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Abstract
Considering the size discreteness of commercially available metal plates and the intrinsic buckling strength vulnerability of 
slender silo, this paper proposed a methodology, which integrated the nonlinear implicit dynamic Finite Element Method 
(FEM), Particle Swarm Optimization (PSO) algorithm and MATLAB programming, to optimize the wall-thickness layout 
for stepped thin-walled cylindrical silo, with the objective of minimizing silo mass while ensuring its structural stability. 
Taking into account both practicality and reliability, silo discharge loads were amplified 1.6 times to try to reflect the compre-
hensive effectiveness of negative and positive factors on slender silo buckling strength. When evaluating the fitness of PSO 
method, nonlinear implicit dynamic FEM results, such as kinetic energy history data plots, total energy history data plots, 
etc., were used to intuitively determine whether silo buckled or not. In essence, the optimal wall-thickness layout problem 
of a stepped silo is an NP-hard combinational optimization problem. The discrete thicknesses of rolled metal plates set an 
unavoidable constraint on stepped silo size optimization, which implies that there are only a few specific thickness values 
could be selected. In addition, the data of plate width are also discrete and one width value might correspond to several 
thickness data. For reasons for saving the potential cutting costs, the heights of most silo segments should be an integral 
multiple of the corresponding plate width value as far as possible, while the overall height of the silo should be kept still. To 
realize this goal, numerical processing techniques, such as generating a random number from a uniformly distributed set of 
discrete positive integers, linear normalization and linear interpolation, etc., were applied in this study.

Keywords  Stepped silo · Discrete sizing optimization · Buckling · Finite element method · Nonlinear implicit dynamic 
analysis · Particle swarm optimization · MATLAB programming

1  Introduction

Metal silos, which usually consist of a conical or dome roof, 
a cylindrical barrel and a conical hopper, are typically thin-
walled structures for storing large quantities of granular bulk 
solids in a wide variety of industries [1]. It was not until the 
19th century that the big silo towers as we know them today 
began to be built. The use of thin-walled metallic contain-
ers in various processes has been increased up to the pre-
sent day, displacing other methods of storage and contain-
ment. Although many studies have been developed on these 
structures, yet many uncertainties still remain since the laws 

which control the behavior of materials stored in silos are 
not totally understood. Silos are challenging structures to 
design and to investigate: on the one hand, establishing the 
mechanical properties of the stored product, on the basis of 
which the stresses that the structure must withstand can be 
calculated, and on the other hand, calculating the stresses of 
these specific mechanical properties on the design, resulting 
in a safe, economic and reliable construction [2–4]. Various 
attempts have been made over the last 50 years to codify the 
stored bulk solids-induced pressures which act on silo walls 
and are not easily determined or understood.

To the authors’ knowledge, the most commonly used silo 
design codes in the world are: EN 1991-4:2006 (Eurocode 
1-Actions on structures-Part 4: Silos and Tanks), EN 1993-
1-6:2007 (Eurocode 3-Design of steel structures-Strength 
and Stability of Shell Structures) and EN 1993-4-1:2007 
(Eurocode 3-Design of steel structures-Silos). It was pointed 
out in EN 1993-4-1:2007 that Finite Element Method (FEM) 
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or Finite Element Analysis (FEA), as the most accurate and 
reliable tool for structural stress analysis, should be the only 
validated numerical method for the silos in Consequence 
Class 3 and Consequence Class 2. By establishing the three-
dimensional FE models of flat-bottomed cylindrical metal 
silos subjected to the actions of stored granular material in 
their interior, Juan et al. [2] obtained the silo wall stresses 
and compared them with those calculated via EN 1993-1-
6:2007 formulae. Gallego et al. [5] presented that the normal 
wall pressures predicted by FE model were very close to the 
experimental data measured during filling and discharge pro-
cesses of a mid-scale circular test silo. The pressures exerted 
by the stored granular bulk solids on the rectangular steel 
silo walls were investigated using a validated FE model and 
the results demonstrated that the horizontal pressure distri-
bution across a silo wall was non-uniform, which would be 
helpful to produce much lighter structures [6].

Thin-walled metal cylindrical silos are vulnerable to 
buckling failure caused by the wall friction force due to 
shearing of bulk solids along silo walls. The buckling fail-
ures occur, particularly during silo eccentric discharge. Even 
for silos designed for concentric discharge, the eccentric dis-
charge effects are difficult to avoid due to material segrega-
tion. As a consequence, non-uniform horizontal wall pres-
sures develop which contribute to meridional bending and a 
non-symmetric distribution of wall compressive forces. The 
buckling strength of silos is very sensitive to many differ-
ent factors as: the aspect ratio of the structure, the form and 
amplitude of initial geometric imperfections, loading and 
material imperfections, joint types, the boundary conditions 
at the ends, internal pressurization level and stiffness of the 
stored bulk solid [7–10]. Iwicki et al. [7] investigated the 
stability processes in a silo composed of thin-walled iso-
tropic plain rolled sheets using static, explicit and implicit 
dynamic FEA by taking both the geometric and material 
non-linearity into account during eccentric discharge and 
stated that dynamic analyses could be very effective to 
obtain the full load–displacement relationship during the 
entire buckling process with local instability effects, while 
in the static cases the equilibrium path might be not always 
possible to be found due to the loss of convergence. Iwicki 
et al. [8], by taking the geometric and material non-linearity 
into account, carried out static and dynamic stability FE 
analyses for a cylindrical steel silo composed of corrugated 
sheets and open thin-walled vertical stiffener profiles and 
proposed some modifications of formulae in EN 1993-1-
6:2007. Iwicki et al. [9] implemented economic design of 
cylindrical steel silos composed of corrugated sheets and 
columns by adopting FEA-based linear buckling sensitivity 
analysis and pointed out that the sensitivity design analysis 
could describe the influence of the column strengthening 
on the linear silo buckling load for global silo buckling, 
which would be helpful in the economic design of silos with 

respect to the silo weight. By modeling corrugated walls as 
an equivalent orthotropic shell and vertical open-sectional 
stringers as beam elements, M. Sondej et al. [10] conducted 
comprehensive FEA on perfect slender, semi-slender and 
squat silos by means of a linear buckling approach and an 
improved formula for silo design was proposed. By adopting 
a hypoplastic constitutive model for bulk solids and perform-
ing FEA with both geometric and material non-linearity, 
Kuczyńska et al. [11] addressed numerical analysis results 
of the effects of bulk solid on strength and stability of metal 
cylindrical silos with corrugated walls (without stiffen-
ers) during filling process and quantitatively estimated the 
effect of the bulk solid stiffness on silo stability and the wall 
stresses.

In practice, metal silos are almost always constructed 
from many short cylindrical shells of different thicknesses 
because the stress resultants on the wall progressively 
increase towards the base. Those thickness changes are 
considerable because they relate to the progressively cumu-
lative effect of wall friction between the bulk solid and the 
silo wall. Practical construction considerations mean that 
the increases in thickness are always made in step changes 
using metal sheets of uniform thickness because of the avail-
ability of such source materials. The result is a cylindrical 
silo with a stepped wall that has multiple discrete steps in 
thickness. Such silos are very susceptible to buckling under 
external pressure when empty or partially filled, but the 
buckling mode may involve only part of the silo height due 
to the changes in silo wall thickness [12]. By introducing the 
“weighted smeared wall method”, Chen et al. [12, 13] inten-
sively analyzed the buckling strength of cylindrical shells 
with stepwise variable wall thickness under uniform external 
pressure. Sadowski et al. [14, 15] thoroughly investigated 
the stability behavior of the slender cylindrical silo with 
stepwise-varying wall thickness under eccentric discharge 
pressures and proposed that the dominant buckling mode in 
slender silos under eccentric discharge pressures is the so-
called ‘elastic midheight buckling’. In addition, it has been 
found that the slender cylindrical silo walls underwent sig-
nificant local flattening when subjected to the unsymmetrical 
pressures associated with the eccentric discharge condition. 
Furthermore, that flattening actually leads to reduced axial 
compressive stresses and thus an increased nonlinear buck-
ling strength when compared to the linear buckling strength 
value [16].

The harmony of safety, manufacturability and econ-
omy for load-carrying engineering structures has ever 
been being sought. This goal could be fulfilled by an 
optimization-based structural synthesis scheme, in which 
a cost function is minimized through setting constraints 
on design and fabrication [17, 18]. The cost function and 
the constraints may depend on many variables, and their 
behavior may be highly nonlinear. The solution to such 
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problems requires not only refined and realistic mathemat-
ical models of the structures, but also sufficiently accurate, 
reliable and efficient numerical methods and procedures 
to drive the structural design to an acceptable optimum 
configuration [19]. It should be readily noticed that in the 
past 20 years the FEM-based optimization has been widely 
adopted in the field of structural optimum design, in which 
the structural optimization of shell construction is subject 
to considerable concerns [20–24]. A number of optimi-
zation algorithms, from traditional gradient-based algo-
rithms for convex and continuous design spaces to non-
gradient probabilistic-based meta-heuristic or evolutionary 
methods for non-convex and mixed integer-discrete–con-
tinuous problems, have been extensively applied in struc-
tural optimization problems. As one of the most promising 
or prevailing evolutionary computing techniques, Particle 
Swarm Optimization (PSO) has become more and more 
attractive due to its general applicability, ease of imple-
mentation, robustness and efficiency in computation, and 
has been successfully used in single- and multi-objective 
optimization of plate and shell structures [19, 25–36].

Considering the size discreteness of commercially 
available metal plates and the intrinsic buckling strength 
vulnerability of slender silo, this paper proposed a meth-
odology, which integrated the nonlinear implicit dynamic 
FEA, PSO method and MATLAB programming, to opti-
mize the wall-thickness layout for stepped thin-walled 
cylindrical silo, with the objective of minimizing silo mass 
while ensuring its structural stability. Taking into account 
both practicality and reliability, silo discharge loads were 
amplified 1.6 times to try to reflect the comprehensive 
effectiveness of negative and positive factors on slender 
silo buckling strength. While evaluating the fitness of PSO 
method, nonlinear implicit dynamic FEA results, such as 
kinetic energy history data plots, total energy history data 
plots, etc., were used to intuitively determine whether silo 
buckled or not.

In essence, the optimal wall-thickness layout problem 
for a stepped silo is an NP-hard combinational optimization 
problem. The discrete thicknesses of rolled metal plates set 
an unavoidable constraint for stepped silo size optimization, 
which implies that there are only a few specific thickness 
values could be selected. In addition, the data of plate width 
are also discrete and one width value might correspond to 
several thickness data. For reasons of saving the potential 
cutting costs, the heights of most silo segments should be 
an integral multiple of the corresponding plate width value 
as far as possible, while the overall height of the silo should 
be kept still. To realize this goal, numerical processing tech-
niques, such as generating a random number from a uni-
formly distributed set of discrete positive integers, linear 
normalization and linear interpolation, etc., were applied 
in this study.

2 � Silo description

A simply supported flat-bottomed cylindrical silo, composed 
of rolled plates of four different wall-thicknesses (Fig. 1), 
was modeled and optimized in this work. By reference to 
[8, 9], etc., the silo roof and hopper were neglected in the 
subsequent FEM model.

The silo size was: height H = 22.6 m, internal diameter 
D = 3.2 m (H/D = 7.0625). The silo consisted of annealed 
aluminum alloy type 3003 plates (AA3003), which was 
assumed elastic–perfectly plastic (without hardening) with 
the following properties: volumetric weight γ = 26.75 kN/m3, 
elastic modulus E = 69 GPa, Poisson׳s ratio ν = 0.3 and yield 
stress σy = 40 MPa. Table 1 lists the data of the thickness and 
corresponding width of the AA3003 plates for constructing 
the stepped silo in this work.

The properties of bulk solid (wheat) stored in the silo 
were: volumetric weight γ = 9 kN/m3, horizontal/vertical 
pressure ratio K = 0.55 and wall friction coefficient μ = 0.3 
[7].

3 � FE model data and results

As compared to static analysis, dynamic analysis could trace 
the time history of a structural response during the whole 
loading duration and concern the ensured convergence of the 
load–displacement path equilibrium in a post-peak regime, 
when a local transfer of strain energy from one part of the 

Fig. 1   Schematic of stepped silo with four different wall thicknesses
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structure to its neighboring parts occurred. The application 
of static stability analysis is certainly more realistic in a pre-
peak regime of buckling, however, in a post-peak regime this 
assumption would not be unique, because the stability loss 
connected usually with structural stability jumping modes 
has a dynamic character. A dynamic stability analysis is also 
physically justified in silo shells under compression since: 
a) dynamic effects occur when silo walls buckle during both 
filling and emptying and b) the wall friction force rapidly 
grows at the onset of solid discharge which is a dynamic 
process [7].

It was identified by Iwicki et al. [7, 8] that for silo stability 
FEA the nonlinear implicit dynamic analyses were effec-
tive to obtain the full load–displacement relationship during 
the entire buckling process, and the results of the implicit 
dynamic analysis were almost identical to the ones of the 
explicit type. In general, the operation speed of implicit 
dynamic analysis is faster than the explicit one due to its 
relatively large time increment, which would be greatly 
useful for the implementation of the FEA-based iterative 
optimization.

In this work, the calculations were carried out with the 
commercial finite element package ABAQUS/STANDARD 
(implicit dynamic analysis), reference to [7, 8]. At the silo 
bottom, the radial, circumferential, and meridional displace-
ments and rotations were prevented, while at the silo top, the 
radial and circumferential displacements were fixed only. 
The 4-node thin shell elements with a reduced integration 
point and hourglass control (S4R) were employed. The finite 
element size was 10 × 10 cm2 and the total amount of finite 
elements was about 22,900.

To assign the discrete wall-thicknesses, the silo shell 
geometry was firstly partitioned by three datum planes, 
which were positioned along the silo height direction by 
means of the parameters h1, h2 and h3 (labeled in Fig. 1), 
respectively. After partition, according to the thickness val-
ues t1, t2, t3 and t4 (labeled in Fig. 1), the wall-thickness of 

each silo segment was defined through the homogeneous 
shell section editor of ABAQUS.

According to EN 1991-4:2006, the load on silo vertical 
walls is composed of a fixed load, called the symmetrical 
load (including the horizontal wall pressures and the wall 
frictional traction), and a free load, called the patch load, 
which shall be taken to act simultaneously. For the sake of 
safety and reliability, the loads of discharge process were 
used for silo nonlinear implicit dynamic FEA due to its 
abrupt dynamic characteristic.

In accordance with EN 1991-4:2006, the horizontal wall 
pressures phf and the wall frictional traction pwf on silo 
vertical section during the filling process are calculated as 
follows:

where γ is the bulk solid volumetric weight, μ is the wall 
friction coefficient for the bulk solid sliding on the vertical 
wall, A is the plan cross-sectional area of the silo, U is the 
internal perimeter of the plan cross-section of the silo, z 
denotes the distance below the surface of the solid at maxi-
mum filling height, K is the lateral pressure ratio.

To represent the transitory pressure increase occurring 
on the silo vertical wall, EN 1991-4:2006 calculates the 
horizontal wall pressures phe and the wall frictional traction 
pwe on silo vertical section during the discharge process as 
follows:

in which Ch is the discharge factor for horizontal pres-
sure, Cw is the discharge factor for wall frictional traction. 
According to the classification of EN 1991-4:2006, the silo 
of this study should be in the Action Assessment Class 2 
(AAC 2), due to its capacity beyond 100 tonnes but below 
10,000 tonnes. Consequently, Ch was set to be 1.15 and Cw 
was set to be 1.10, respectively.

EN 1991-4:2006 proposed that the discharge patch load 
shall be used to represent accidental asymmetries of loading 
during discharge, as well as inlet and outlet eccentricities. For 
silos in Action Assessment Classes 2, the reference magni-
tude of the discharge outward patch pressure ppe should be 
determined as:

(1)phf(z) = phoYJ(z)

(2)pwf(z) = �phoYJ(z)

(3)pho = �Kzo

(4)zo =
1

K�

A

U

(5)YJ(z) = 1 − e
−z∕zo

(6)phe = Chphf

(7)pwe = Cwpwf

Table 1   Thickness and 
corresponding width data of 
applicable AA3003 plates

t wall thickness of plate, w cor-
responding width of plate

t (mm) w (m)

3 1.25
4 1.25
5 1.5
6 1.5
7 1.5
8 1.75
9 1.75
10 2.0
12 2.0
14 2.0
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in which:

where ef is the maximum eccentricity of the surface pile dur-
ing filling, eo is the eccentricity of the center of the outlet, 
phe is the local value of the discharge pressure at the height 
at which the patch load is applied, Cop is the patch load solid 
reference factor of the bulk material. In this study, 0.5 was 
used for the factor Cop and 0.25D was applied to the vari-
able e.

The discharge patch load consists of a pattern of normal 
pressures only. No changes to the frictional traction associ-
ated with the changed normal pressure should be considered in 
the design. The form of the discharge patch pressure depends 
on the form of silo construction. For thin-walled metal circu-
lar silos in Action Assessment Classes 2, the discharge patch 
pressure should be taken to act over a height s = πD/16, but 
to extend from a maximum outward pressure on one side to 
an inward pressure on the opposite side. The circumferential 
variation should be taken as:

where θ is the circumferential coordinate.

(8)ppe = Cpephe

(9)
for case of H∕D > 1.2,Cpe = 0.42 Cop

[

1 + 2E2
e

]

(1 − exp{−1.5[(H∕D) − 1]})

(10)Ee = 2e∕D

(11)e = max
(

ef, eo
)

(12)ppes = ppe cos �

Furthermore, for the welded silos in Action Assessment 
Class 2, the discharge patch load might be taken to act at a 
depth zp below the equivalent surface, where zp is the lesser 
of: zp= zo and zp= 0.5D.

The Analytical Field toolset of ABAQUS was used to 
define the analytical fields for loading the silo FE model the 
horizontal wall pressures (Fig. 2), the wall frictional traction 
(Fig. 3) and the patch load (Fig. 4), respectively. By means 
of the analytical fields, spatially varying parameters for 
prescribed conditions could be expressed. Analytical fields 
defined using mathematical expressions are called expres-
sion fields in ABAQUS.

Sadowski et al. [14–16] emphasized that the imperfection 
sensitivity of a very slender, thin-walled metal silo under 
eccentric discharge is highly complex and counterintuitive. 
At small imperfection amplitudes, dramatic bifurcation 
buckling occurs. But larger amplitudes may completely 
remove the bifurcation point, turning it into a point of inflec-
tion on the smooth path from pre-buckling to post-buckling. 
That provoked the vital question for all computational ana-
lysts of imperfect shells: what criterion of failure should be 
used in structures with such a pattern of behavior? Some 
contributions [9–11, 16] indicated that different imperfec-
tion forms are needed when studying eccentric discharge and 
that the underlying assumption of EN 1993-1-6:2007, that 
deeper imperfections cause lower buckling loads, might be 
seriously in error or too conservative for that load condition.

To facilitate FE model updates related to the subsequent 
PSO optimization procedure, the above three silo loads were 
all amplified 1.6 times, which took into account both practi-
cality and reliability and tried to reflect the comprehensive 

Fig. 2   Using expression field to exert horizontal wall pressures on silo FE model
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effectiveness of negative influences (geometry and mate-
rial imperfections, etc.) and potential positive impacts (bulk 
solid stiffness, shell local flattening, etc.) on slender silo 
buckling strength.

In this work, the time period of nonlinear implicit 
dynamic analysis step was 1 s and automatic time increment 
approach was used (initial increment size: 0.02 s, minimum 
increment size: 10−5s and maximum increment size: analysis 
application default). The above three amplified silo loads as 
well as the silo self weight were exerted in a linear loading 
mode within 1 s.

To verify the performance of the nonlinear implicit 
dynamic FE model for stepped thin-walled silo stability 

analysis under the above mentioned loads, two silo models 
were established. The size of the Model 1 was: t1 = 8 mm, 
h1 = 3.5  m, t2 = 6  mm, h2 = 3  m, t3 = 5  mm, h3 = 4.5  m, 
t4 = 3 mm and h4 = 11.6 m, respectively. The size of the 
Model 2 was: t1 = 7 mm, h1 = 1.5 m, t2 = 5 mm, h2 = 3 m, 
t3 = 4  mm, h3 = 2.5  m, t4 = 3  mm and h4 = 15.6  m, 
respectively.

Figure 5 is the plot of the ETOTAL (Total energy for 
whole model) history data of the two models. The ETO-
TAL data of the Model 1 throughout kept conservation, 
while the ETOTAL data of the Model 2 suddenly lost sta-
bility at the time about 0.85 s. Figure 6 is the plot of the 
ALLKE (Kinetic energy for whole model) history data of 

Fig. 3   Using expression field to exert wall frictional traction on silo FE model

Fig. 4   Using expression field to exert patch load on silo FE model
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the two models. The ALLKE data of the Model 1 gradu-
ally stabilized, while the ALLKE data of the Model 2 
abruptly increased by 5 ~ 6 orders of magnitude at the time 
about 0.85 s. Figures 5 and 6 evidently indicated that the 
structural response of the Model 1 was stabilized during 
the whole loading duration, while the Model 2 underwent 
unstable buckling. Figure 7 plots the history data of the 
height direction displacement (U3) of a silo top edge node 
(marked with a red dot in Figs. 10 and 11, respectively), 
which further revealed the stability of the Model 1and the 

instability of the Model 2. Figure 8 is the Von-Mises stress 
contour of the Model 1 at the end moment of the nonlinear 
implicit dynamic FE analysis. Figure 9 is the Von-Mises 
stress contour of the Model 2 at the step time of 0.8732 s, 
at which point the calculation process was manually ter-
minated since the time increment was getting closer to 

Fig. 5   ETOTAL history data plot of Model 1 and Model 2

Fig. 6   ALLKE history data plot of Model 1 and Model 2

Fig. 7   U3 displacement history data plot of a labeled top edge node 
in Model 1 and Model 2

Fig. 8   Von-Mises stress contour of Model 1 at step time = 1 s
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the minimum value of 10−5s, due to the occurrence of 
buckling instability. It could be noticed that higher stresses 
of the Model 1 appeared at the positions where the silo 
wall-thickness changed, while the stress peak of the Model 
2 located at the buckling site. Figure 10 is the height direc-
tion displacement (U3) contour of Model 1 at the step time 
of 1 s and Fig. 11 is the one of Model 2 at the terminated 
time 0.8732 s. All the aforementioned FE analysis results 
fully demonstrated that the nonlinear implicit dynamic 
approach should be suitable for analyzing the structural 
stability problem of the stepped thin-walled silo under the 
combined loads of horizontal wall pressures, wall fric-
tional traction, patch pressures and silo self weight.      

4 � Optimization methodology

In this section, the optimization problem definition of a 
stepped thin-walled cylindrical silo was outlined first, and 
then the PSO-based solution was proposed. Finally, the 
optimization algorithms were expressed through MAT-
LAB programming.

4.1 � Problem description

The optimization objective of a stepped thin-walled circular 
silo made of rolled metal plates was to minimize its mass 
without buckling failure.

Suppose a cylindrical silo has N (N ≥ 1) different wall-
thickness steps along the height direction from its bottom 
to top, namely (t1, h1), (t2, h2), (t3, h3), …, (tN, hN). Where ti 
(i = 1, …, N) and hi (i = 1, …, N) represent the wall-thickness 

Fig. 9   Von-Mises stress contour of Model 2 at step time = 0.8732 s

Fig. 10   U3 displacement contour of Model 1 at step time = 1 s (color 
figure online)

Fig. 11   U3 displacement contour of Model 2 at step time = 0.8732 s 
(color figure online)
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and the corresponding step height, respectively. Obviously, 
there is an inequality of t1 > t2 > t3, … , > tN.

The discrete characteristics of the size specification of the 
commercially available rolled plates set an unavoidable con-
straint for silo size optimization, which implies that there are 
only a few specific values of ti could be selected. In addition, 
the values of plate width are also discrete and a width value 
is often associated with a number of thickness values (refer-
ence to Table 1). For reasons of saving the cutting costs, hi 
(i = 1, …, N−1) should be an integral multiple of the cor-
responding width value as far as possible, while the overall 
height of the silo should be kept still.

As depicted in Fig. 1, the value of N was taken as 4 in 
this work.

4.2 � Solution approach based on PSO

Particle swarm optimization (PSO) is a population-based 
stochastic and metaheuristic optimization algorithm inspired 
by social behavior of bird flocking or fish schooling and 
developed by Eberhart and Kennedy in 1995 [37–39]. PSO 
involves a swarm of particles that represent the potential 
solutions to the problem. A swarm consists of Np particles 
moving around an N-dimensional search space, each par-
ticle representing a potential solution. The ith particle is 
characterized by its position vector Xi= [xi1, xi2, …, xiN] and 
velocity vector Vi= [vi1, vi2, …, viN]. Each particle embeds 
the relevant information regarding the design variables and 
associated fitness values providing an indication of its per-
formance in the objective space. Each particle flies through 
the search space and updates its position based on the best 
position visited by the particle itself (local best) and by the 
best among the neighbors of the particle (global best). The 
velocity and position of the ith particle are updated accord-
ing to the following equations [40]:

where c1 and c2 are the cognitive and social learning rates, 
r1 and r2 are random numbers uniformly distributing in (0, 
1), �k

best,i
 is the best position of the ith particle at iteration 

k, �k
best

 is the best position of the whole swarm at iteration 
k and w is the inertia weight used to control the influence 
of the previous velocity [41, 42]. A large inertia weight w 
facilitates the global exploration, which is particularly use-
ful in the initial stages of an optimization. On the contrary, 
a small value allows for more localized searching, which is 
useful when the swarm moves near the neighborhood of the 
optimum. An appropriate value for the inertia weight usually 
provides balance between exploration and exploitation and 
consequently results in a better optimized solution [41, 43].

(13)
�

k+1
i

= w ⋅ �
k
i
+ c1 ⋅ r1 ⋅ (�

k
best,i

− �
k
i
) + c2 ⋅ r2 ⋅ (�

k
best

− �
k
i
)

(14)�
k+1
i

= �
k
i
+ �

k+1
i

The advantage of PSO method is that it does not rely 
explicitly on the gradient of the problem to be optimized, 
so it could be readily employed in a host of optimization 
problems. This is especially useful when the gradient is too 
laborious or even impossible to derive [44]. Compared to the 
other population-based evolutionary computation algorithms 
such as Genetic Algorithms (GA), the advantages of PSO 
are that it is easy to implement due to no evolution operators 
such as crossover and mutation and it has few parameters to 
adjust [45]. However, PSO has difficulties in controlling the 
balance between exploration and exploitation. PSO may out-
perform other evolutionary algorithms in the early iterations, 
while its performance may not be competitive as the number 
of generations is increased [46]. PSO might not assure a 
global optimal solution, but it should be still attractive for 
searching a reasonable quasi-optimal one at an acceptable 
computational cost.

The formulation of PSO was based on vector mathemat-
ics and thus requires the optimization domain to be a con-
tinuous vector space [47]. As an improved version of PSO, 
Discrete Particle Swarm Optimization (DPSO) was devel-
oped for solving discrete optimization problems such as the 
minimum labeling Steiner tree problem, grid job scheduling, 
warehouse location problem, sensor deployment problem, 
p-median problem, traveling salesman problem, data cluster-
ing and quadratic assignment problem (QAP) [48, 49], etc. 
Generally speaking, there exist mainly three types of DPSO 
algorithm: (1) map the discrete search space into a continu-
ous search space and use a standard PSO (positions of parti-
cles are then mapped to the closest position that corresponds 
to a point in the discrete search space), (2) particles move 
within a multidimensional probability space and a particle 
creates a solution randomly such that its position determines 
the probabilities for choosing the different values in the dis-
crete space, (3) the particles move directly within the search 
space and the movement is influenced by so called target 
positions from the search space [47]. Jordehi and Jasni [50] 
reviewed the strategies adopted in PSO for tackling discrete 
problems systematically.

In recent years, some DPSO- or PSO-based approaches 
have been successfully applied in the problems of optimum 
truss structure design with discrete variables, such as the 
Heuristic Particle Swarm Optimizer (HPSO) algorithm [51], 
the Discrete Heuristic Particle Swarm Ant Colony Opti-
mization (DHPSACO) [52], the Attractive And Repulsive 
Particle Swarm Optimization (ARPSO) [46], the hybrid of 
improved discrete particle swarm optimization (IDPSO) and 
method of moving asymptotes (MMA) [53], the modified 
Lbest based Particle Swarm Optimizer (MLPSO) [54], the 
hybrid of Harmony Search (HS) algorithm and Global-best 
PSO [55] and the MO-PS2 framework of Multi-objective 
Particle Swarm Optimization (MOPSO), Support vector 
regression (SVR), and Subset simulation (SS) [56], etc. It 
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should be pointed out that, to a certain extent, the problem 
of stepped silo wall-thickness layout optimization is similar 
to the sizing optimization problem of truss structure with 
discrete bar cross-sectional areas, which implies that PSO-
based method is suitable for the discrete wall-thickness opti-
mization of step-wise silo.

As a general purpose optimization method, PSO does not 
require the mathematical gradient to optimize a problem but 
can be employed directly on the fitness measure to be opti-
mized. The versatility of PSO has received much attention 
in past years and various attempts have been made to find 
the variant that performs best on a wide variety of optimi-
zation problems. Nevertheless, it is seemed that the focus 
of those studies have been with making the PSO method 
more complicated to describe and implement since they are 
frequently preconceived to increase its adaptability to other 
optimization problems, while it is probably undesirable as 
the original version is not well understood to begin with. 
The work of Pedersen and Chipperfield [44], which was a 
study on simplifying the PSO method without impairing its 
performance, took a different approach, in that it did not 
make any assumptions about what causes an optimization 
method to work well, and instead of devising more complex 

history data plot, total energy history data plot, etc., were used 
to evaluate particle fitness for PSO velocities updating.

4.3 � Algorithm implementation based on MATLAB 
programming

4.3.1 � Array representation of discrete thickness and width 
data

A 1-by-20 array, Indexed_Thinkness_Width = [3, 4, 5, 6, 
7, 8, 9, 10, 12,14; 1.25, 1.25, 1.5, 1.5, 1.5, 1.75, 1.75, 2, 
2, 2], was established as the data structure to represent 
the discrete specification data of AA3003 plates (listed 
in Table 1).

4.3.2 � Random extracting a thickness value 
from the Indexed_Thinkness_Width array

Following statements of Algorithm 1 were used to ran-
domly extract a thickness data from the Indexed_Think-
ness_Width array.

Algorithm 1: Random extracting a wall-thickness value from the Indexed_Thinkness_Width_Width array
NumberofSteps=4;
NumberofDiscreteThicknesses=10;
ExtractRange=NumberofDiscreteThicknesses;
for i=1:NumberofSteps

for j=1:100
index=randi([1,ExtractRange],1,1);
if (index>=(NumberofSteps-i)+1)&&(index<=ExtractRange)

StepThickness(i)=Indexed_Thinkness_Width (index, 1);
ExtractRange=index;
Break;

end
end

end

variants to the original PSO method, it was instead sought 
simplified. This is more in accord with the original paradigm 
of self-organization: that simple individuals cooperate and 
complex collective behavior emerges. This is also in vein of 
Occam’s Razor, lex parsimoniae, or the Law of Parsimony 
which popularly states that simplicity is usually better.

Through combining the standard PSO approach with some 
numerical processing techniques, such as generating a random 
number from a uniformly distributed set of discrete positive 
integers, linear normalization and linear interpolation, etc., 
this paper implemented the discrete wall-thickness layout 
optimization of a stepped silo. MATLAB codes were devel-
oped to perform the PSO algorithm. Meanwhile, silo non-
linear implicit dynamic FEA results, such as kinetic energy 

where MATLB function randi generated a random integer, 
the index, which was drawn from a uniformly distributed 
integer set of (1, 2, 3,…, ExtractRange-1, ExtractRange) 
and was used to return a wall-thickness value. Due to 
the larger index corresponding to the thicker data in the 
Indexed_Thinkness_Width array, the logic expression of 
“if (index >=(NumberofSteps-i) + 1)&&(index < Extrac-
tRange)” and the statement of “ExtractRange = index;” 
together assured the constraint t1 > t2 > t3 > t4.
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4.3.3 � Random generating step heights according to sheet 
metal width data and silo overall height

As shown in Table 1, a discrete value of plate width could 
be associated with a number of thickness data. To save 
cutting procedure costs, the step height hi should be an 

integral multiple of the corresponding width value as far 
as possible, while the overall height of the silo should be 
kept still. Following statements of Algorithm 2 randomly 
generated N stepped heights and the first N-1heights were 
integral multiples of the corresponding width related to a 
certain thicknesses.

Table 2   Initial data of swarm 
with 16 particles

Particle t1 (mm) t2 (mm) t3 (mm) t4 (mm) h1 (m) h2 (m) h3 (m) h4 (m)

1 9 8 6 4 3.5 1.75 4.5 12.85
2 9 6 5 4 1.75 1.5 3 16.35
3 10 9 7 5 10 3.5 1.5 7.6
4 7 5 4 3 1.5 1.5 5 14.6
5 9 6 4 3 5.25 3 1.25 13.1
6 12 9 6 5 6 3.5 1.5 11.6
7 12 9 8 3 2 7 3.5 10.1
8 9 5 4 3 7 3 1.25 11.35
9 7 5 4 3 9 6 1.25 6.35
10 6 5 4 3 6 4.5 3.75 8.35
11 14 6 5 3 2 7.5 1.5 11.6
12 10 8 6 3 8 1.75 4.5 8.35
13 6 5 4 3 7.5 6 1.25 7.85
14 10 9 8 4 2 8.75 3.5 8.35
15 12 8 5 3 6 7 3 6.6
16 12 9 5 3 4 1.75 3 13.85

Algorithm 2: Random generation of interval heights according to silo overall height and sheet metal width
OverallHeight=22.6;
AllocatedHeight=0;
for i=1: NumberofSteps-1

AvailableHeight=floor(OverallHeight-AllocatedHeight);
tempheight=randi([1,AvailableHeight],1,1);
for j=1:NumberofDiscreteThicknesses

if StepThickness(i)==Indexed_Thinkness_Width (j,1)
StepHeight(i)=floor(tempheight/(Indexed_Thinkness_Width (j,2)))*Indexed_Thinkness_Width (j,2);
if StepHeight(i)==0

StepHeight(i)=Indexed_Thinkness_Width (j,2);
end

Break;
end

end
AllocatedHeight=AllocatedHeight+StepHeight(i);

end
StepHeight (NumberofSteps)= OverallHeight-AllocatedHeight;
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Table 3   History stress, mass and buckling results of each particle during 16 iterations

Iteration Particle Stress (MPa) Mass (tonne) Buckling Iteration Particle Stress (MPa) Mass (tonne) Buckling

1 1 29.91 3.41 × 5 1 36.39 2.93 ×
2 38.04 2.89 × 2 36.39 2.88 ×
3 26.08 4.95 × 3 33.04 3.27 ×
4 40 2.25 √ 4 38.76 2.54 ×
5 39.17 3.01 × 5 32.96 3.25 ×
6 21.3 4.69 × 6 26.53 3.82 ×
7 32.14 4 × 7 40 2.92 √
8 34.52 3.22 × 8 40 2.64 √
9 38.13 3.22 × 9 38.07 2.81 ×

10 40 2.71 √ 10 38.06 2.74 ×
11 37.35 3.17 × 11 40 2.94 √
12 26.02 4.02 × 12 40 2.58 √
13 40 2.85 √ 13 38.1 3.04 ×
14 26.13 4.4 × 14 33.04 3.27 ×
15 21.29 4.48 × 15 35.9 2.84 ×
16 40 3.31 √ 16 38.11 3.27 ×

2 1 38.12 3.08 × 6 1 33.06 3.08 ×
2 38.04 2.89 × 2 38.04 2.84 ×
3 26.01 4.16 × 3 38.16 3.35 ×
4 40 2.18 √ 4 40 2.18 √
5 40 2.35 √ 5 40 2.57 √
6 26.48 4.1 × 6 33.7 3.04 ×
7 40 2.93 √ 7 40 2.9 √
8 40 2.63 √ 8 40 2.59 √
9 38.09 2.92 × 9 40 2.35 √

10 38.42 2.59 × 10 40 2.26 √
11 40 2.77 √ 11 40 2.7 √
12 40 2.74 √ 12 37.4 3.35 ×
13 38.08 2.87 × 13 38.06 2.78 ×
14 26.09 4.03 × 14 33.06 3.08 ×
15 40 3.26 √ 15 38.07 2.81 ×
16 40 2.76 √ 16 29.15 3.68 ×

3 1 29.12 3.67 × 7 1 33.7 3.04 ×
2 40 2.8 √ 2 40 2.8 √
3 32.91 3.51 × 3 38.66 2.86 ×
4 38.76 2.54 × 4 38.76 2.54 ×
5 40 2.43 √ 5 40 2.42 √
6 30.65 3.72 × 6 38.76 2.59 ×
7 34.78 3.64 × 7 33.06 3.13 ×
8 31.8 3.4 × 8 32.98 3.01 ×
9 40 2.21 √ 9 40 2.35 √

10 40 2.31 √ 10 40 2.31 √
11 32.7 3.43 × 11 40 2.83 √
12 26 4.28 × 12 31.07 3.69 ×
13 40 2.41 √ 13 40 2.32 √
14 31.77 3.71 × 14 36.39 2.88 ×
15 38.11 3.21 × 15 38.07 2.81 ×
16 40 2.57 √ 16 35.12 2.96 ×
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Table 3   (continued)

Iteration Particle Stress (MPa) Mass (tonne) Buckling Iteration Particle Stress (MPa) Mass (tonne) Buckling

4 1 34.28 3.26 × 8 1 33.7 3.04 ×
2 38.04 2.84 × 2 37.41 2.99 ×
3 40 2.85 √ 3 40 2.73 √
4 38.08 2.91 × 4 38.08 2.91 ×
5 30.57 3.34 × 5 33.06 3.47 ×
6 30.65 3.72 × 6 38.76 2.59 ×
7 28.31 4.13 × 7 38.07 2.79 ×
8 29.14 3.62 × 8 36.71 2.81 ×
9 38.07 2.84 × 9 38.07 2.84 ×

10 38.42 2.68 × 10 38.05 2.71 ×
11 29.21 4.22 × 11 38.11 3.01 ×
12 30.72 3.89 × 12 40 2.92 √
13 40 2.56 √ 13 38.42 2.59 ×
14 33.03 3.48 × 14 33.7 3.04 ×
15 40 2.9 √ 15 40 2.65 √
16 40 2.76 √ 16 40 2.32 √

9 1 33.06 3.12 × 13 1 40 2.44 √
2 40 2.61 √ 2 40 2.35 √
3 38.13 3.19 × 3 40 2.26 √
4 38.05 2.71 × 4 39.51 2.46 ×
5 37.37 2.81 × 5 40 2.18 √
6 38.76 2.59 × 6 40 2.3 √
7 38.05 2.71 × 7 39.51 2.46 ×
8 40 2.21 √ 8 40 2.35 √
9 38.42 2.68 × 9 40 2.26 √

10 38.8 2.46 × 10 40 2.3 √
11 37.41 2.88 × 11 39.51 2.38 ×
12 40 2.67 √ 12 40 2.3 √
13 38.07 2.81 × 13 40 2.26 √
14 40 2.57 √ 14 39.51 2.38 ×
15 38.06 2.73 × 15 40 2.35 √
16 38.11 3.06 × 16 40 2.52 √

10 1 40 2.6 √ 14 1 36.73 2.68 ×
2 40 2.4 √ 2 38.03 2.63 ×
3 38.1 3.02 × 3 40 2.18 √
4 40 2.43 √ 4 40 2.26 √
5 40 2.52 √ 5 39.51 2.51 ×
6 38.8 2.46 × 6 39.51 2.38 ×
7 40 2.3 √ 7 39.51 2.38 ×
8 40 2.18 √ 8 39.51 2.43 ×
9 40 2.43 √ 9 39.51 2.38 ×

10 39.5 2.38 × 10 39.51 2.46 ×
11 38.42 2.68 × 11 40 2.33 √
12 34.21 2.82 × 12 40 2.3 √
13 38.06 2.76 × 13 39.51 2.38 ×
14 40 2.32 √ 14 40 2.3 √
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where the variable AllocatedHeight, initialized to be zero, 
was used to record the sum of h1, h2 and h3. The MATLB 
function floor was called to round a real number to the near-
est smaller integer.

4.3.4 � PSO‑based updates of stepped wall‑thicknesses 
and heights

To facilitate the algorithm description of this section, a 
swarm with 16 particles (Table 2) was initialized by running 

the codes described in sections of 4.3.2 and 4.3.3. Table 3 
lists the original data of the swarm. 

Based on Algorithm 1, Algorithm 2 and PSO formulae 
[Eqs. (13) and (14)], Algorithm 3 was developed to update 
the stepped wall-thicknesses and heights during the silo size 
optimization procedure.

Table 3   (continued)

Iteration Particle Stress (MPa) Mass (tonne) Buckling Iteration Particle Stress (MPa) Mass (tonne) Buckling

15 40 2.4 √ 15 39.51 2.38 ×
16 38.1 3.02 × 16 40 2.57 √

11 1 40 2.56 √ 15 1 40 2.6 √
2 38.42 2.59 × 2 38.03 2.63 ×
3 38.08 2.9 × 3 40 2.26 √
4 40 2.23 √ 4 39.51 2.38 ×
5 39.51 2.51 × 5 39.51 2.38 ×
6 39.51 2.46 × 6 39.51 2.38 ×
7 40 2.3 √ 7 40 2.3 √
8 39.5 2.43 × 8 39.51 2.38 ×
9 40 2.35 √ 9 39.51 2.38 ×

10 39.51 2.46 × 10 39.51 2.46 ×
11 40 2.56 √ 11 39.51 2.38 ×
12 38.05 2.75 × 12 39.51 2.38 ×
13 39.51 2.5 × 13 39.51 2.38 ×
14 39.22 2.5 × 14 40 2.21 √
15 38.04 2.69 × 15 39.51 2.38 ×
16 40 2.44 √ 16 40 2.76 √

12 1 40 2.24 √ 16 1 40 2.52 √
2 40 2.47 √ 2 40 2.35 √
3 40 2.26 √ 3 39.51 2.38 ×
4 39.52 2.58 × 4 39.51 2.38 ×
5 40 2.18 √ 5 40 2.3 √
6 39.51 2.38 × 6 39.51 2.38 ×
7 38.04 2.63 × 7 39.51 2.38 ×
8 40 2.35 √ 8 40 2.3 √
9 40 2.18 √ 9 39.51 2.38 ×

10 40 2.3 √ 10 39.51 2.38 ×
11 40 2.56 √ 11 40 2.35 √
12 39.51 2.38 × 12 39.51 2.38 ×
13 39.51 2.38 × 13 39.51 2.38 ×
14 39.52 2.54 × 14 40 2.3 √
15 38.42 2.59 × 15 39.51 2.38 ×
16 40 2.52 √ 16 40 2.39 √
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Algorithm 3: PSO-based updates of stepped wall-thickness data and heights
NumberofParticles=16;
w_thickness=0.225;
w_height=0.375;
c1=2.0;
c2=1.5;
tmin=3;
tmax=14;
hmin=1.25;
hmax=2;
for j=1: NumberofSteps

for i=1: NumberofParticles
NewVelocity(i,j)= w_thickness*(CurrentVelocity(i,j)+c1*rand*(CurrentGroupBest(1,j)-CurrentSwarm(i,j))

+c2*rand*(CurrentParticleBest(i,j)-CurrentSwarm(i,j)));
NewSwarm(i,j)=CurrentSwarm(i,j)+ NewVelocity(i,j);
Update1=1; 
while (NewSwarm(i,j)<tmin | NewSwarm(i,j)>Currenttmax(i,1) )&& Update1>100

NewVelocity(i,j)= w_thickness*(CurrentVelocity(i,j)+c1*rand*(CurrentGroupBest(1,j)-CurrentSwarm(i,j))
+c2*rand*(CurrentParticleBest(i,j)-CurrentSwarm(i,j)));

NewSwarm(i,j)=CurrentSwarm(i,j)+ NewVelocity(i,j);
Update1= Update1+1; 

end
if NewSwarm(i,j)<tmin | NewSwarm(i,j)>Current_tmax(i,1) | Update1>100

NewSwarm(i,j)=CurrentSwarm(i,j);
continue;

else
if NewSwarm(i,j)>=tmin&&NewSwarm(i,j)<=10

temp=(10-NewSwarm(i,j))/(10-3);
Scope_Thinkness=1+(10-3)/1; 
Discrete_Thickness_Index=floor(temp+Scope_Thinkness*(1-temp));
NewSwarm(i,j)=Indexed_Thinkness_Width(Discrete_Thickness_Index,1);

NewVelocity(i,j)=NewSwarm(i,j)-CurrentSwarm(i,j);
Current_tmax(i,1)=NewSwarm(i,j);

end
if NewSwarm(i,j)>10&&NewSwarm(i,j)<=tmax

temp=(14-NewSwarm(i,j))/(14-10);
Scope_Thinkness=1+(14-10)/2;
Discrete_Thickness_Index=floor(temp+Scope_Thinkness*(1-temp));
NewSwarm(i,j)=Indexed_Thinkness_Width(7+Discrete_Thickness_Index,1);
NewVelocity(i,j)=NewSwarm(i,j)-CurrentSwarm(i,j);

Current_tmax(i,1)=NewSwarm(i,j);
end

end
Trial_times (i,j)=update1;

end
end

for i=1: NumberofParticles
AvailableHeight(i,1)= OverallHeight;

end
for j= NumberofSteps+1:2*NumberofSteps-1

for i=1: NumberofParticles
NewVelocity(i,j)= w_height*(CurrentVelocity(i,j)+c1*rand*(CurrentGroupBest(1,j)-CurrentSwarm(i,j))

+c2*rand*(CurrentParticleBest(i,j)-CurrentSwarm(i,j)));
NewSwarm(i,j)=CurrentSwarm(i,j)+ NewVelocity(i,j);
Update2=1;
hmin=0;
switch NewSwarm(i,j-NumberofSteps)

case {3,4}
hmin=1.25;

case {5,6,7}
hmin=1.5;

case {8,9}
hmin=1.75;

otherwise
hmin=2;

end
while (NewSwarm(i,j-)<hmin|NewSwarm(i,j)>AvailableHeight(i,1))&&update2<100

NewVelocity(i,j)= w_height*(CurrentVelocity(i,j)+c1*rand*(CurrentGroupBest(1,j)-CurrentSwarm(i,j))
+c2*rand*(CurrentParticleBest(i,j)-CurrentSwarm(i,j)));

NewSwarm(i,j)=CurrentSwarm(i,j)+NewVelocity(i,j);
Update2=update2+1;   

end
if NewSwarm(i,j)<hmin|NewSwarm(i,j)>AvailableHeight(i,1)|update>100

NewSwarm(i,j)=hmin;
AvailableHeight(i,1)=AvailableHeight(i,1)-NewSwarm(i,j);
continue;

else
tempheight=NewSwarm(i,j);
for jj=1:NumberofDiscreteThicknesses

if NewSwarm(i,j- NumberofSteps)== Indexed_Thinkness_Width (jj,1)
New_Swarm(i,j)=floor(tempheight/( Indexed_Thinkness_Width (jj,2)))* Indexed_Thinkness_Width (jj,2);
NewVelocity(i,j)=NewSwarm(i,j)-CurrentSwarm(i,j);
if NewSwarm(i,j)==0

NewSwarm(i,j)= Indexed_Thinkness_Width (j,2);
NewVelocity(i,j)=NewSwarm(i,j)-CurrentSwarm(i,j);

end
break;

end
end
AvailableHeight(i,1)=AvailableHeight(i,1)-NewSwarm(i,j);

end
Trial_times (i,j)=update2;

end
end
for i=1: NumberofParticles

NewSwarm(i, 2*NumberofSteps)=AvailableHeight(i,1); 
NewVelocity(i, 2*NumberofSteps)=NewSwarm(i, 2*NumberofSteps)-CurrentSwarm(i, 2*NumberofSteps);

end
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Fig. 12   History data of each particle during 16 iterations
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Fig. 12   (continued)
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Fig. 13   History data of each particle’s best solution during 16 iterations
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Fig. 13   (continued)
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Table 4   History stress and 
mass data of each particle’s best 
solution during 16 iterations

Iteration Particle Stress (MPa) Mass (tonne) Iteration Particle Stress (MPa) Mass (tonne)

1 1 29.91 3.41 5 1 36.39 2.93
2 38.04 2.89 2 38.04 2.84
3 26.08 4.95 3 33.04 3.27
4 40 2.25 4 38.76 2.54
5 39.17 3.01 5 39.17 3.01
6 21.3 4.69 6 30.65 3.72
7 32.14 4 7 34.78 3.64
8 34.52 3.22 8 34.52 3.22
9 38.13 3.22 9 38.07 2.81

10 40 2.71 10 38.42 2.59
11 37.35 3.17 11 37.35 3.17
12 26.02 4.02 12 30.72 3.89
13 40 2.85 13 38.08 2.87
14 26.13 4.4 14 33.04 3.27
15 21.29 4.48 15 35.9 2.84
16 40 3.31 16 38.11 3.27

2 1 38.12 3.08 6 1 36.39 2.93
2 38.04 2.89 2 38.04 2.84
3 26.01 4.16 3 33.04 3.27
4 40 2.25 4 38.76 2.54
5 39.17 3.01 5 39.17 3.01
6 26.48 4.1 6 33.7 3.04
7 32.14 4 7 34.78 3.64
8 34.52 3.22 8 34.52 3.22
9 38.09 2.92 9 38.07 2.81

10 38.42 2.59 10 38.42 2.59
11 37.35 3.17 11 37.35 3.17
12 26.02 4.02 12 37.4 3.35
13 38.08 2.87 13 38.06 2.78
14 26.09 4.03 14 33.06 3.08
15 21.29 4.48 15 38.07 2.81
16 40 3.31 16 38.11 3.27

3 1 38.12 3.08 7 1 36.39 2.93
2 38.04 2.89 2 38.04 2.84
3 32.91 3.51 3 38.66 2.86
4 38.76 2.54 4 38.76 2.54
5 39.17 3.01 5 39.17 3.01
6 30.65 3.72 6 38.76 2.59
7 34.78 3.64 7 33.06 3.13
8 34.52 3.22 8 32.98 3.01
9 38.09 2.92 9 38.07 2.81

10 38.42 2.59 10 38.42 2.59
11 37.35 3.17 11 37.35 3.17
12 26.02 4.02 12 37.4 3.35
13 38.08 2.87 13 38.06 2.78
14 31.77 3.71 14 36.39 2.88
15 38.11 3.21 15 38.07 2.81
16 40 3.31 16 35.12 2.96
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Table 4   (continued)
Iteration Particle Stress (MPa) Mass (tonne) Iteration Particle Stress (MPa) Mass (tonne)

4 1 38.12 3.08 8 1 36.39 2.93
2 38.04 2.84 2 38.04 2.84
3 32.91 3.51 3 38.66 2.86
4 38.76 2.54 4 38.76 2.54
5 39.17 3.01 5 39.17 3.01
6 30.65 3.72 6 38.76 2.59
7 34.78 3.64 7 38.07 2.79
8 34.52 3.22 8 36.71 2.81
9 38.07 2.84 9 38.07 2.81

10 38.42 2.59 10 38.42 2.59
11 37.35 3.17 11 38.11 3.01
12 30.72 3.89 12 37.4 3.35
13 38.08 2.87 13 38.42 2.59
14 33.03 3.48 14 36.39 2.88
15 38.11 3.21 15 38.07 2.81
16 40 3.31 16 35.12 2.96

9 1 36.39 2.93 13 1 36.39 2.93
2 38.04 2.84 2 38.42 2.59
3 38.66 2.86 3 38.66 2.86
4 38.76 2.54 4 39.51 2.46
5 37.37 2.81 5 39.51 2.51
6 38.76 2.59 6 39.51 2.38
7 38.05 2.71 7 39.51 2.46
8 36.71 2.81 8 39.5 2.43
9 38.42 2.68 9 38.42 2.68

10 38.8 2.46 10 39.51 2.38
11 37.41 2.88 11 39.51 2.38
12 37.4 3.35 12 39.51 2.38
13 38.42 2.59 13 39.51 2.38
14 36.39 2.88 14 39.51 2.38
15 38.06 2.73 15 38.42 2.59
16 35.12 2.96 16 35.12 2.96

10 1 36.39 2.93 14 1 36.73 2.68
2 38.04 2.84 2 38.42 2.59
3 38.66 2.86 3 38.66 2.86
4 38.76 2.54 4 39.51 2.46
5 37.37 2.81 5 39.51 2.51
6 38.8 2.46 6 39.51 2.38
7 38.05 2.71 7 39.51 2.38
8 36.71 2.81 8 39.5 2.43
9 38.42 2.68 9 39.51 2.38

10 39.51 2.38 10 39.51 2.38
11 38.42 2.68 11 39.51 2.38
12 34.21 2.82 12 39.51 2.38
13 38.42 2.59 13 39.51 2.38
14 36.39 2.88 14 39.51 2.38
15 38.06 2.73 15 39.51 2.38
16 35.12 2.96 16 35.12 2.96
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In Algorithm 3, CurrentSwarm was a 16-by-8 array 
recording current swarm data. Each line of CurrentSwarm 
corresponded to a particle, whose wall-thickness data 
were in the first four columns and the step heights were in 
the last four columns, respectively. Array NewSwarm had 
the same structure as CurrentSwarm and stored the latest 
swarm data for the next upcoming iteration. CurrentVeloc-
ity was a 16-by-8 array recording current swarm velocity 
data. Each line of CurrentVelocity corresponded to a par-
ticle, whose wall-thickness updating data were in the first 
four columns and the updates of step heights were in the 
last four columns, respectively. In this study, all elements of 
CurrentVelocity were initialized to be zero. Array NewVe-
locity had the same structure as CurrentVelocity and stored 
the latest updating data of wall-thicknesses and step heights 

for the next upcoming iteration. CurrentGroupBest was a 
1-by-8 array recording the data of the current best particle 
of the whole swarm. CurrentParticleBest was a 16-by-8 
array and each line of it recorded the current best data of 
a single particle. The MATLAB function rand returned a 
single uniformly distributed random number in the inter-
val (0, 1). Current_tmax was a 16-by-1 array recording 
the available maximum wall-thickness for the next step 
of a particle. To ensure the new randomly generated wall-
thickness was one of the optional discrete wall-thickness, 
it was first linearly normalized to a variable temp∈ (0, 1). 
Then the variable Discrete_Thickness_Index, which was 
used to return the closest discrete wall-thickness corre-
sponding to the new randomly generated wall-thickness, 
was calculated through linear interpolation and rounding 

Table 4   (continued) Iteration Particle Stress (MPa) Mass (tonne) Iteration Particle Stress (MPa) Mass (tonne)

11 1 36.39 2.93 15 1 36.73 2.68
2 38.42 2.59 2 38.42 2.59
3 38.66 2.86 3 38.66 2.86
4 38.76 2.54 4 39.51 2.38
5 39.51 2.51 5 39.51 2.38
6 39.51 2.46 6 39.51 2.38
7 38.05 2.71 7 39.51 2.38
8 39.5 2.43 8 39.51 2.38
9 38.42 2.68 9 39.51 2.38

10 39.51 2.38 10 39.51 2.38
11 38.42 2.68 11 39.51 2.38
12 38.05 2.75 12 39.51 2.38
13 39.51 2.5 13 39.51 2.38
14 39.22 2.5 14 39.51 2.38
15 38.04 2.69 15 39.51 2.38
16 35.12 2.96 16 35.12 2.96

12 1 36.39 2.93 16 1 36.73 2.68
2 38.42 2.59 2 38.42 2.59
3 38.66 2.86 3 39.51 2.38
4 38.76 2.54 4 39.51 2.38
5 39.51 2.51 5 39.51 2.38
6 39.51 2.38 6 39.51 2.38
7 38.04 2.63 7 39.51 2.38
8 39.5 2.43 8 39.51 2.38
9 38.42 2.68 9 39.51 2.38

10 39.51 2.38 10 39.51 2.38
11 38.42 2.68 11 39.51 2.38
12 39.51 2.38 12 39.51 2.38
13 39.51 2.38 13 39.51 2.38
14 39.22 2.5 14 39.51 2.38
15 38.42 2.59 15 39.51 2.38
16 35.12 2.96 16 35.12 2.96
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up operation. Furthermore, through the temporary vari-
ables Update1 and Update2, the 16-by-7 array Trial_times 
recorded the numbers of cycles to randomly generate the 
proper wall-thickness data in its first four columns, and 
the amount of loops to randomly generate the first three 
step heights, which should be the integral multiples of the 

related plate width, were stored in the last three columns 
of Trial_times.

4.3.5 � Fitness evaluation and iteration stopping criteria

In this work, the fitness of each particle was evaluated by 
silo weight corresponding to its stepped size data and silo 

Table 5   Data of the whole swarm best particle during optimization procedure

Iteration t1 (mm) t2 (mm) t3 (mm) t4 (mm) h1 (m) h2 (m) h3 (m) h4 (m) Stress (MPa) Mass (tonne)

1 9 6 5 4 1.75 1.5 3 16.35 38.04 2.89
2 7 5 4 3 4.5 3 2.5 12.6 38.42 2.59
3 7 5 4 3 4.5 1.5 3.75 12.85 38.76 2.54
4 7 5 4 3 4.5 1.5 3.75 12.85 38.76 2.54
5 7 5 4 3 4.5 1.5 3.75 12.85 38.76 2.54
6 7 5 4 3 4.5 1.5 3.75 12.85 38.76 2.54
7 7 5 4 3 4.5 1.5 3.75 12.85 38.76 2.54
8 7 5 4 3 4.5 1.5 3.75 12.85 38.76 2.54
9 7 5 4 3 3 3 3.75 12.85 38.8 2.46
10 7 5 4 3 1.5 4.5 3.75 12.85 39.51 2.38
11 7 5 4 3 1.5 4.5 3.75 12.85 39.51 2.38
12 7 5 4 3 1.5 4.5 3.75 12.85 39.51 2.38
13 7 5 4 3 1.5 4.5 3.75 12.85 39.51 2.38
14 7 5 4 3 1.5 4.5 3.75 12.85 39.51 2.38
15 7 5 4 3 1.5 4.5 3.75 12.85 39.51 2.38
16 7 5 4 3 1.5 4.5 3.75 12.85 39.51 2.38

Fig. 14   Von-Mises stress contour of the obtained optimal stepped silo 
at step time = 1 s

Fig. 15   U3 displacement contour of the obtained optimal stepped silo 
at step time = 1 s
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structure stability. Once a lighter silo without buckling fail-
ure appeared, the best solution of that particle was updated. 
The best particle of the whole swarm was determined when 
all particles finished the updates of their own best data. The 
best solution of each particle was determined according to 
the following principles: (1) the stable solution was better 
than the buckling solution; (2) the lighter stable solution 
was better than the heavier stable solution; (3) the heavier 
buckling solution was better than the lighter bucking solu-
tion. The swarm’s best solution was determined following 
the same principles.

The iteration procedure of the stepped silo wall-thick-
nesses optimization would be terminated, when the best val-
ues of more than 80% particles were consistent with the best 
value of the whole swarm or when the optimum iterations 
exceed 100 times.

5 � Optimization data and results

Based on Algorithms 1–3 and the nonlinear implicit 
dynamic FE analyses, the optimal discrete wall-thicknesses 
and related heights of the 4-stage AA3003 cylindrical silo 
were obtained after 16 iterations. Figure 12 integrally dem-
onstrates the historical data of each particle during the entire 
PSO-based iterative processes. Table 3 lists the overall stress, 
mass and buckling results of each particle during the whole 
PSO optimization iterations. Figure 13 shows the historical 
data of each particle’s best solution during 16 iterations and 
Table 4 presents the stress and mass data of each particle 
in corresponding iteration procedure. Table 5 displays the 
searching progress of the whole swarm’s best solution in the 
iterative procedures. According to the iteration stopping cri-
teria described in Sect. 4.3.5 and the data listed in Tables 4 
and 5, it could be determined that the optimal combination 
of the stepped wall-thickness and corresponding height of 
the 4-stage AA3003 cylindrical silo described in Sect. 2 was: 
(t1 = 7 mm, h1 = 1.5 m), (t2 = 5 mm, h2 = 4.5 m), (t3 = 4 mm, 
h3 = 3.75 m) and (t4 = 3 mm, h4 = 12.85 m).

It could be seen from Table 4 that after about 11 iterations 
most of the particles seemed to have realized the optimal 
discrete wall-thicknesses should be 7 mm, 5 mm, 4 mm and 
3 mm, respectively. Then the corresponding optimum step 

Fig. 16   U3 displacement (of a top edge node), ALLKE and ETOTAL 
history data plots of the obtained optimal stepped silo

Table 6   Data of array Trial_
times at iteration 12

Particle Attempt number of random integer sampling

t1 t2 t3 t4 h1 h2 h3

1 1 1 1 3 1 1 1
2 1 1 1 1 1 1 1
3 1 1 1 1 1 3 1
4 1 1 1 1 1 1 1
5 1 1 1 1 8 1 1
6 1 1 1 1 1 1 1
7 1 1 1 1 1 1 1
8 1 1 1 1 1 1 1
9 1 1 1 1 7 1 1
10 1 1 1 1 1 1 1
11 1 1 1 1 1 4 5
12 1 1 1 1 1 1 1
13 1 1 1 1 1 1 1
14 1 1 1 1 1 1 1
15 1 1 1 1 1 1 1
16 1 1 1 1 9 1 1
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Fig. 17   The first 6 buckling 
modes of LBA for the obtained 
optimal stepped silo by PSO
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heights, 1.5 m, 4.5 m, 3.75 m and 12.85 m, had been basi-
cally locked after the next 3 iterations. And the swarm’s 
best solution listed in Table 5 also happened to remain sta-
ble from the 11th iteration until the optimization process 
terminated.

Figure 14 is the Von-Mises stress contour of the obtained 
optimal 4-stage AA3003 cylindrical silo at the end moment 
of the nonlinear implicit dynamic FE analysis. Figure 15 
is the U3 displacement contour of the obtained optimal 
stepped silo at step time of 1 s. Figure 16 shows three non-
linear implicit dynamic FEA history data plots of the opti-
mal stepped silo: the U3 displacement of one top edge node 
(marked in Fig. 15), the ALLKE and the ETOTAL, respec-
tively. The gradual stabilization of the ALLKE and ETO-
TAL data indicated that the optimal stepped silo was stable 
throughout the loading duration and no buckling occurred.

Table 6 demonstrates the data of array Trial_times in 
iteration 12. Trial_times was used to record the number of 
random integer sampling attempts to generate an appropri-
ate thickness or height for a particle. As listed in Table 6, 
normally the data of t1, t2, and t3 could be successfully 
generated by random integer sampling just once, while 
the data of t4, h1, h2 and h3 sometimes would be drawn 
multiple times. A large number of tests confirmed that the 
maximum attempt number of the random integer drawing 
would not exceed 20 times, which implied that the pro-
posed algorithms were efficient and robust.

To further verify the structural stability of the obtained 
optimal stepped silo, the linear elastic bifurcation analysis 
(LBA) and geometrically nonlinear elastic analysis (GNA) 
were performed using ABAQUS/STANDARD, respectively. 
Figure 17 shows the first 6 buckling modes of the LBA. It 
should be pointed out that due to the existence of the patch 
load, the buckling modes of the stepped silo present asym-
metry. Furthermore, it could be also noticed that the opti-
mal stepped silo has a series of closely spaced eigenvalues, 

which normally indicates that the structure is imperfection 
sensitive and the linear eigenvalue analysis might be insuf-
ficient for design evaluation, while the GNA method is rela-
tively more reliable and necessary. Figure 18 displays the 
Load Proportionality Factor (LPF) curve of the obtained 
optimal stepped silo by running the static Riks procedure, 
which is the method of ABAQUS for solving geometrically 
nonlinear buckling or collapse behavior. The first buck-
ling LPF value 1.07557 just demonstrates that the implicit 
dynamic method adopted in this paper is suitable for the silo 
FE analysis and the PSO method did find the best optimal 
discrete size data combination of the stepped silo under the 
constraints of minimum quality and structural stability. In 
addition, it also confirms that it is feasible and reliable to 
assess silo buckling instability according to the dramatic 
shift of the ALLKE curve or ETOTAL curve of the implicit 
dynamic FEA. It should be emphasized that the silo loads 
used in the LBA and GNA were 1.6 times of the prescribed 
values of the Eurocode EN 1991-4:2006 and that code itself 
is relatively conservative, which means even the GNA buck-
ling strength of the PSO-based optimal stepped silo was still 
sufficient. Figure 19 shows several displacement results of 
the GNA process.

Moreover, to compare the PSO-based optimal stepped 
silo with another silo configuration obtained by other siz-
ing optimization method or software tool, a solution of 
Geometry Optimization based on the commercial software 
Siemens NX 8.5 was performed. Because of the NX geo-
metric optimization depending on the sensitivity analysis 
of continuous variables, it is necessary to establish the 
relationship between the optimal design variables and the 
discrete size parameters of the stepped silo. As shown in 
Fig. 20, the optimal design variables THi (i = 1, 2, 3, 4) and 
nj (j = 1, 2, 3) were intrinsically correlated with the stepped 
silo thickness data ti (i = 1, 2, 3, 4) and the corresponding 
height data hj (j = 1, 2, 3) through relevant logical expres-
sions, respectively. For example, assuming TH1 = 7.82 mm, 
TH2 = 8.17 mm, TH3 = 7.23 mm and TH4 = 5.86 mm, then 
according to the ti (i = 1, 2, 3, 4) formulae expressed in 
Fig. 20, it will conclude that t1 = 8 mm, t2 = 7 mm, t3 = 6 mm 
and t4 = 5 mm, which satisfies the constraint of t1 > t2 > t3 > t4 
proposed in Sect. 4.1. And then suppose n1 = 1.33, n2 = 2.86 
and n3 = 3.74, in accordance with the hi (i = 1, 2, 3) formulae 
expressed in Fig. 20 and the data listed in Table 1, it reaches 
that h1 = 1.75 m, h2 = 4.5 m and h3 = 6.0 m, which realizes 
the condition that the first three stepped heights should be 
integer multiples of the corresponding width values. Fig-
ure 21 reflects the initial values, upper limits and lower lim-
its of the design variables for the stepped silo NX geometric 
optimization. During the NX Geometry Optimization proce-
dure, the FEA solution type was SOL 106 Nonlinear Statics 
of NX Nastran solver and the Altair HyperOpt served as the 
optimizing solver.

Fig. 18   The LPF curve of the GNA for the obtained optimal stepped 
silo by PSO
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Fig. 19   Several displacement results of the GNA for the obtained optimal stepped silo by PSO



1042	 Engineering with Computers (2021) 37:1015–1047

1 3

Fig. 19   (continued)
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Figure 22 shows a concise spreadsheet report of the 
stepped silo NX geometric optimization result. In the opti-
mal iteration process, the spreadsheet was automatically 
updated by NX. Obviously, after 99 iterations, the geometric 
optimization of NX failed to converge to an optimal discrete 

size combination of stepped silo. Figures 23 and 24 demon-
strate the variations of the design variables and the stepped 
silo discrete size data in the NX geometric optimization 
process, respectively. It seems that the NX sizing optimiza-
tion process fell into a trap of a structurally unstable data 
combination (t1 = 6 mm, h1 = 1.5 m; t2 = 5 mm, h2 = 4.5 m; 

Fig. 20   Logical expressions between optimal design variables and the stepped silo discrete size data

Fig. 21   Data settings of the NX 
geometric optimization design 
variables
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t3 = 4 mm, h3 = 3.75 m; t4 = 3 mm, h4 = 12.85 m), which was 
completely consistent with the PSO-based optimal solution 
just except the value of t1. The performance of the NX geo-
metric optimization just right proves that the proposed PSO-
based method for discrete sizing optimization of stepped 
cylindrical silo is more efficient and robust. Because the NX 
geometric optimization used continuous variables THi (i = 1, 
2, 3, 4) and nj (j = 1, 2, 3) to calculate sensitivity, while the 
stepped silo structure updating was based on the discrete 
variables ti (i = 1, 2, 3, 4) and the hj (j = 1, 2, 3), that incon-
sistency led to a poor convergence rate of NX silo sizing 
optimization. It could be optimistically expected that with 
the increase of iteration times, the NX geometric optimiza-
tion might converge to the best result consistent with the 
PSO-based method.

6 � Conclusions

The harmony of safety, manufacturability and economy for 
load-carrying engineering structures has ever been being 
sought. The solution to such problem requires not only 
refined and realistic mathematical models of the struc-
tures, but also sufficiently accurate, reliable and efficient 
numerical methods and procedures to drive the structural 
design to an acceptable optimum configuration. Consider-
ing the dimensional discreteness of commercially available 
metal plates, this paper combined the PSO method with 
the nonlinear implicit dynamic FE analysis to optimize 
the wall-thickness distribution for a stepped cylindrical 
silo composed of AA3003 plates, with the objective of 
minimizing the mass of silo without buckling. In essence, 

Fig. 22   Spreadsheet report of NX geometric optimization of stepped silo

Fig. 23   Diagram of the design variables in the NX geometric optimization process
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the optimal wall-thickness layout problem for a stepped 
cylindrical silo is an NP-hard combinational optimization 
problem with constraints. The following conclusions could 
be drawn from the results of this study:

•	 The nonlinear implicit dynamic approach was applica-
ble for analyzing the structural stability of slender silo 
under the combined loads of horizontal wall pressures, 
wall frictional traction, patch pressures and self weight.

•	 When evaluating the fitness of each particle, it was 
quite intuitive to use the plots of implicit dynamic FEA 
history data, such as ALLKE, ETOTAL and height 
direction displacement of node on silo top edge, etc., 
to determine whether silo buckling occurred or not.

•	 Taking into account both practicality and reliability, 
silo loads determined according to EN 1991-4:2006 
were all amplified by a factor of 1.6 in this work. That 
amplification coefficient tried to reflect the compre-
hensive influences of negative and positive factors on 
slender silo buckling strength.

•	 It was numerically efficient and robust to combine the 
standard PSO method with the proposed algorithms 
based on random integer sampling to optimize the dis-
crete wall-thicknesses and corresponding heights for a 
stepped silo.

•	 During the entire optimization procedure, most of the 
iterations were primarily used to search for the optimal 
stepped silo wall-thickness combination. Once such a 
combination was determined, the corresponding opti-
mal step height combination could be quickly obtained 
within a few iterations subsequently.

•	 Obviously, the stepped silo optimal wall-thicknesses 
and corresponding heights obtained in this work were 
sensitive to the silo load amplification coefficient, the 
learning rates and the inertia weights for PSO veloci-
ties updating, the stopping conditions for optimization 
process, the finite element type and size, the discharge 
eccentricity, the bulk solid wall friction coefficient and 
the patch load solid reference factor, etc. It could be 
sure that all those sensitive factors would not affect the 
applicability and feasibility of the optimization meth-
odology proposed in this paper, although they would 
need to be further confirmed or revised in future work.
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