
Vol.:(0123456789)1 3

Engineering with Computers (2021) 37:951–973
https://doi.org/10.1007/s00366-019-00866-2

ORIGINAL ARTICLE

Percentage porosity computation of three‑dimensional non‑convex
porous geometries using the direct Monte Carlo simulation

Mauricio Campillo1 · Pablo Pérez1 · Jorge Daher1 · Luis Pérez1

Received: 7 May 2019 / Accepted: 16 September 2019 / Published online: 25 September 2019
© Springer-Verlag London Ltd., part of Springer Nature 2019

Abstract
The pursuit of more representative numerical models for open-cell metallic foams requires the computation of volume
and percentage porosity of geometries containing randomly distributed interconnected pores, which is one of the main
characteristics that determines its mechanical properties. From a mathematical standpoint, the analytical definition of foam
geometries forms a three-dimensional non-convex set. It is known that the volume computation of n-dimensional polytopes
and sets is a P-hard problem. A common way to approach this problem is using the Monte Carlo techniques; however, efforts
are oriented toward the treatment of convex polytopes and polyhedrons. In this article, the Direct Monte Carlo Simulation
(DMCS) is used to compute the percentage porosity of three-dimensional non-convex sets. A single-thread Python code
was implemented, and tests were run to estimate the percentage porosity of three-dimensional open-cell porous geometries.
Measurements of percentage porosity and runtime requirements over cubical and cylindrical geometries containing from
100 to 4000 overlapping spherical pores showed high accuracy and consistency in non-convex three-dimensional sets, while
the proposed algorithm achieved a significant reduction in computing time with respect to the currently available method.
In the same manner, results from the proposed algorithm were compared with a similar software available, showing a gain
in both performance time and accuracy.

Keywords Direct Monte Carlo simulation · Percentage porosity · Non-convex sets · Metallic foams · Python

1 Introduction

Metallic foams have gained importance in recent years
which can be verified by considerable number of investiga-
tions in the literature on this subject. They are composed of
a metal-based structure with internal cavities called pores,
similar to a conventional Metal Matrix Composite (MMC)
but containing a void secondary phase. Percentage porosity
is measured as the volume fraction of the void phase to the
overall volume, which is the complementary percentage of
the relative density of the solid phase. Porosity can be intro-
duced in metal foams using a wide variety of fabrication
methods, including processes using metals in solid, liquid,
and gaseous states [1]. The main characteristic that deter-
mines the mechanical properties of metallic foams is the

percentage porosity. This characteristic is mainly influenced
by the random distribution of pores and the manufactur-
ing process which establishes the internal structure of the
foams. When pores exhibit a structure where a membrane
bounds each one independently (e.g., honeycombs), it is said
to be a closed-cell structure, while if interconnection exists
between pores (e.g., sponges), it is said to be an open-cell
structure [2].

The Finite-Element Analysis (FEA) has been a power-
ful and feasible numerical technique to model the mechani-
cal behavior of both open-cell and closed-cell foams in the
aid to identify plausible fabrication routes, depending on
its desired microstructure and macroscopic mechanical
properties. However, several challengers remain to be over-
come to achieve better accuracy in the representation of its
three-dimensional internal microstructure and macroscopic
mechanical behavior, as its properties are highly dependent
of the quality of the Computer-Aided Design (CAD) geo-
metrical models [3]. FEA of heterogenous and porous media
is commonly carried out by a Representative Volume Ele-
ment (RVE) analysis [4], where the mechanical properties

 * Mauricio Campillo
 mauricio.campillo@postgrado.usm.cl

1 Department of Mechanical Engineering, Universidad
Técnica Federico Santa María, Av. España 1680, Casilla
110-V, Valparaíso, Chile

http://orcid.org/0000-0001-6768-0782
http://crossmark.crossref.org/dialog/?doi=10.1007/s00366-019-00866-2&domain=pdf

952 Engineering with Computers (2021) 37:951–973

1 3

of the medium are obtained by solving a Boundary-Value
Problem (BVP) over a small and rather simple domain from
which the equivalent mechanical properties are transferred
to a more complex one assumed as a continuum [5–7].

One approach to improve the representativeness of the
numerical results obtained in FEA-based models is by the
inclusion of randomly distributed spherical pores, mim-
icking the natural distribution that can be observed in the
microstructure of open-cell metallic foams obtained using
the Space Holders Phase (SHP) technique, either by con-
ventional powder metallurgy (PM) [8] or by infiltration of
liquid metal [9]. These models must represent adequately
the topological parameters of the metallic foams (e.g., pore
distribution and sizes, interconnection, porosity percentage,
etc.). To generate these metallic foam models, one of the
most used mechanisms is using a CAD software package
and executing a series of sequential command operations
contained in a script [10–12], examples of these models can
be seen in Fig. 1.

However, despite good results for the mechanical behav-
ior of foams are reported in literature, the script commands’
processing time is considerably excessive in relation to the
FEA total time, which poses the necessity of developing an
alternative to overcome this shortcoming. Figure 2 shows an
example of the average time required to import a geometry
into FEA preprocessor ANSYS v18 Design Modeler module
and a quadratic relation with the number of cutting opera-
tions required to include pores.

In three dimensions, RVEs of porous media with open
interconnected pores can be defined by the intersection of
the interior of an external body (e.g., a cube or a cylinder)
and the exterior of the union of spheres, which are allowed
to intersect the exterior surface of the external body, to pro-
duce surface porosity seen in Fig. 1. Due to the overlapping
pores and the manner in which the set is defined, both the
geometry of the RVE and the union of the spheres of the
void phase are non-convex sets. Hereafter, the concept of
non-convex set may be referred to either of the prior.

In this article, an algorithm based on the Direct Monte
Carlo Simulation (DMCS), implemented in Python lan-
guage, is developed to estimate the percentage porosity of
CAD generated metallic foam geometries. A grid cell-based
linked list strategy and a Latin Hypercube Sampling (LHS)
approach are used to achieve better computational efficiency
and convergence [13]. A well-defined data set composed of
40 individual and distinct non-convex sets (i.e., 3D foam
geometries) was used to evaluate the proposed method. This
implementation has shown a time reduction between 80 and
90% with respect to the execution of the complete extruding
and cutting operations by a CAD software package, as well
as better accuracy and runtimes when compared to McVol
[14], which is a Monte Carlo-based software intended to

compute molecular volume of proteins, developed by Till
et al.

2 Methodology

2.1 CAD geometries’ generation

The process to generate the CAD geometries of the foams
is based in a basic three-step procedure, which is schemati-
cally shown in Fig. 3, for a two-dimensional case. First, a
Discrete-Element Method (DEM) [15] simulation is carried
out, from which the instantaneous element positions are used
as the center position distribution of the pores (Fig. 3a).
Then, using the defined pores center distribution, each pore

Fig. 1 3D foam geometries of solids containing spherical overlap-
ping pores of 350–450 µm in diameter: a porous cylinder of diameter
2.25 mm and height 1.8 mm with 100 pores and 75.03% porosity and
b porous cubes of size 3.6 mm with 1320 pores and 70.08% porosity

Fig. 2 Average loading time measured for cube-based foam geom-
etries of size 3.6 mm into FEA Preprocessor Ansys v18 Design Mod-
eler containing different number of spherical overlapping pores of
350–450 µm in diameter via JavaScript scripts execution

953Engineering with Computers (2021) 37:951–973

1 3

diameter is redefined to meet the required criteria to fit the
intender microstructure, such as pore interconnectivity and
size distribution (Fig. 3b). Finally, a CAD geometry is com-
pletely defined as a script, which after being imported to an
FEA Preprocessor or CAD package is seen as the remaining
solid phase of the intersection between the interior of the
external body and the exterior of the union of spheres, as
shown in Fig. 3c.

Two sets of 3D CAD geometries containing randomly
distributed spherical pores have been generated using DEM,
where one set corresponds to cylinder-based geometries,
while the second set is cube-based, similar to those shown
in Fig. 1. These two general shapes have been selected due to
their relevance on both numerical and experimental studies
of mechanical behavior of metallic foams. While experimen-
tal tests use cylindrical specimens for compressive testing
[16, 17], numerical simulations are oriented toward the char-
acterization of mechanical behavior based on a reduced RVE
in association to a multiscale scheme [18, 19], and hence,
the cubic-shaped geometry is more suited for orthogonal
load testing [20–22].

Originally presented to model the behavior of granular
media, the DEM is a powerful numerical tool to model the
random distribution of pores generated in foam fabrication
methods such as SHP due to the solid mixing process [17] or
in liquid metal infiltration process [23, 24]. The DEM repre-
sents the medium as a collection of material particles exhib-
iting independent rigid body motion behavior where the total
external force acting over each particle is determined by the
interaction with neighboring particles in which each pair
interaction force is governed by a low-range contact force
law [15]. In this work, a Hertz-type law with dampening has
been considered for this purpose, where the total force has a
normal component and a tangential component contributing
to the linear and angular momentum Newton’s conservation
law correspondently. This type of contact law is found to be
usual on the simulation of granular media [25–27].

Geometries based on cylinders of 6.75 mm in diam-
eter (D) and 5.4 mm in height (H), and cubes of size (A)
6.75 mm containing 100, 500, 1000, 2000, and 4000 pores

with diameters (d) ranging from 350 to 450 µm have been
created using DEM open software LIGGGHTS [28]. An
H∕D ratio of 0.8 has been chosen to avoid flexural deflection
and inelastic buckling, in accordance with geometric recom-
mendations for short specimens in ASTM E9-09 standard
[29]. A ratio of characteristic length to maximum pore size
of 15 (i.e., D/d for cylinders and A/d for cubes) was cho-
sen, to allow the inclusion of a wide range of number of
pores throughout the tests. The maximum number of pores
was set to 4000, as loading times into the FEA preprocessor
becomes excessive.

Cylinder-based geometries have been set to have its
revolution axis coaxial with the Z-axis, while the base is
contained in the X–Y plane protruding through the Z > 0
subspace. On the other hand, cube-shaped geometries were
oriented to have three of its faces aligned with the X–Y, Y–Z,
and Z–X planes, while its remaining three faces contained in
the X, Y , Z > 0 subspace.

DEM special domain used considered 1 time the maxi-
mum pore size (450 µm) for each side, being the radius,
lower and upper height limits for cylinders and for each
lower and upper direction for cubes, to promote the pres-
ence of pores on the surface of the resulting geometry and
particle size was set to 0.25 times the maximum pore size
(112 µm) to achieve interconnection between pores on the
generated CAD geometries.

For both geometry types, the conditions for particles
insertion were initial velocity (0.5 mm/s on each direction),
high Young’s modulus (5.0e8 MPa), and coefficient of res-
titution (0.95) and near zero gravity with the intention of
generating high level of interaction between particles and
maintaining high total kinetic energy in the system during
simulation, according to Pérez et al. [9].

Results from DEM simulations were post-processed using
a purposely developed Python script to generate ANSYS
v18 Design Modeler input JavaScript scripts, using the cor-
responding center of the particles and assigning a uniformly
distributed random value for each pore diameter between
350 and 450 µm, similar to Ref. [9]. The aforementioned
script follows the following pseudo-code structure.

Fig. 3 Two-dimensional repre-
sentation of the RVE generation
of porous media with open-
cell porosity: a Pores’ center
distribution obtained by DEM;
b Uniform random definition of
pores diameter; and c resulting
foam geometry

954 Engineering with Computers (2021) 37:951–973

1 3

1. #Define Type of Geometry
2. (Geo.Type) = {CUBE, CYLINDER}
3. #Define Characteristic Lengths
4. Switch Case (Geo.Type):
5. CUBE: (Geo.charlength) = [(A)]
6. CYLINDER: (Geo.charlength) = [(H), (D)]
7. #Define Pore Minimum and Maximum Diameters
8. (pore_diam) = [(min_diam), (max_diam)]
9. #Retrieve List of Centers
10. input_file.open()
11. for each line in (input_file):
12. Append info to (X_vector) and (Y_vector) and (Z_vector)
13. input_file.close()
14. #Build JavaScript file
15. output_file.open()
16. #Set Global Dimensions
17. Switch Case (Geo.Type):
18. CUBE: output_file.write((A))
19. CYLINDER: output_file.write((H), (D))
20. #Write Instructions for Basic Extrusion
21. Switch Case (Geo.Type):
22. CUBE:
23. output_file.write(Build Square of Edge (A))
24. output_file.write(Extrude Square (A) Units)
25. CYLINDER:
26. output_file.write(Build Circle of Diameter (D))
27. output_file.write(Extrude Circle (H) Units)
28. #Write instructions for Pores as Cutting Operations
29. for i in range(list_of_pores):
30. #Define Pore Center and Diameter
31. (diameter) = random.uniform((pore_diam.min),(pore_diam.max))
32. (center)=(X_vector[i],Y_vector[i],Z_vector[i])
33. #Write Instructions
34. output_file.write(Create Sphere Cut with (center), (diameter))
35. output_file.close()

of convex polytopes [37]. It is worth noticing that a gen-
eral non-convex set can be approximated by a non-convex
polytope and the approximating non-convex polytope can
be rewritten as a union of convex and simpler polytopes.
Hence, in principle, the volume of non-convex sets can be
computed using algorithms and techniques intended for the
treatment of convex polytopes, but the convex representation
of non-convex polytopes can be extremely expensive and
algorithms efficiency can be severely affected by the number
of instances needed to represent the original set [38].

Although spheres from which pores are generated cor-
respond to convex three-dimensional bodies, the union of
two or more pores, which is called a macro-pore, is not
guaranteed to hold this property [39]. In the case of the
CAD geometries treated in this work, the existing over-
lap between spheres in relation to the sphere diameters is
mainly unknown, which supposes that the generated volume
is highly likely to form a non-convex set. Due to this non-
convexity, the application of the previously described algo-
rithms is restricted and a different technique, such as simple
quadrature, may be applicable [40]. This problem has been
tackled in fields such as biochemistry, where the volume of

2.2 The Monte Carlo simulation

Volume computation of polytopes is a problem which has
been studied for at least 3 decades [30–32], and since then,
author has been using different approaches to provide poly-
nomial solutions to this problem, at least for low-dimen-
sional cases. One of the most common approaches is based
on the principle of divide-and-conquer, and the polyhe-
dron is divided into smaller and simpler instances where
the volume can be computed after by addition. Algorithms
such as volume decomposition [33] and triangulation [34]
are examples of this approach. Another commonly used
approach is based on the approximation of volume by means
of the Monte Carlo (MC) simulation. Here, various algo-
rithm implementations have been developed for the volume
estimation of convex n-dimensional polytopes for which
validation is restricted to low-dimension geometries with
known volume, whether it is analytically or not [35, 36].
These algorithms are typically based under a ‘hit-and-run’
technique and random walks used for a uniform sampling
throughout the geometry surface of the n-dimensional vol-
ume, providing a polynomial time solution for the treatment

955Engineering with Computers (2021) 37:951–973

1 3

proteins, represented as a collection of overlapping spheres,
can be computed using algorithms based on volume decom-
position [41] or the MC simulation [14].

2.2.1 Direct Monte Carlo simulation (DMCS)

In this work, the MC simulation is used as a mechanism to
gather information about an analytic 3D CAD geometry. In
this approach, a set of N independent Bernoulli random vari-
ables, XN

j
 , are evaluated, each one according to a probability

distribution function such as:

where each XN
j

 corresponds to an independent three-dimen-
sional vector in the subspaces enclosed by the exterior sur-
face of the geometry. As all the information relative to the
pores is known a priori (being its centers and radii), an alter-
native which poses an equivalent but less expensive to solve
problem is the one on estimating the void volume inside
the geometry and then to compute the solid portion as the
difference between the solid volume and the estimated void
volume. In this manner, the probability distribution function
proposed in Eq. 1, can be rewritten as:

With this, for each Bernoulli random variable, if the vec-
tor XN

j
 happens to reside inside a pore, it considers a ‘hit’,

while if it does not reside inside any void, it is considered a
‘miss’. For any given number N of Bernoulli random vari-
ables, it is known that they follow a Binomial distribution,
where its estimation, �N , of the expected value, � , is deter-
mined as the product between the probability of success (or
‘hit’) and the total number of independent variables, N. As
the expected value of any given distribution is known from
the evaluation of every variable, the probability of ‘hit’ on
any Binomial distribution, pN , may be determined as a func-
tion of the number of independent variables as:

With this, as the number of independent Bernoulli vari-
ables increases, the estimator, �N , tends to the real expected
value, � , of the Binomial distribution [42] and, as a conse-
quence, the real probability of success, p , is found. This is:

In terms of the DMCS, each Bernoulli random variable
evaluation of the binary probability function in Eq. 2 is
named a membership oracle call, since there is an algorithm

(1)f (X) =

{
1 X ∈ solid

0 Elsewise
,

(2)f (X) =

{
1 X ∈ a void

0 X ∉ any void
.

(3)pN =
�N

N
.

(4)lim
N→∞

pN = lim
N→∞

�N

N
= p.

established a priori to determine whether the returned for an
arbitrary input value is 0 or 1. Later, the wanted percentage
porosity of a CAD geometry foam is associated with the
probability of success of the related Binomial distribution
followed by the random points submitted to the membership
oracle.

2.2.2 Random point generation

A Latin Hypercube Sampling (LHS) [34] strategy was used
to generate the sampling points to be submitted to the mem-
bership oracle. To implement the LHS, each dimension of
the domain is stratified in m equiprobable strata. Later, each
stratum is randomly sampled one time. For cubes, each
dimension has a span from 0 to A; therefore, each stratum
has equal length l = A∕m . Whether for cylinders, to achieve
the equiprobability condition in cylindrical coordinates, it is
required that each stratum has a different length in the radial
direction (R), so the volume of each stratum can remain con-
stant, and hence, the jth radial stratum will be of length lR

j
:

Later, each stratum, Si,j,k , is defined as:

whether for cylinders, each stratum is defined by:

where the lengths of the strata in the other directions
l� = 2�∕m and lz = H∕m are constant. Although, for arbi-
trary parallelepipeds, individual lengths, li = Ai∕m shall be
used for the ith dimension in Eq. 6, the proposed implemen-
tation does not feature this option.

Finally, for each stratum, SN
n
= Si,j,k , a uniform random

point (XN
n

) is generated where:

where n =
[
0,
(
m3 − 1

)]
 or in terms of the total number of

Bernoulli random variables, n = [0, (N − 1)].

2.2.3 Porosity estimation

The expected value, �k , for an arbitrary number, k, of ran-
dom measurements of the random variable X distributed

(5)lR
j
=

√
(j−1)

k

(
D

2

)
.

(6)S
CUBE
i,j,k

=

⎡⎢⎢⎣

il, (i + 1)l

jl, (j + 1)l

kl, (l + 1)l

⎤⎥⎥⎦
�{i, j, k} ∈ [0, 1,… , (m − 1)],

(7)

S
CYL
i,j,k

=

⎡⎢⎢⎣

√
ilR,

√
i + 1lR

jl� , (j + 1)l�

klz, (k + 1)lz

⎤⎥⎥⎦
�{i, j, k} ∈ [0, 1,… , (m − 1)],

(8)

X
N
n
= Xi,j,k =

{
X ∈ Si,j,k ⊂ ℝ

3∀i, j, k ∈ {0, 1,… , (m − 1)}
}
,

956 Engineering with Computers (2021) 37:951–973

1 3

Binomial with parameters n and p is known to tend to the
expected value of the Binomial distribution, µ, this is:

The prior is based on the premise that the random vari-
able X, which represents the number of successes in any
random sampling of size n, is distributed Normal with mean
� = np and variance �2 = np(1 − p) . This is:

A standardization of the later Normal distribution results
in a new random variable Z also distributed Normal defined
by:

The above random variable Z, measured by Xi∕ni associ-
ated with the previously defined Binomial distribution, is
then distributed Normal with mean value p and variance
p(1 − p) . As mean value of a collection of k random samples
Z̄ is known to be

it is necessary that the summation term in Eq. 10 satisfies:

From Eq. 11, given that

it follows consequently that

Hence, for a random sample of measurements of the prob-
ability of success, pi = Xi∕ni , of the Binomial distribution
done by arbitrary samples over the distribution, it is guar-
anteed that its mean value, p̄ , represents an estimator of the
unknown probability of success, p [43].

2.2.4 Convergence

As it is known that the sample mean, p̄ , in general will not
coincide with the random distribution mean, p, it is a com-
mon practice to evaluate the accuracy of the results from MC
simulations based on the distribution of the independently
computed sample mean. Therefore, rather than computing

(9)𝜆
�
X̄
�
=

k∑
i=1

1

k
𝜇i = n

�
𝜇

n

�
= 𝜇.�k → ∞ .

(10)X = N
(
�, �2

)
= N(np, np(1 − p)).

(11)Z =
Xi−nip

nip(1−p)
=

Xi

ni
−p

p(1−p)
.

(12)E
�
Z̄
�
= 𝜇(z) =

1

k

k∑
i

Zi = 0�k → ∞,

(13)1

k

k∑
i=1

�
Xi

ni
− p

�
= 0�k → ∞.

(14)1

k

k∑
i=1

p =
1

k
(kp) = p, �k → ∞ ,

(15)p =
1

k

k∑
i=1

Xi

ni
=

1

k

k∑
i=1

pi = p̄�k → ∞.

the exact value of the distribution, p, a confidence inter-
val is established to limit the error on the estimator of the
mean, p̄ [44, 45]. For normally distributed variables with
unknown standard deviation and small sample sizes, n, it
is well known that a confident interval for the mean, with a
confidence level of (1 − �) , can be established based on the
estimator of both the mean, p̄n , and the standard deviation,
Sn , or rather the standard error, Sn∕

√
n , by:

where tn−1 is the Student’s distribution of (n − 1) degrees of
freedom. Furthermore, when the sample size is large enough
(e.g., n ≥ 30), the Student’s distribution can be approxi-
mated by the Standard’s Normal distribution (Z). Hence,
Eq. 16 can be restated as:

When the standard normal percentile Z(1 − �∕2) = 3 ,
Eq. 17 takes the form of the well-known three-sigma rule,
which established a confidence interval with a confidence
level of 99.97%. Hence, for any sample size, an uncertainty
level, ε, can be established, although its confidence level will
increase as the sample size increases. With this, a stopping
rule for the sampling algorithm can be established based on
the sample size and its standard deviation as:

where the parameter a is the number of standard deviations
allowed in the uncertainty and the corresponding confident
level is related to the confidence level of either the student
or the standard normal distribution percentile as:

In this article, the three-sigma rule and a minimum sam-
ple size of 4 MC experiments have been adopted for the
stopping rule of the MC simulations, which establishes a
minimum confidence level of 94%. This is:

2.2.5 Performance

For each MC experiment, N calls to the membership oracle
are needed. In addition, each call to the oracle is resolved in

(16)
Pr

�
p̄n − tn−1

�
1 −

𝛼

2

�
Sn√
n
≤ p ≤ p̄n + tn−1

�
1 −

𝛼

2

�
Sn√
n

�
= 1 − 𝛼,

(17)

Pr
�
p̄ − Z

�
1 −

𝛼

2

�
Sn√
n
≤ p ≤ p̄ + Z

�
1 −

𝛼

2

�
Sn√
n

�
= 1 − 𝛼.

(18)a
Sn√
n
≤ � ⇒

Sn√
n
≤

�

a
,

(19)a =

⎧
⎪⎨⎪⎩

tn−1

�
1 −

𝛼

2

�
n < 30

Z
�
1 −

𝛼

2

�
n ≥ 30.

(20)Pr
�
p̄n − 3

Sn√
n
≤ p ≤ p̄n + 3

Sn√
n

�
≥ 0.939�n ≥ 4.

957Engineering with Computers (2021) 37:951–973

1 3

a maximum of m independent operations, given by the evalu-
ation of the distance between the random sample point and
the center of the pores contained in all the neighbor cells,
defined by the linked lists; this means that, in the worst-case
scenario, the membership oracle will evaluate the pores con-
tained in a maximum of 27 cells (i.e., the central cell and all
the adjacent cells that shares one face or vertex with it) as
every other pore is discarded since they are too far from the
point so that it is possible for it to be inside them. With this,
if each independent operation made by the oracle is consid-
ered equal to one FLOP, it is expected for the algorithm to
perform a complete experiment in a total amount of FLOP
with an upper bound given by:

Hence, the total FLOPs required to perform an arbitrary
MC experiment for any given geometry are determined by
the number of pores contained in the geometry and the num-
ber of calls made to the oracle. If an iterative process is
considered, where a total of k MC independent experiments
are performed, the total FLOP is determined by the sum-
mation of the times required to execute each individual MC
experiment. Assuming a process where each MC experiment
is preformed using N calls to the oracle, it is expected for
the algorithm to require a total number of computing opera-
tions of:

From Eq. 22, the implemented algorithm is expected to
exhibit a time performance linear with both the number of
pores, given by the expected number of pores, m, contained
in the neighboring cell space and the base number of calls to
the oracle, N. In this work, the implemented algorithm con-
siders a constant sampling size, similar to the test procedure
presented by Liu et al. [36], although an LHS strategy was
adopted to improve sampling efficiency. A total of 50 strata
per dimension, which translates to a sample size of 125 thou-
sand points per MC experiment, were used. Using the LHS

(21)FLOPN
total

= N ⋅ m.

(22)FLOPtotal = k ⋅ N ⋅ m.

strategy and linked lists to identify neighboring pores, it is
expected to achieve faster convergence than uniform random
sampling as generated samples are non-collapsing in space
and linked lists allow to dismiss verification of very distant
pores and, therefore, unnecessarily to check.

2.3 Implementation

An algorithm to compute porosity percentage based on the
DMCS introduced in the previous section was implemented.
A complete version of the Python code can be found in
“Appendix A”. For the execution of the code, the usage of
Python libraries numpy for scientific computing and numba,
through its jit decorator, for computational optimization,
along with the built-in modules math, random, and sys for
file handling and arithmetic operations was required. When
a geometry is under analysis, independent MC experiments
are performed using a given number of samples size, N, from
which the success probability, pi , is estimated. MC experi-
ments are performed until the standard error, Sn∕

√
n , of the

estimated success probability, p̄ , given by the samples mean,
reaches a prescribed error, �∕3.

2.3.1 Function for retrieving geometry information
contained in FEA preprocessor script

The first step in the code execution consists in gathering the
information regarding the geometry under analysis which
is retrieved from the corresponding input JavaScript scripts
for ANSYS preprocessor. This is achieved by the sequential
reading of the script file, from which general dimensions
of the geometry (i.e., diameter, D, and height, H, for cylin-
ders and the side, A, for cubes) as well as the complete lists
for the pores (i.e., center position in directions x, y, z and
radii). Once all the relevant information is retrieved, the file
is closed and dismissed.

958 Engineering with Computers (2021) 37:951–973

1 3

1. def retrieve_file_info(inp_file):
2. # File is read line by line
3. with open(inp_file) as ifile:
4. n_void = 0
5. radii, x, y, z = [], [], [], []
6. for line in ifile:
7. if 'var H=' in line: # Cylinder he

ight
8. l_H = float(line.strip("var H=").strip(";\n"))
9. if 'var D=' in line: # Cylinder di

ameter
10. l_D = float(line.strip("var D=").strip(";\n"))
11. if 'var A=' in line: # Cube edge s

ize
12. l_A = float(line.strip("var A=").strip(";\n"))
13. if ('radio=0;' not in line and 'radio=' in line): # Sphere radi

us
14. n_void += 1
15. radii.append(float(line.strip("radio=").strip("; \n")))
16. if ('posicionx=0;' not in line and "posicionx=" in line): # Sphere cent

er X-coordinate
17. x.append(float(line.strip("posicionx=").strip("; \n")))
18. if ('posiciony=0;' not in line and "posiciony=" in line): # Sphere cent

er Y-coordinate
19. y.append(float(line.strip("posiciony=").strip("; \n")))
20. if ('posicionz=0;' not in line and "posicionz=" in line): # Sphere cent

er Z-coordinate
21. z.append(float(line.strip("posicionz=").strip("; \n")))
22. ifile.close()
23. # Checks retrieved type of geometry and sets zero the unused variables
24. if not 'l_A' in locals(): # Checks if i

s not a Cube
25. l_A = 0
26. elif not ('l_D' in locals() and 'l_H' in locals()): # Checks if i

s not a Cylinder
27. l_H, l_D = 0, 0
28. else: # Acts if doe

s not detect neither a cube nor a cylinder
29. l_A , l_D, l_H = 0, 0, 0
30. print('Error retrieving file info. Not a Cylinder nor a Cube was found.')
31. sys.exit(2)
32. return l_H,l_D,l_A,np.asarray(x),np.asarray(y),np.asarray(z),np.asarray(radii),n_

void

2.3.2 Function to build the linked lists

The process of building the linked lists was capsuled in a
function called build_lists. This function takes as input the
information of the pores (i.e., pores’ center and radii) and
returns as output the linked lists head and list and two arrays
containing the values of the corresponding grid lengths and
the point from which the grid is deployed, respectively. First,
temporal arrays are built to capture the extreme most coordi-
nates that the spheres will have in the n-dimensional space
(three-dimensional for this application). This is achieved
by adding and subtracting the corresponding radii to each
sphere center and selecting the minimum and maximum val-
ues (lines 3, 4, and 5). Then, the corresponding number of
cells in each dimension is defined (line 8) by dividing the

difference between the two extreme values by the biggest
sphere diameter (line 6), and by the math.ceil() function, the
closest upper integer is selected. With this, it is clear that no
pore residing more than one cell away can be considered for
evaluation, later by the membership oracle, as it will be away
from the random point by, at least, two times the maximum
radius. Later, the corresponding grid lengths are computed
by dividing the corresponding dimensional span by the
recently defined number of cells (line 9). Finally, for each
sphere in the array, its corresponding cell value is computed
and stored in the linked lists by filling the corresponding cell
with its index in the head list and pushing the already stored
information into the list list under the corresponding index.

959Engineering with Computers (2021) 37:951–973

1 3

1. def build_lists(x_vec, y_vec, z_vec, r_vec):
2. # Temp Lists
3. x_ext = [np.amin(x_vec - r_vec), np.amax(x_vec + r_vec)]
4. y_ext = [np.amin(y_vec - r_vec), np.amax(y_vec + r_vec)]
5. z_ext = [np.amin(y_vec - r_vec), np.amax(z_vec + r_vec)]
6. r_max = max(r_vec)
7. # Cells definition
8. C = [math.ceil((x_ext[1] - x_ext[0])/(2*r_max)), math.ceil((y_ext[1] - y_ext[0])/

(2*r_max)), math.ceil((z_ext[1] - z_ext[0])/(2*r_max))]
9. diff = [(x_ext[1] - x_ext[0])/C[0], (y_ext[1] - y_ext[0])/C[1], (z_ext[1] - z_ext

[0])/C[2]]
10. # Arrays Allocation
11. list = np.zeros(len(r_vec))
12. head = np.zeros((C[0],C[1],C[2]))
13. # Lists Filling
14. for i in range(len(r_vec)):
15. CELL = [math.floor((x_vec[i]-x_ext[0])/diff[0]), math.floor((y_vec[i]-

y_ext[0])/diff[1]), math.floor((z_vec[i]-z_ext[0])/diff[2])]
16. list[i] = int(head[CELL[0],CELL[1],CELL[2]])
17. head[CELL[0],CELL[1],CELL[2]] = int(i+1)
18. return head, list, diff, [x_ext[0], y_ext[0], z_ext[0]]

2.3.3 Function for the execution of independent MC
experiments

Once all the information that defines the geometry to be
analyzed is retrieved, an iterative cycle is generated to per-
form each MC experiment. For this purpose, the process was
encapsulated as a function, monte_carlo_exp. Each inde-
pendent simulation consists in a single uniform random sam-
pling of each domain strata; therefore, a total of N = �3

i=1
ni

random points are generated throughout the entire domain,
in a non-collapsing way. Each random 3D point is defined
as a vector in Cartesian coordinates (i.e., dart[i]) and then
is parsed to the membership oracle to resolve whether it
corresponds to a ‘hit’ or a ‘miss’. As for the cylinder-based

geometries, cylindrical coordinates are used to stratify the
domain; each generated random point (temp) must be trans-
formed to its corresponding Cartesian coordinates (dart)
prior to submission to the membership oracle. These random
points correspond to those defined in Eq. 8, where each stra-
tum is defined in Eq. 6 for cube-based and in Eq. 7 cylinder-
based geometries.

Once the N random points are evaluated, the quotient of
the summation of hits over every dimension and the total
generated points is returned to the main program as the com-
puted success probability of the experiment, pi, according
to Eq. 15.

1. def monte_carlo_exp(H, D, A, x_vec, y_vec, z_vec, r_vec, seeds):
2. # Allocates list for sampling results
3. sampling_list = np.zeros([nx,ny,nz])
4. for k in range(nz):
5. for j in range(ny):
6. for i in range(nx):
7. # Takes a smple from the [i,j,k] stratum
8. if A!=0: # CUBE
9. dart = [random.uniform(dx*(i),dx*(i+1)), random.uniform(dy*(j),dy

(j+1)), random.uniform(dz(k),dz*(k+1))]
10. if (D != 0 and H != 0): # CYLINDER
11. tmp = [random.uniform(dr*math.sqrt(i),dr*math.sqrt(i+1)), random.

uniform(dt*(j),dt*(j+1)), random.uniform(dz*(k),dz*(k+1))]
12. dart = [tmp[0]*np.cos(tmp[1]), tmp[0]*np.sin(tmp[1]), tmp[2]]
13. # Evaluates the sampling point
14. sampling_list[i,j,k] = member_oracle(np.asarray(dart), head, list, np

.asarray([x_vec, y_vec, z_vec]), r_vec, vecDelta, vecMin)
15. # # Computes expected value E[x]
16. hits_num = sum(sum(sum(sampling_list)))
17. # Returns the computed probability p(x,n) = E[x]/n
18. return float(hits_num/seeds)

960 Engineering with Computers (2021) 37:951–973

1 3

Results in this article were obtained by stratifying the
three-dimensional space in 50 strata per spatial dimension,
giving a sample size of 125 thousand points for each MC
experiment.

2.3.4 Function for the evaluation of membership oracle
calls

When any random sampling point, defined by its coordinates
(i.e., vecP[i]), is parsed to the membership oracle to be eval-
uated, the function member_oracle was generated to answer
based on the information given a priori regarding the list of
voids, defined by the center positions, vecPores, and its radii,

vecRadii. This function identifies the corresponding grid cell
associated with the coordinates of the random point, and
then, it iterates looking for the surrounding cells checking if
any of the spheres that lies in the neighborhood of the corre-
sponding cell will satisfy the ‘hit’ condition, using the linked
lists. This ‘hit’ condition, as stated in Eq. 2, means that if the
distance from the point to the center of a sphere is less than
its radius, then the point lays inside the sphere, returning a
1 as a result, hence ‘hit’, stopping the iteration. In the case
of after checking all the relevant cells, no ‘hit’ is found, the
function returns a 0, hence ‘miss’. The numba decorator jit
for Just-In-Time compilation is used to speed up the code.

Fig. 4 Computed percentage porosity and standard error versus num-
ber of generated random points for a cube-based geometry of size
6.75 [mm] with 4000 pores (CUBE_4000_1) using 125,000 random
points per iteration

1. @numba.jit
2. def member_oracle(vecP, head, list, vecPores, vecRadii, vecDelta, vecMin):
3. # Initiates variable assuming no hit
4. Cell = np.zeros(3)
5. # Defines Central Cell
6. Cell = [math.floor((vecP[i]-vecMin[i])/vecDelta[i]) for i in range(3)]
7. # Evaluates arround the central cell
8. for cell_x in [int(Cell[0]), int(Cell[0]-1), int(Cell[0]+1)]:
9. for cell_y in [int(Cell[1]), int(Cell[1]-1), int(Cell[1]+1)]:
10. for cell_z in [int(Cell[2]), int(Cell[2]-1), int(Cell[2]+1)]:
11. test = int(head[cell_x, cell_y, cell_z])
12. while test != 0:
13. #Evaluate Distance to the Pore
14. if (vecP[0]-vecPores[0,test-1])**2 + (vecP[1]-vecPores[1,test-

1])**2 + (vecP[2]-vecPores[2,test-1])**2 <= vecRadii[test-1]**2:
15. return 1
16. #Update Test Pore
17. test = int(list[test-1])
18. return 0

2.3.5 Main program

To run the previously showed functions, a short main pro-
gram is coded at the end of the Python script file, where
the geometry information (i.e., filename with its extension)
is provided as system argument and a few computation
parameters (i.e., LHS grid size, uncertainty tolerance, and
minimum MC iterations) are defined in lines 2 through 4.
After that, the function retrieve_file_info is called in line 17
and all the information regarding the geometry is gathered
according to the already explained structure. Subsequently,
in lines 19 and 20, the corresponding domain strata are
defined based on the retrieved type of geometry. Then, in
line 23, the build_lists function is called to generate all the
required data to speed up the membership oracle response.
With this, from line 26 through 31, an iterative procedure is
defined to perform subsequent MC experiments by calling
the monte_carlo_exp function, which is only exit when both
conditions (i.e., minimum number of MC experiments and
standard error threshold) are achieved. Finally, in lines 34
and 35, relevant results such as the required number of MC
experiments (or iterations) and computed (average) percent-
age porosity are printed in screen.

961Engineering with Computers (2021) 37:951–973

1 3

1. # Input Parameters
2. n_grid = 50 # LHS Grid size per dimension
3. c_int = 5.0*10**(-4) # Confidence Interval Size
4. min_iter = 4 # Minimum MC iterations
5. # Variables
6. inppath = sys.path[0]+"/" # Work Path
7. c_iter = 1 # Iterations Counter
8. usum = 0 # Sum of computed porosities
9. sum2 = 0 # Sum of the square of computed porosities
10. stderr = 1 # Std Error of computed porosities
11. [nx, ny, nz] = [n_grid]*3 # Latin Hypercube Sampling Grid Size
12. ni = n_grid**3 # Monte Carlo Sampling Size (1x each stratum)
13. try:
14. file = sys.argv[1]
15. print("File: "+file)
16. # Retrieve File Information
17. H,D,A,Xvec,Yvec,Zvec,Rvec,n_sph = retrieve_file_info(inppath + file)
18. # Definition of Strata Sizes
19. if A != 0: [dx, dy, dz] = [A/n_grid]*3

Strata sizes for CUBE
20. if D !=0 and H != 0: [dr, dt, dz] = [D/(2*math.sqrt(n_grid)), (2*np.pi)/n_grid, H

/n_grid] # Strata sizes for CYLINDER
21. # Linked Lists Building
22. print('Building Neighbour Lists')
23. head, list, vecDelta, vecMin = build_lists(Xvec, Yvec, Zvec, Rvec)
24. # MC Independent Simulations
25. print("Computing Volume Using "+str(ni)+" MC Points.")
26. while stderr >= c_int/3 or c_iter <= min_iter:
27. inst_porosity = monte_carlo_exp(H,D,A,Xvec,Yvec,Zvec,Rvec,ni)
28. [usum, sum2] = [usum+inst_porosity, sum2+inst_porosity**2]
29. [mean_val, std_dev] = [usum/c_iter, math.sqrt((sum2-

(usum**2/c_iter))/c_iter)] # Mean Value and Std Deviation of Porosity
30. stderr = std_dev/math.sqrt(c_iter)

Standard Error for current iteration
31. c_iter += 1
32. print("Porosity Computation: DONE")
33. # Prints results in screen
34. print('Iterations needed: '+str(c_iter-1))
35. print("Computed percentage porosity: "+str(round(mean_val*100,2))+"%")
36. except:
37. print("Error: Unexpected Exit")
38. sys.exit(2)

3 Results

Algorithm implementations proposed in previous works are
focus in using the MC method for the computation of vol-
ume in n-dimensional convex polytopes [35, 36]. Algorithms
such as the one presented by Liu et al. [36], which is based
on a Markov chain method, or the one presented by Emeris
and Fisikopoulos [37], based on a ‘hit-and-run’ random
walk method are simple and efficient but limited to convex
geometries. On the other hand, regarding non-convex sets,
algorithms such the one presented by Cazals et al. [41] and
Till et al. [14] give solutions, based on decomposition and
the uniformly random sample MC simulations, respectively,
to a union of spheres.

In this work, a membership oracle approach has been
followed to implement a simple yet efficient algorithm to
estimate the actual percentage porosity of three-dimensional
non-convex geometries, represented by the intersection
of the exterior of a union of spheres and the interior of a
bounding volume. This algorithm has been particularized

for the case of porous three-dimensional cubic-based and
cylinder-based geometries. Percentage porosity, for different
instances containing a wide range of number of pores, has
been computed using a confidence interval stopping pro-
cedure and results have been compared with the reference
value obtained by importing the corresponding geometries
into ANSYS v18 Design Modeler module to quantify its
accuracy. Both computed percentage porosity and runtime
have been compared with available program McVol, an MC-
based software for protein volume computation developed
by Till et al. [14], as a benchmark.

A data set with a total of 40 geometries was used. The
data set is composed by 20 cube-based and 20 cylinder-based
geometries, all generated using DEM software LIGGGHTS.
A total of eight subsets generated by running DEM simula-
tion using 100, 500, 1000, 2000, and 4000 elements, con-
tained in two basic geometry types (i.e., cube and cylinder),
were used. For each subset, 200 unique distributions of pores
per number of elements used per basic geometry type were
generated, from which 200 distinct geometries were then

962 Engineering with Computers (2021) 37:951–973

1 3

created. Later, four geometries were randomly selected for
each subset, to obtain a workable size data set. Each geom-
etry was individually identified based on the basic geometry
type, the total number of spherical pores, and a correlative
(e.g. CUBE_100_1, CYL_2000_3). Results using the pro-
posed method were obtained using an LHS grid of 50 strata
per dimension, representing a sample size of 125 thousand
random points per iteration and an uncertainty of 0.5% was
established as convergence criteria, under the three-sigma
rule.

For each geometry in the data set, a total of 20 independ-
ent analysis were run using both the proposed method and
McVol and loaded into ANSYS v18 Design Modeler module
to retrieve the reference value of percentage porosity. To use
McVol, all 40 geometries of the data set were transformed
to the corresponding input file .pqr and scaled, so the maxi-
mum pore radius did not exceed 5 [Å], as required by the Till

et al. All other setup parameters for McVol were reused from
the example case provided in the documentation. For each
analysis, both percentage porosity and runtime ware regis-
tered and results between the proposed method and McVol
were compared. Runtimes were measured using the standard
C function time().

To establish the convergence character of the proposed
implementation, the instantaneous percentage porosity
and the standard error were registered for each iteration
of the MC experiment. In Fig. 4, results from the analy-
sis of the cube-based geometry containing 4000 pores,
CUBE_4000_1, are shown, where samples of 125,000
random points per iteration were used. As it can be seen,
as the number of random points increases, the correspond-
ing mean percentage porosity stabilizes, while the standard
error decreases asymptotically. This behavior is expected

Fig. 5 Average runtime to compute the percentage porosity for geometries containing different number of pores using DMCS (this work) and
McVol [14] after 20 independent runs for a cube-based geometries and b cylinder-based geometries

Fig. 6 Average MC iterations needed to achieve convergence of
0.5% uncertainty in standard error versus number of pores of cube-
based size 6.75 mm and cylinder-based diameter 6.75 mm and height
5.4 mm foam geometries

Table 1 Average runtime of analysis of 4 different geometries after
20 independent runs using the proposed method and McVol for cube-
based size 6.75 mm and cylinder-based diameter 6.75 mm and height
5.4 mm geometries containing pores of 350–450 µm in diameter

Subset This work McVol

Avg [s] Std Dev [s] Avg [s] Std Dev [s]

CUBE_100 9.1 0.1 12.3 0.1
CUBE_500 10.7 0.1 42.7 0.1
CUBE_1000 17.3 0.1 76.1 0.1
CUBE_2000 31.3 0.1 121.9 0.1
CUBE_4000 54.5 0.6 119.2 12.7
CYL_100 12.8 3.7 10.7 5.2
CYL_500 21.2 2.3 41.1 5.2
CYL_1000 37.8 2.7 65.4 5.1
CYL_2000 69.0 4.4 78.4 10.2
CYL_4000 102.3 8.9 70.5 10.3

963Engineering with Computers (2021) 37:951–973

1 3

and predicted in Eq. 18, as the standard error normalized the
standard deviation of the measured values by the square root
of the number of measurements. Also, as the standard error
decreases, the stabilizing behavior of the mean percentage
porosity tends to the expected value of the corresponding
distribution, and the uncertainty of the confidence interval
decreases for a constant confidence level (see Eq. 17).

Regarding runtime requirements, the currently available
method to compute the percentage porosity in this type of
geometries is to import the geometry into the FEA preproc-
essor. This process is expensive, especially when geometries
contain a large number of pores, as it can be seen in Fig. 2.
As an alternative, the DMCS poses a much faster way to
estimate the percentage porosity. In Fig. 5, the average runt-
ime for the proposed implementation, for each subset, is
provided and compared to that obtained by analyzing the
same geometries using McVol. The average runtime was
measured for all four geometries in each subset after 20 inde-
pendent runs.

For the average case, based on the analyzed subsets,
the runtime of the proposed algorithm scales linear with
respect to the number of contained pores (R2 = 0.995 and
R2 = 0.978). In the case of cube-based geometries, Fig. 5a
shows that for all the analyzed range, the proposed algo-
rithm is consistently faster than McVol, although, for cyl-
inder-based geometries, in Fig. 5b, results for the proposed
implementation show to be faster for geometries containing
2000 pores or less. As suspected, when comparing the aver-
age runtime of the proposed implementation for both cube-
based and cylinder-based geometries, cube-based geometries
exhibit faster average runtimes, of nearly half, than its cylin-
drical counterparts. Either way, for the analyzed range, the
proposed method showed an average convergence time of
order O(n) , where n is the number of contained pores.

The difference in runtime between cube-based and cyl-
inder-based geometries is believed to be based on two main
factors: (a) the fact that cylinder-based geometries require
on average more iterations to achieve convergence and (b)
each iteration is slower than for cube-based geometries as
the equiprobable space is more complex and a transforma-
tion from cylindrical to cartesian coordinates must be done
after each random point is generated, to be evaluated by the
membership oracle. Regarding required number of iterations
to achieve convergence, Fig. 6 shows the average number of
iterations needed to achieve the established convergence cri-
terion as a function of the number of pores. The average has
been measured as the average of the four geometries of each
subset. Examination of Fig. 6 shows that for any given num-
ber of pores, the number of iterations needed to achieve con-
vergence is consistently higher for cylinder-based geometries
than for the cube-based ones. Measurement of the cumu-
lative time required to execute the corresponding lines to
generate the 125 thousand random points per iteration have

shown a consistent average time of 2.4 µs per point for the
cube-based geometries versus 7.84 µs per point for cylinder-
based geometries, which, in addition to the larger number of
iteration needed, are supporting evidence of both assump-
tions. More details regarding average and standard deviation
in runtime for the proposed method and McVol can be seen
in Table 1. Alternatively, this difference in behavior may be
influenced by a dependence of the runtime with respect to
the percentage porosity, although this relation has not been
addressed at this point.

The main objective of the propose method is to estimate
the percentage porosity of non-convex sets, and the tested
implementation is oriented toward foam geometries, repre-
sented by the intersection between the exterior of a union of
spheres and the interior of a surrounding primitive geom-
etry such as a cube or a cylinder. The computed percentage
porosity obtained by the proposed method, and by McVol,
was compared by measuring the absolute error respect to
the reference value, which is obtained by loading the cor-
responding geometries into ANSYS v18 Design Modeler
module and retrieving the solid volume from there. Figure 7
shows the results for the cube-based subsets, while Fig. 8
shows the results obtained for the cylinder-based subsets.

More detailed information regarding the minimum, maxi-
mum, and average computed percentage porosity, as well as
the absolute error, for each of the geometries contained in
the data set is provided in Table 2 of “Appendix B”. Also, in
“Appendix C”, Table 3 provides a more detailed information
regarding the minimum, maximum, and average runtime for
each of the tested geometries using both the proposed imple-
mentation and McVol.

Examination of Figs. 7 and 8 shows that although the pro-
posed method tends to produce less precise results; in gen-
eral, these results are more accurate than those produced by
McVol. This difference is based on a key aspect that differ-
entiates the proposed method form it, which is the introduc-
tion of the exterior bound. While McVol defines a bounding
box, which encloses the complete union of spheres, in our
method, the domain is bounded by the exterior primitive vol-
ume and allows the spheres to intersect this boundary. Fur-
ther examination of Fig. 7 shows that the computed results
using the proposed method are bounded by 0.35%, which
is lower than the 0.5% percent limit established a priori for
the uncertainty. On the other hand, detailed examination of
Fig. 8 shows that the absolute error distribution for cylinder-
based subsets was less predictable than for cube-based ones.
Figure 8d shows the widest distribution of error obtained in
computing the percentage porosity of cylinder containing
2000 pores, as high as 1%, while Fig. 8a–c, e shows an excel-
lent prediction capability for all the other cases, less than
0.2% in all cases which is, again, less than the prescribed
0.5% uncertainty.

964 Engineering with Computers (2021) 37:951–973

1 3

Fig. 7 Comparison of absolute error in percentage porosity computation of cube-based geometries of size 6.5 mm by the proposed method and
McVol [14] for geometries containing a 100, b 500, c 1000, d 2000, and e 4000 distributed pores

965Engineering with Computers (2021) 37:951–973

1 3

Fig. 8 Comparison of absolute error in percentage porosity computation of cylinder-based geometries of diameter 6.75 mm and height 5.4 mm
by the proposed method and McVol [14] for geometries containing a 100, b 500, c 1000, d 2000, and e 4000 distributed pores

966 Engineering with Computers (2021) 37:951–973

1 3

Measurements of the difference between the computed
percentage porosity and its reference value for geometries
containing a larger number of pores (i.e., greater than 4000
pores) could not be considered for this work due to the
excessive time required to import each geometry into the
FEA preprocessor, though similar results are expected. On
the other hand, the proposed implementation considers just
the use of a single-thread algorithm and, due to the poten-
tial for parallelization of the independent MC experiments,
further optimizations can be done to achieve better time per-
formance. It is known by the authors that Python libraries
such as Joblib and Numba provide fast and easy alternatives
for that matter.

4 Conclusions

A single-thread algorithm for DMCS, partially based on
the one presented by Liu et al. [36], has been implemented
in the Python language to estimate percentage porosity in
cylindrical and cubical geometries containing interconnected
spherical voids analytically defined with spatial distribution
obtained by DEM simulation and uniformly random radii,
as those required by Perez et al. [10] in the study metallic
foams fabricated by means of PM and the SHP technique.
The complete Python script was developed using less than
120 code lines, when comment lines are not counted, and
only the Python libraries numpy and numba, along with the
three build-in modules math, random, and sys have been
used.

The proposed implementation showed a significant gain
in performance time for the task with respect to the currently
used technique, which requires the execution of the complete
sequence of CAD extrusion and cut operations by the FEA
preprocessor. The time consumption to compute the percent-
age porosity showed a reduction between 84 and 99% when
geometries containing between 100 and 4000 spherical pores
were analyzed.

When compared to other similar software, the proposed
implementation has shown to be able to achieve consist-
ently smaller errors in approximating the percentage poros-
ity of foam geometries than McVol. These better results
are believed to be related to a better suited definition of
the domain restrictions of the set. While McVol relies on

defining a bounding box that contains the whole union of
spheres, the proposed implementation gives a more precise
restriction of the outer boundary of the domain, whether it is
a box (i.e., a cube) or a cylinder. Although, when cylinders
are considered for analysis, a trade-off must be done, and
sometimes, performances are loss in exchange for precision.
In addition, the proposed implementation relies on a statis-
tical criterion to stop computations, rather than a unique
measure or an arbitrary samples size.

The DMCS has been showed to provide a simple yet
powerful tool in estimating the porosity percentage in 3D
non-convex analytical geometries, as the accuracy in the
computed results provides an estimation error below the pre-
scribed uncertainty, with respect to the percentage porosity
obtained by the generation of the geometries by the FEA
preprocessor, in seven of the eight subsets of the tested data
set. This estimation error represents a neglectable difference
for the primary purpose for which the algorithm has been
developed.

In addition to this implementation, future work related to
this algorithm includes further performance improvements
by means of parallel computing and its extension to more
general geometries such as polyhedrons and other volumes.

Appendix A

In this appendix, the complete Python code script is pre-
sented. This code runs in single core configuration allow-
ing to estimate the porosity of cylindrical- or cubic-shaped
foam geometries containing randomly distributed spherical
pores when a complete analytical description of it (i.e. over-
all dimensions and pores location and dimension) is given
in a JavaScript script file. The code uses Eq. 15 to average
the results obtained by a series of Monte Carlo simulations,
based on an LHS strategy, according Eqs. 5, 6, 7, and 8. The
code will iterate until two established criteria are met, which
are a minimum number of iteration and a maximum standard
error, according to Eq. 18. This code requires the user to
provide the filename with its extension as system argument
(e.g., Cube_100_1.js). The path to the file is assumed to be
the current work directory

967Engineering with Computers (2021) 37:951–973

1 3

1. import numpy as np
2. import numba
3. import random
4. import math
5. import sys
6. ######################
7. # FUNCTIONS
8. ######################
9. def retrieve_file_info(inp_file):
10. # File is read line by line
11. with open(inp_file) as ifile:
12. n_void = 0
13. radii, x, y, z = [], [], [], []
14. for line in ifile:
15. if 'var H=' in line: # Cylinder he

ight
16. l_H = float(line.strip("var H=").strip(";\n"))
17. if 'var D=' in line: # Cylinder di

ameter
18. l_D = float(line.strip("var D=").strip(";\n"))
19. if 'var A=' in line: # Cube edge s

ize
20. l_A = float(line.strip("var A=").strip(";\n"))
21. if ('radio=0;' not in line and 'radio=' in line): # Sphere radi

us
22. n_void += 1
23. radii.append(float(line.strip("radio=").strip("; \n")))
24. if ('posicionx=0;' not in line and "posicionx=" in line): # Sphere cent

er X-coordinate
25. x.append(float(line.strip("posicionx=").strip("; \n")))
26. if ('posiciony=0;' not in line and "posiciony=" in line): # Sphere cent

er Y-coordinate
27. y.append(float(line.strip("posiciony=").strip("; \n")))
28. if ('posicionz=0;' not in line and "posicionz=" in line): # Sphere cent

er Z-coordinate
29. z.append(float(line.strip("posicionz=").strip("; \n")))
30. ifile.close()
31. # Checks retrieved type of geometry and sets zero the unused variables
32. if not 'l_A' in locals(): # Checks if i

s not a Cube
33. l_A = 0
34. elif not ('l_D' in locals() and 'l_H' in locals()): # Checks if i

s not a Cylinder

968 Engineering with Computers (2021) 37:951–973

1 3

35. l_H, l_D = 0, 0
36. else: # Acts if doe

s not detect neither a cube nor a cylinder
37. l_A , l_D, l_H = 0, 0, 0
38. print('Error retrieving file info. Not a Cylinder nor a Cube was found.')

39. sys.exit(2)
40. return l_H,l_D,l_A,np.asarray(x),np.asarray(y),np.asarray(z),np.asarray(radii),n_

void
41. #
42. def monte_carlo_exp(H, D, A, x_vec, y_vec, z_vec, r_vec, seeds):
43. # Allocates list for sampling results
44. sampling_list = np.zeros([nx,ny,nz])
45. for k in range(nz):
46. for j in range(ny):
47. for i in range(nx):
48. # Takes a smple from the [i,j,k] stratum
49. if A!=0: # CUBE
50. dart = [random.uniform(dx*(i),dx*(i+1)), random.uniform(dy*(j),dy

(j+1)), random.uniform(dz(k),dz*(k+1))]
51. if (D != 0 and H != 0): # CYLINDER
52. tmp = [random.uniform(dr*math.sqrt(i),dr*math.sqrt(i+1)), random.

uniform(dt*(j),dt*(j+1)), random.uniform(dz*(k),dz*(k+1))]
53. dart = [tmp[0]*np.cos(tmp[1]), tmp[0]*np.sin(tmp[1]), tmp[2]]
54. # Evaluates the sampling point
55. sampling_list[i,j,k] = member_oracle(np.asarray(dart), head, list, np

.asarray([x_vec, y_vec, z_vec]), r_vec, vecDelta, vecMin)
56. # # Computes expected value E[x]
57. hits_num = sum(sum(sum(sampling_list)))
58. # Returns the computed probability p(x,n) = E[x]/n
59. return float(hits_num/seeds)
60. #
61. @numba.jit
62. def member_oracle(vecP, head, list, vecPores, vecRadii, vecDelta, vecMin):
63. # Initiates variable assuming no hit
64. Cell = np.zeros(3)
65. # Defines Central Cell
66. Cell = [math.floor((vecP[i]-vecMin[i])/vecDelta[i]) for i in range(3)]
67. # Evaluates around the central cell
68. for cell_x in [int(Cell[0]), int(Cell[0]-1), int(Cell[0]+1)]:
69. for cell_y in [int(Cell[1]), int(Cell[1]-1), int(Cell[1]+1)]:
70. for cell_z in [int(Cell[2]), int(Cell[2]-1), int(Cell[2]+1)]:
71. test = int(head[cell_x, cell_y, cell_z])
72. while test != 0:
73. #Evaluate Distance to the Pore
74. if (vecP[0]-vecPores[0,test-1])**2 + (vecP[1]-vecPores[1,test-

1])**2 + (vecP[2]-vecPores[2,test-1])**2 <= vecRadii[test-1]**2:
75. return 1
76. #Update Test Pore
77. test = int(list[test-1])
78. return 0
79. #
80. def build_lists(x_vec, y_vec, z_vec, r_vec):
81. # Temp Lists
82. x_ext = [np.amin(x_vec - r_vec), np.amax(x_vec + r_vec)]
83. y_ext = [np.amin(y_vec - r_vec), np.amax(y_vec + r_vec)]
84. z_ext = [np.amin(y_vec - r_vec), np.amax(z_vec + r_vec)]
85. r_max = max(r_vec)
86. # Cells definition
87. C = [math.ceil((x_ext[1] - x_ext[0])/(2*r_max)), math.ceil((y_ext[1] - y_ext[0])/

(2*r_max)), math.ceil((z_ext[1] - z_ext[0])/(2*r_max))]

969Engineering with Computers (2021) 37:951–973

1 3

88. diff = [(x_ext[1] - x_ext[0])/C[0], (y_ext[1] - y_ext[0])/C[1], (z_ext[1] - z_ext
[0])/C[2]]

89. # Arrays Allocation
90. list = np.zeros(len(r_vec))
91. head = np.zeros((C[0],C[1],C[2]))
92. # Lists Filling
93. for i in range(len(r_vec)):
94. CELL = [math.floor((x_vec[i]-x_ext[0])/diff[0]), math.floor((y_vec[i]-

y_ext[0])/diff[1]), math.floor((z_vec[i]-z_ext[0])/diff[2])]
95. list[i] = int(head[CELL[0],CELL[1],CELL[2]])
96. head[CELL[0],CELL[1],CELL[2]] = int(i+1)
97. return head, list, diff, [x_ext[0], y_ext[0], z_ext[0]]
98. #
99. ######################
100. # MAIN PROGRAM
101. ######################
102. # Input Parameters
103. n_grid = 50 # LHS Grid size per dimension
104. c_int = 5.0*10**(-4) # Confidence Interval Size
105. min_iter = 5 # Minimum MC iterations
106. # Variables
107. inppath = sys.path[0]+"/" # Work Path
108. c_iter = 1 # Iterations Counter
109. usum = 0 # Sum of computed porosities
110. sum2 = 0 # Sum of the square of computed porosities
111. stderr = 1 # Std Error of computed porosities
112. [nx, ny, nz] = [n_grid]*3 # Latin Hypercube Sampling Grid Size
113. ni = n_grid**3 # Monte Carlo Sampling Size (1x each stratum)
114. try:
115. file = sys.argv[1]
116. print("File: "+file)
117. # Retrieve File Information
118. H,D,A,Xvec,Yvec,Zvec,Rvec,n_sph = retrieve_file_info(inppath + file)
119. # Definition of Strata Sizes
120. if A != 0: [dx, dy, dz] = [A/n_grid]*3

Strata sizes for CUBE
121. if D !=0 and H != 0: [dr, dt, dz] = [D/(2*math.sqrt(n_grid)), (2*np.pi)/n

_grid, H/n_grid] # Strata sizes for CYLINDER
122. # Linked Lists Building
123. print('Building Neighbour Lists')
124. head, list, vecDelta, vecMin = build_lists(Xvec, Yvec, Zvec, Rvec)
125. # MC Independent Simulations
126. print("Computing Volume Using "+str(ni)+" MC Points.")
127. while stderr >= c_int/3 or c_iter <= min_iter:
128. inst_porosity = monte_carlo_exp(H,D,A,Xvec,Yvec,Zvec,Rvec,ni)
129. [usum, sum2] = [usum+inst_porosity, sum2+inst_porosity**2]
130. [mean_val, std_dev] = [usum/c_iter, math.sqrt((sum2-

(usum**2/c_iter))/c_iter)] # Mean Value and Std Deviation of Porosity
131. stderr = std_dev/math.sqrt(c_iter)

Standard Error for current iteration
132. c_iter += 1
133. print("Porosity Computation: DONE")
134. # Prints results in screen
135. print('Iterations needed: '+str(c_iter-1))
136. print("Computed percentage porosity: "+str(round(mean_val*100,2))+"%")
137. except:
138. print("Error: Unexpected Exit")
139. sys.exit(2)

Appendix B

In this appendix, more detailed information regarding the
computed percentage porosity for the data set obtained by

means of the proposed algorithm and McVol after 20 inde-
pendent runs are presented in Table 2.

970 Engineering with Computers (2021) 37:951–973

1 3

Table 2 Minimum, maximum, and average percentage porosity and absolute error respect to reference value obtained from ANSYS Design
Modeler Module obtained after 20 independent runs using the proposed implementation and McVol

Geometry This work McVol

Min value (%) Max value (%) Avg value (%) Absolute error
(%)

Min value (%) Max value (%) Avg value (%) Absolute
error (%)

CUBE_100_1 1.07 1.11 1.09 0.016 1.10 1.11 1.10 0.025
CUBE_100_2 1.08 1.10 1.09 0.009 1.10 1.11 1.10 0.024
CUBE_100_3 1.08 1.11 1.09 0.049 1.10 1.11 1.10 0.060
CUBE_100_4 1.01 1.04 1.02 − 0.001 1.05 1.06 1.05 0.028
CUBE_500_1 5.19 5.53 5.25 0.062 5.32 5.34 5.33 0.135
CUBE_500_2 5.43 5.94 5.49 0.126 5.51 5.54 5.52 0.160
CUBE_500_3 5.39 5.92 5.46 0.145 5.50 5.52 5.51 0.194
CUBE_500_4 5.37 6.29 5.44 0.151 5.43 5.46 5.44 0.154
CUBE_1000_1 9.92 10.02 9.97 0.101 10.17 10.19 10.18 0.307
CUBE_1000_2 10.70 10.77 10.74 0.210 10.87 10.90 10.89 0.360
CUBE_1000_3 10.68 10.76 10.72 0.306 10.84 10.88 10.86 0.452
CUBE_1000_4 10.65 10.75 10.68 0.175 10.81 10.84 10.82 0.319
CUBE_2000_1 20.61 20.80 20.67 0.259 20.97 21.00 20.99 0.574
CUBE_2000_2 20.64 20.85 20.70 0.260 20.93 20.97 20.95 0.508
CUBE_2000_3 20.73 21.29 20.80 0.227 21.00 21.03 21.02 0.447
CUBE_2000_4 20.65 21.14 20.71 0.321 20.95 20.99 20.97 0.589
CUBE_4000_1 37.68 37.82 37.74 0.153 38.49 38.57 38.53 0.942
CUBE_4000_2 38.29 38.37 38.34 0.125 39.00 39.06 39.03 0.820
CUBE_4000_3 37.77 37.90 37.80 0.049 38.62 38.66 38.63 0.877
CUBE_4000_4 37.93 38.08 38.03 0.100 38.86 38.91 38.88 0.954
CYL_100_1 1.73 1.77 1.76 0.049 1.79 1.80 1.80 0.091
CYL_100_2 1.70 1.73 1.72 0.055 1.73 1.74 1.74 0.072
CYL_100_3 1.62 1.66 1.64 − 0.003 1.67 1.68 1.68 0.035
CYL_100_4 1.66 1.71 1.68 − 0.006 1.70 1.71 1.70 0.012
CYL_500_1 8.34 8.68 8.40 0.176 8.48 8.51 8.50 0.271
CYL_500_2 8.54 9.22 8.61 0.116 8.68 8.71 8.70 0.204
CYL_500_3 8.35 8.93 8.42 0.191 8.49 8.53 8.51 0.279
CYL_500_4 8.44 8.75 8.52 0.090 8.62 8.66 8.64 0.206
CYL_1000_1 16.14 16.24 16.19 0.087 16.47 16.51 16.49 0.391
CYL_1000_2 16.47 16.64 16.51 0.188 16.76 16.80 16.78 0.454
CYL_1000_3 16.73 16.84 16.76 0.116 16.94 16.97 16.95 0.305
CYL_1000_4 16.75 16.88 16.82 0.089 17.01 17.07 17.04 0.305
CYL_2000_1 32.00 33.02 32.47 0.528 32.53 32.60 32.57 0.627
CYL_2000_2 31.73 32.51 32.24 0.551 32.24 32.30 32.27 0.586
CYL_2000_3 32.01 32.64 32.43 0.537 32.50 32.58 32.54 0.647
CYL_2000_4 31.56 32.09 31.85 0.400 32.07 32.13 32.10 0.650
CYL_4000_1 56.93 57.07 57.01 0.067 58.29 58.34 58.32 1.379
CYL_4000_2 56.78 56.93 56.82 0.029 58.12 58.17 58.15 1.354
CYL_4000_3 56.76 56.87 56.82 − 0.010 58.14 58.20 58.17 1.343
CYL_4000_4 56.97 57.07 57.02 0.009 58.36 58.41 58.39 1.379

971Engineering with Computers (2021) 37:951–973

1 3

Appendix C

In this appendix, more detailed information regarding
the computed runtimes for the data set for the proposed

Table 3 Minimum, maximum,
and average runtime after 20
independent runs using the
proposed implementation and
McVol

This Work Runtime

Geometry Minimum Maximum Average Minimum Maximum Average

CUBE_100_1 8.90 9.40 9.08 12.40 12.60 12.46
CUBE_100_2 8.90 9.30 9.08 12.20 12.80 12.34
CUBE_100_3 8.90 9.20 9.01 12.20 12.30 12.28
CUBE_100_4 8.90 9.80 9.09 12.10 12.50 12.23
CUBE_500_1 9.10 13.60 9.79 33.50 34.00 33.79
CUBE_500_2 9.20 21.80 11.57 45.80 46.50 46.12
CUBE_500_3 9.20 17.50 10.50 45.40 46.30 45.72
CUBE_500_4 9.20 19.70 10.83 45.00 45.60 45.29
CUBE_1000_1 9.60 22.90 13.36 57.90 59.00 58.51
CUBE_1000_2 10.10 48.60 22.43 82.90 84.10 83.45
CUBE_1000_3 9.70 33.50 18.01 80.60 83.40 82.15
CUBE_1000_4 9.70 29.50 15.59 79.50 81.30 80.13
CUBE_2000_1 10.50 62.90 33.33 120.10 121.60 120.86
CUBE_2000_2 10.60 63.00 29.98 120.50 122.50 121.25
CUBE_2000_3 10.60 55.50 32.47 120.20 124.20 121.50
CUBE_2000_4 10.60 53.00 29.51 122.70 124.80 123.81
CUBE_4000_1 12.20 95.50 52.63 118.60 122.80 120.61
CUBE_4000_2 12.30 92.70 54.18 117.80 121.50 119.51
CUBE_4000_3 12.20 96.40 59.27 115.40 119.10 117.48
CUBE_4000_4 12.20 94.60 51.94 117.80 121.80 119.34
CYL_100_1 12.30 13.10 12.62 10.30 10.60 10.39
CYL_100_2 12.20 18.50 13.07 10.80 11.10 10.94
CYL_100_3 12.10 13.30 12.63 10.90 11.10 11.03
CYL_100_4 12.70 15.40 12.76 10.40 10.90 10.56
CYL_500_1 12.50 45.80 22.14 37.60 38.50 37.92
CYL_500_2 12.80 46.30 20.73 42.00 42.50 42.21
CYL_500_3 12.80 44.50 22.91 41.70 42.70 42.12
CYL_500_4 12.70 39.80 18.96 41.90 42.50 42.12
CYL_1000_1 13.00 67.10 33.93 58.40 58.90 58.64
CYL_1000_2 13.40 73.70 36.73 67.70 70.60 68.53
CYL_1000_3 13.30 66.10 39.01 67.00 68.00 67.46
CYL_1000_4 13.10 74.90 41.36 66.60 67.50 66.99
CYL_2000_1 14.30 116.50 55.92 77.50 79.20 78.04
CYL_2000_2 14.60 123.80 78.36 78.60 79.70 78.93
CYL_2000_3 14.30 135.20 59.70 78.70 79.90 79.10
CYL_2000_4 14.50 126.40 81.97 77.20 78.20 77.55
CYL_4000_1 16.10 181.40 91.04 64.00 79.70 71.35
CYL_4000_2 15.90 158.30 95.72 63.60 75.20 65.11
CYL_4000_3 16.00 166.70 100.98 67.20 74.50 69.64
CYL_4000_4 16.00 188.70 121.47 70.50 77.40 75.76

algorithm and McVol after 20 independent runs are pre-
sented in Table 3.

972 Engineering with Computers (2021) 37:951–973

1 3

References

 1. Banhart J (2001) Manufacture, characterisation and application of
cellular metals and metal foams. Prog Mater Sci 46(6):559–632.
https ://doi.org/10.1016/S0079 -6425(00)00002 -5

 2. Ashby MF, Evans A, Fleck NA, Gibson LJ, Hutchinson JW, Wad-
ley HNG, Delale F (2001) Metal foams: a design guide. Appl
Mech Rev 54:B105. https ://doi.org/10.1016/s0261 -3069(01)00049
-8

 3. Hasan A (2010) An improved model for FE modeling and simula-
tion of closed cell Al-alloy foams. Adv Mater Sci Eng 1:12. https
://doi.org/10.1155/2010/56739 0

 4. Geers MG, Kouznetsova VG, Brekelmans WA (2010) Multi-scale
computational homogenization: trends and challenges. J Com-
put Appl Math 234(7):2175–2182. https ://doi.org/10.1016/j.
cam.2009.08.077

 5. Kanit T, Forest S, Galliet I, Mouroury V, Jeulin D (2003) Deter-
mination of the size of the representative volume element for ran-
dom composites: statistical and numerical approach. Int J Solids
Struct 40(13–14):3647–3679. https ://doi.org/10.1016/S0020
-7683(03)00143 -4

 6. Kari S, Berger H, Rodriguez-Ramos R, Gabbert U (2007) Com-
putational evaluation of effective material properties of com-
posites reinforced by randomly distributed spherical particles.
Compos Struct 77:223–231. https ://doi.org/10.1016/j.comps truct
.2005.07.003

 7. Stefanou G, Savvas D, Papadrakakis M (2017) Stochastic finite
element analysis of composite structures based on mesoscale ran-
dom fields of material properties. Comput Methods Appl Mech
Eng 326:319–337. https ://doi.org/10.1016/j.cma.2017.08.002

 8. Cadena JH, Alfonso I, Ramírez JH, Rodriguez-Iglesias V, Figueroa
IA, Aguilar C (2014) Improvement of FEA estimations for com-
pression behavior of Mg foams based on experimental observa-
tions. Comput Mater Sci 91:359–363. https ://doi.org/10.1016/j.
comma tsci.2014.04.065

 9. Pérez L, Lascano S, Aguilar C, Domancic D, Alfonso I (2015)
Simplified fractal FEA model for the estimation of the Young’s
modulus of Ti foams obtained by powder metallurgy. Mater Des
83:276–283. https ://doi.org/10.1016/j.matde s.2015.06.038

 10. Pérez L, Lascano S, Aguilar C, Estay D, Messner U, Figueroa
IA, Alfonso I (2015) DEM–FEA estimation of pores arrange-
ment effect on the compressive Young’s modulus for Mg foams.
Comput Mater Sci 110:281–286. https ://doi.org/10.1016/j.comma
tsci.2015.08.042

 11. Pérez L, Mercado R, Alfonso I (2017) Young’s modulus estima-
tion for CNT reinforced metallic foams obtained using different
space holder particles. Compos Struct 168:26–32. https ://doi.
org/10.1016/j.comps truct .2017.02.017

 12. Pérez L, Cabrera I, Santiago AA, Vargas J, Beltrán A, Alfonso I
(2018) Effect of the Al–CNT interlayer on the tensile elastic mod-
ulus of Al matrix composites with random dispersion of CNTs. J
Braz Soc Mech Sci Eng 40(11):550. https ://doi.org/10.1007/s4043
0-018-1473-1

 13. Janssen H (2013) Monte-Carlo based uncertainty analysis: sam-
pling efficiency and sampling convergence. Reliab Eng Syst Saf
109:123–132. https ://doi.org/10.1016/j.ress.2012.08.003

 14. Till MS, Ullmann GM (2009) McVol—A program for calculat-
ing protein volumes and identifying cavities by a Monte Carlo
algorithm. J Mol Model 16(3):419–429. https ://doi.org/10.1007/
s0008 94-009-0541-y

 15. Cundall P, Stack O (1979) A discrete numerical model for granular
assemblies. Geotechnique 29(1):47–65. https ://doi.org/10.1680/
geot.1979.29.1.47

 16. Torres Y, Pavón JJ, Nieto I, Rodriguez JA (2011) Conventional
powder metallurgy process and characterization of porous

titanium for biomedical applications. Metal Mater Trans B
42(4):891–900. https ://doi.org/10.1007/s1166 3-011-9521-6

 17. Jha N, Mondal DP, Majumdar JD, Badkul A, Khane AK (2013)
Highly porous open cell Ti-foam using NaCl as temporary space
holder through powder metallurgy route. Mater Des 47:810–819.
https ://doi.org/10.1016/j.matde s.2013.01.005

 18. Li K, Gao XL, Subhash G (2005) Effect of cell shape and cell wall
thickness variations on the elastic properties of two-dimensional
cellular solids. Int J Solids Struct 42(5–6):1777–1795. https ://doi.
org/10.1016/j.ijsol str.2004.08.005

 19. Nitka M, Combe G, Dascalu C, Desrues J (2011) Two-scale mod-
eling of granular materials: a DEM-FEM approach. Granular Mat-
ter 13(3):277–281. https ://doi.org/10.1007/s1003 5-011-0255-6

 20. Soro N, Brassart L, Chen Y, Veidt M, Attar H, Dargusch MS
(2018) Finite element analysis of porous commercially pure
titanium for biomedical implant application. Mater Sci Eng A
725:43–50. https ://doi.org/10.1016/j.msea.2018.04.009

 21. Schröder J, Balzani D, Brands D (2010) Approximation of random
microstructures by periodic statistically similar RVE based on
linear-path functions. Arch Appl Mech 81(7):975–997. https ://
doi.org/10.1007/s0041 9-010-0462-3

 22. Smit R, Brekelmans W, Meijer H (1998) Prediction of the mechan-
ical behavior of nonlinear heterogeneous systems by multi-level
finite element modeling. Comput Methods Appl Mech Eng 155(1–
2):181–192. https ://doi.org/10.1016/s0045 -7825(97)00139 -4

 23. Báez-Pimiento S, Hernández-Rojas M, Palomar-Pardavé M (2015)
Processing and characterization of open-cell aluminum foams
obtained through infiltration process. Proc Mater Sci 9:54–61.
https ://doi.org/10.1016/j.mspro .2015.04.007

 24. Orbulov IN (2013) Metal matrix syntactic foams produced by
pressure infiltration—the effect of infiltration parameters. Mater
Sci Eng A 583:11–19. https ://doi.org/10.1016/j.msea.2013.06.066

 25. Cleary PW (2005) A multiscale method for including fine particle
effects in DEM models of grinding mills. Miner Eng 84:88–99.
https ://doi.org/10.1016/j.minen g.2015.10.008

 26. Coetzee C (2017) Review: calibration of the discrete element
method. Powder Technol 310:104–142. https ://doi.org/10.1016/j.
powte c.2017.01.015

 27. Boemer D, Ponthot J-P (2016) DEM modeling of ball mills with
experimental validation: influence of contact parameters on charge
motion and power draw. Comput Part Mech 4(1):53–67. https ://
doi.org/10.1007/s4057 1-016-0125-4

 28. Kloss C, Goniva C, Hager A, Amberger S, Pirker S (2012) Mod-
els, algorithms and validation for opensource DEM and CFD-
DEM. Prog Comput Fluid Dyn Int J 12(2/3):140–152. https ://doi.
org/10.1504/pcfd.2012.04745 7

 29. ASTM (2018) Standard testing methods of compression testing
of metallic materials in room temperature. ASTM International.
https ://doi.org/10.1520/f0067 -13r17

 30. Dyer ME, Frieze AM (1988) On the complexity of comput-
ing the volume of a polyhedron. SIAM J Comput. https ://doi.
org/10.1137/02170 60

 31. LG Khachiyan (1988) On the complexity of computing the volume
of a polytope. Izvestia Ajad. Nauk SSSR, Engineering Cybertics.
216–217

 32. Khachiyan LG (1989) The problem of calculating the volume of a
polyhedron is enumerably hard. Russ Math Surv 44(3):199–200.
https ://doi.org/10.1070/rm198 9v044 n03ab eh002 136

 33. Chazelle BM (1981) Convex decompositions of polyhedra. In:
Proceedings of the thirteenth annual ACM symposium on Theory
of computing, Milwaukee. https ://doi.org/10.1145/80007 6.80245
9

 34. Bueler B, Enge A, Fukuda K (2000) Exact volume computation
for polytopes: a practical study. Polytopes—combinatorics and
computation. Springer Basel AG, Basel, pp 131–154

https://doi.org/10.1016/S0079-6425(00)00002-5
https://doi.org/10.1016/s0261-3069(01)00049-8
https://doi.org/10.1016/s0261-3069(01)00049-8
https://doi.org/10.1155/2010/567390
https://doi.org/10.1155/2010/567390
https://doi.org/10.1016/j.cam.2009.08.077
https://doi.org/10.1016/j.cam.2009.08.077
https://doi.org/10.1016/S0020-7683(03)00143-4
https://doi.org/10.1016/S0020-7683(03)00143-4
https://doi.org/10.1016/j.compstruct.2005.07.003
https://doi.org/10.1016/j.compstruct.2005.07.003
https://doi.org/10.1016/j.cma.2017.08.002
https://doi.org/10.1016/j.commatsci.2014.04.065
https://doi.org/10.1016/j.commatsci.2014.04.065
https://doi.org/10.1016/j.matdes.2015.06.038
https://doi.org/10.1016/j.commatsci.2015.08.042
https://doi.org/10.1016/j.commatsci.2015.08.042
https://doi.org/10.1016/j.compstruct.2017.02.017
https://doi.org/10.1016/j.compstruct.2017.02.017
https://doi.org/10.1007/s40430-018-1473-1
https://doi.org/10.1007/s40430-018-1473-1
https://doi.org/10.1016/j.ress.2012.08.003
https://doi.org/10.1007/s000894-009-0541-y
https://doi.org/10.1007/s000894-009-0541-y
https://doi.org/10.1680/geot.1979.29.1.47
https://doi.org/10.1680/geot.1979.29.1.47
https://doi.org/10.1007/s11663-011-9521-6
https://doi.org/10.1016/j.matdes.2013.01.005
https://doi.org/10.1016/j.ijsolstr.2004.08.005
https://doi.org/10.1016/j.ijsolstr.2004.08.005
https://doi.org/10.1007/s10035-011-0255-6
https://doi.org/10.1016/j.msea.2018.04.009
https://doi.org/10.1007/s00419-010-0462-3
https://doi.org/10.1007/s00419-010-0462-3
https://doi.org/10.1016/s0045-7825(97)00139-4
https://doi.org/10.1016/j.mspro.2015.04.007
https://doi.org/10.1016/j.msea.2013.06.066
https://doi.org/10.1016/j.mineng.2015.10.008
https://doi.org/10.1016/j.powtec.2017.01.015
https://doi.org/10.1016/j.powtec.2017.01.015
https://doi.org/10.1007/s40571-016-0125-4
https://doi.org/10.1007/s40571-016-0125-4
https://doi.org/10.1504/pcfd.2012.047457
https://doi.org/10.1504/pcfd.2012.047457
https://doi.org/10.1520/f0067-13r17
https://doi.org/10.1137/0217060
https://doi.org/10.1137/0217060
https://doi.org/10.1070/rm1989v044n03abeh002136
https://doi.org/10.1145/800076.802459
https://doi.org/10.1145/800076.802459

973Engineering with Computers (2021) 37:951–973

1 3

 35. Ge C, Ma F (2015) A fast and practical method to estimate vol-
umes of convex polytopes. In: International Workshop of Frontiers
in Algorithms, 2015. https ://doi.org/10.1007/978-3-319-19647
-3_6

 36. Liu S, Zhang J, Zhu B (2007) Volume computation using a
direct Monte Carlo method. Comput Comb Banff. https ://doi.
org/10.1007/978-3-540-73545 -8_21

 37. Emiris I, Fisikopoulos V (2014) Efficient random-walk methods
for approximation polytope volume. Proceedings of the thirtieth
annual symposium on Computational geometry, Kyoto. https ://
doi.org/10.1145/25821 12.25821 33

 38. Lien JM, Amato N (2007) Approximate convex decomposition
of polyhedra. In: Proceedings of the 2007 ACM symposium on
Solid and physical modeling, Beijing, China, 2007. https ://doi.
org/10.1145/12362 46.12362 65

 39. Morris C, Stark R (2015) Finite mathematics: models and applica-
tions. John Wiley & Sons, Hoboken

 40. Suadhakar Y, Wall W (2013) Quadrature schemes for arbitrary
convex/concave volumes and integration of weak form in enriched
partition of unity methods. Comput Methods Appl Mech Eng
258:39–54. https ://doi.org/10.1016/j.cma.2013.01.007

 41. Cazals F, Kanhere H, Loriot S (2011) Computing the volume of
a union of balls: a certified algorithm. ACM Trans Math Softw
38(1):1–20. https ://doi.org/10.1145/20496 62.20496 65

 42. Kaas R, Buhrman JM (1980) Mean, median and mode in
binomial distributions. Stat Neerl 34(1):13–18. https ://doi.
org/10.1111/j.1467-9574.1980.tb006 81.x

 43. Canavos GC (1984) Applied probability and statistical methods.
Little, Brown

 44. Ballio F, Guadagnini A (2004) Convergence assessment of numer-
ical Monte Carlo simulations in groundwater hydrology. Water
Resour Res. https ://doi.org/10.1029/2003w r0028 76

 45. Gilman M (1968) A brief survey of stopping rules for Monte
Carlo. In: Second conference on applications of simulations, New
York, NY

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1007/978-3-319-19647-3_6
https://doi.org/10.1007/978-3-319-19647-3_6
https://doi.org/10.1007/978-3-540-73545-8_21
https://doi.org/10.1007/978-3-540-73545-8_21
https://doi.org/10.1145/2582112.2582133
https://doi.org/10.1145/2582112.2582133
https://doi.org/10.1145/1236246.1236265
https://doi.org/10.1145/1236246.1236265
https://doi.org/10.1016/j.cma.2013.01.007
https://doi.org/10.1145/2049662.2049665
https://doi.org/10.1111/j.1467-9574.1980.tb00681.x
https://doi.org/10.1111/j.1467-9574.1980.tb00681.x
https://doi.org/10.1029/2003wr002876

	Percentage porosity computation of three-dimensional non-convex porous geometries using the direct Monte Carlo simulation
	Abstract
	1 Introduction
	2 Methodology
	2.1 CAD geometries’ generation
	2.2 The Monte Carlo simulation
	2.2.1 Direct Monte Carlo simulation (DMCS)
	2.2.2 Random point generation
	2.2.3 Porosity estimation
	2.2.4 Convergence
	2.2.5 Performance

	2.3 Implementation
	2.3.1 Function for retrieving geometry information contained in FEA preprocessor script
	2.3.2 Function to build the linked lists
	2.3.3 Function for the execution of independent MC experiments
	2.3.4 Function for the evaluation of membership oracle calls
	2.3.5 Main program

	3 Results
	4 Conclusions
	References

