown in Figs. 21 and 22, respectively. 
Similar trends have been observed from the solutions of 
zero source term equation (Eq. (21). The variation of maxi-
mum and RMS errors with convection intensities is shown 
in Fig. 23. Similarly, Fig. 24 shows the variation of maxi-
mum and RMS errors with nodal spacing Δx , over a uni-
form stencil. At lower convection intensity ( a = 0.01 case) 
when the problem becomes diffusion dominated, the errors 
from USRBFs are slightly lower than those from conven-
tional RBFs. However, when the diffusion parameter drops 
( a = 10−5 case), the errors from the USRBF solution are 

almost 100 times lower that those from conventional RBFs. 
USRBF is, therefore, found to provide improved solutions 
for highly convective problems.

4.3 � False diffusion

The upwind schemes smear the distribution of transport 
properties in a manner that a false diffusion is added to the 
solution [20]. This effect can be demonstrated by calculat-
ing the transport of variable T over a rectangular domain 
(x, y) ∈ [0, 1] × [0, 1] where flow is diagonal to the domain 
boundaries. A pure convective problem is considered 
which can be obtained by using removing the diffusion 
term from Eq. (19) and introducing the boundary condi-
tions T(x, 0) = T(1, y) = 0 and T((0, y) = T(x, 1) = 100 . Flow 
velocity is set as � = [2, 2] . The degree of false diffusion 
added to the solution is demonstrated by solving the prob-
lem using USRBF in finite difference mode and plotting the 
distribution of transport variable, T, along the diagonal of 
domain boundaries as shown in Fig. 25. In the absence of 
any diffusion in the problem, the exact solution follows a 
step change in the value of T, from 100 to 0, in the middle of 
the diagonal, to satisfy the boundary conditions. However, 
the results calculated by USRBF show a smeared profile of T 
corresponding to a rather gradual change in value from 100 
to 0. This is because of the added false diffusion which tends 
to reduce as the nodal density increases and the numerical 
solution becomes close to the exact profile of T. The current 
problem is solved over meshfree nodal cloud with various 
nodal densities. However, the same problem is solved by 
[20] and a similar behavior is depicted while solving the 
problem with the finite volume method.
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Fig. 20   Variation of maximum and RMS errors with Δx for 2-D convection–diffusion equation with zero source term (Eq.  19) over 
(x, y) ∈ [0, 1] × [0, 1]

Fig. 21   Solution of 2-D convec-
tion–diffusion equation with 
non-zero source term (Eq. 21) 
over (x, y) ∈ [0, 1] × [0, 1] using 
N = 40 × 40 uniformly spaced 
nodes. Left column: exact solu-
tion, center column: solution 
using conventional RBF. Right 
column: solution using upwind 
skewed RBF
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5 � Future work

The focus of this research is limited to the develop-
ment of upwind skewed RBFs and its application in sup-
pressing the spurious perturbations in the solution of 

convection-dominated problems. However, a lot of research 
work still needs to be done to fully understand the behav-
ior and effect of free parameters on the performance of the 
proposed USRBFs. For example, Micchelli’s theorem [33, 
34] guarantees the non-singularity of moment matrix, Φ , for 
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Fig. 22   Solution of 2-D convection–diffusion equation with non-zero 
source term (Eq.  21) over (x, y) ∈ [0, 1] × [0, 1] using N = 40 × 40 
randomly spaced nodes. Left column: exact solution, center col-

umn: solution using conventional RBF. Right colunm: solution using 
upwind skewed RBF
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Fig. 23   Variation of maximum and RMS errors with a for 2-D convection–diffusion equation with non-zero source term (Eq.  21) over 
(x, y) ∈ [0, 1] × [0, 1] using N = 40 × 40 uniformly spaced nodes
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conventional RBFs with MQ, IMQ and exponential basis 
function in the presence of arbitrary nodal distributions. 
The study by [33, 34] may be extended to determine the 
conditions under which the moment matrix of USRBF is 
non-singular. The shape parameter, � , of conventional RBFs 
plays an important role in the accuracy of the numerical 
solutions of ordinary and partial differential equations. In 
present study, the optimum value of shape function is deter-
mined as proposed by [3] for radially symmetric RBFs. 
However, further study to determine the “optimal” value of 
shape parameter for USRBFs may be useful. Only linear and 
steady state problems are considered in this research. Since, 
almost all real-life flow problems are governed by nonlin-
ear, unsteady Navier–Stokes equation, the proposed scheme 
should be applied to NS equation, and the results should be 
compared with data available in literature.
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Fig. 24   Variation of maximum and RMS errors with Δx for 2-D convection–diffusion equation with non-zero source term (Eq.  21) over 
(x, y) ∈ [0, 1] × [0, 1]
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Fig. 25   False diffusion depicted by the solution of Eq. 19 with zero 
diffusion term and T(x, 0) = T(1, y) = 0 and T((0, y) = T(x, 1) = 100 . 
The problem is solved using USRBF in finite difference mode 
on a stencil of meshfree nodes with three different nodal densi-
ties(10 × 10, 50 × 50, 100 × 100) . Rectangular domain is used as 
(x, y) ∈ [0, 1] × [0, 1] . The flow velocity is � = [2, 2]
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6 � Conclusions

An upwind-skewed radial basis functions (USRBF) is 
proposed and is applied with local radial basis function in 
finite difference mode (RBF-FD) for stable numerical solu-
tions of highly convective problems over meshfree nodal 
cloud. Unlike conventional RBFs (which depend upon the 
spatial location of nodes only), the proposed USRBF takes 
into account the flow direction and intensity of convection 
while calculating the RBF weights. In practice, USRBF 
are obtained by multiplying the conventional RBFs with 
an upwinding factor. It is observed that for low convec-
tion intensities, the solution from USRBF are slightly more 
accurate than conventional RBFs. However, as the convec-
tion intensity increases, conventional RBFs tend to show 
non-physical perturbations in the solution which ultimately 
lead to highly erroneous results. The RBFs skewed toward 
the upwind direction provide more weightage to the nodes 
at the upwind of reference location. This upwinding effect 
suppresses the instabilities caused by the convection term 
and the resulting solution is stabilized. For highly convective 
problems (diffusion parameter a ≈ 10−5 in convection–dif-
fusion problems defined in Sect. 4), the error from the pro-
posed USRBF-based solution scheme is almost 100 times 
lower than that from conventional RBF-based solutions. 
Therefore, for highly convective flows, the proposed USRBF 
provides more accurate and stable solutions as compared to 
radially symmetric conventional RBFs.
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