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Abstract
The pursuit of more representative numerical models for open-cell metallic foams requires the computation of volume 
and percentage porosity of geometries containing randomly distributed interconnected pores, which is one of the main 
characteristics that determines its mechanical properties. From a mathematical standpoint, the analytical definition of foam 
geometries forms a three-dimensional non-convex set. It is known that the volume computation of n-dimensional polytopes 
and sets is a P-hard problem. A common way to approach this problem is using the Monte Carlo techniques; however, efforts 
are oriented toward the treatment of convex polytopes and polyhedrons. In this article, the Direct Monte Carlo Simulation 
(DMCS) is used to compute the percentage porosity of three-dimensional non-convex sets. A single-thread Python code 
was implemented, and tests were run to estimate the percentage porosity of three-dimensional open-cell porous geometries. 
Measurements of percentage porosity and runtime requirements over cubical and cylindrical geometries containing from 
100 to 4000 overlapping spherical pores showed high accuracy and consistency in non-convex three-dimensional sets, while 
the proposed algorithm achieved a significant reduction in computing time with respect to the currently available method. 
In the same manner, results from the proposed algorithm were compared with a similar software available, showing a gain 
in both performance time and accuracy.
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1  Introduction

Metallic foams have gained importance in recent years 
which can be verified by considerable number of investiga-
tions in the literature on this subject. They are composed of 
a metal-based structure with internal cavities called pores, 
similar to a conventional Metal Matrix Composite (MMC) 
but containing a void secondary phase. Percentage porosity 
is measured as the volume fraction of the void phase to the 
overall volume, which is the complementary percentage of 
the relative density of the solid phase. Porosity can be intro-
duced in metal foams using a wide variety of fabrication 
methods, including processes using metals in solid, liquid, 
and gaseous states [1]. The main characteristic that deter-
mines the mechanical properties of metallic foams is the 

percentage porosity. This characteristic is mainly influenced 
by the random distribution of pores and the manufactur-
ing process which establishes the internal structure of the 
foams. When pores exhibit a structure where a membrane 
bounds each one independently (e.g., honeycombs), it is said 
to be a closed-cell structure, while if interconnection exists 
between pores (e.g., sponges), it is said to be an open-cell 
structure [2].

The Finite-Element Analysis (FEA) has been a power-
ful and feasible numerical technique to model the mechani-
cal behavior of both open-cell and closed-cell foams in the 
aid to identify plausible fabrication routes, depending on 
its desired microstructure and macroscopic mechanical 
properties. However, several challengers remain to be over-
come to achieve better accuracy in the representation of its 
three-dimensional internal microstructure and macroscopic 
mechanical behavior, as its properties are highly dependent 
of the quality of the Computer-Aided Design (CAD) geo-
metrical models [3]. FEA of heterogenous and porous media 
is commonly carried out by a Representative Volume Ele-
ment (RVE) analysis [4], where the mechanical properties 
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of the medium are obtained by solving a Boundary-Value 
Problem (BVP) over a small and rather simple domain from 
which the equivalent mechanical properties are transferred 
to a more complex one assumed as a continuum [5–7].

One approach to improve the representativeness of the 
numerical results obtained in FEA-based models is by the 
inclusion of randomly distributed spherical pores, mim-
icking the natural distribution that can be observed in the 
microstructure of open-cell metallic foams obtained using 
the Space Holders Phase (SHP) technique, either by con-
ventional powder metallurgy (PM) [8] or by infiltration of 
liquid metal [9]. These models must represent adequately 
the topological parameters of the metallic foams (e.g., pore 
distribution and sizes, interconnection, porosity percentage, 
etc.). To generate these metallic foam models, one of the 
most used mechanisms is using a CAD software package 
and executing a series of sequential command operations 
contained in a script [10–12], examples of these models can 
be seen in Fig. 1.

However, despite good results for the mechanical behav-
ior of foams are reported in literature, the script commands’ 
processing time is considerably excessive in relation to the 
FEA total time, which poses the necessity of developing an 
alternative to overcome this shortcoming. Figure 2 shows an 
example of the average time required to import a geometry 
into FEA preprocessor ANSYS v18 Design Modeler module 
and a quadratic relation with the number of cutting opera-
tions required to include pores.

In three dimensions, RVEs of porous media with open 
interconnected pores can be defined by the intersection of 
the interior of an external body (e.g., a cube or a cylinder) 
and the exterior of the union of spheres, which are allowed 
to intersect the exterior surface of the external body, to pro-
duce surface porosity seen in Fig. 1. Due to the overlapping 
pores and the manner in which the set is defined, both the 
geometry of the RVE and the union of the spheres of the 
void phase are non-convex sets. Hereafter, the concept of 
non-convex set may be referred to either of the prior.

In this article, an algorithm based on the Direct Monte 
Carlo Simulation (DMCS), implemented in Python lan-
guage, is developed to estimate the percentage porosity of 
CAD generated metallic foam geometries. A grid cell-based 
linked list strategy and a Latin Hypercube Sampling (LHS) 
approach are used to achieve better computational efficiency 
and convergence [13]. A well-defined data set composed of 
40 individual and distinct non-convex sets (i.e., 3D foam 
geometries) was used to evaluate the proposed method. This 
implementation has shown a time reduction between 80 and 
90% with respect to the execution of the complete extruding 
and cutting operations by a CAD software package, as well 
as better accuracy and runtimes when compared to McVol 
[14], which is a Monte Carlo-based software intended to 

compute molecular volume of proteins, developed by Till 
et al.

2 � Methodology

2.1 � CAD geometries’ generation

The process to generate the CAD geometries of the foams 
is based in a basic three-step procedure, which is schemati-
cally shown in Fig. 3, for a two-dimensional case. First, a 
Discrete-Element Method (DEM) [15] simulation is carried 
out, from which the instantaneous element positions are used 
as the center position distribution of the pores (Fig. 3a). 
Then, using the defined pores center distribution, each pore 

Fig. 1   3D foam geometries of solids containing spherical overlap-
ping pores of 350–450 µm in diameter: a porous cylinder of diameter 
2.25 mm and height 1.8 mm with 100 pores and 75.03% porosity and 
b porous cubes of size 3.6 mm with 1320 pores and 70.08% porosity

Fig. 2   Average loading time measured for cube-based foam geom-
etries of size 3.6 mm into FEA Preprocessor Ansys v18 Design Mod-
eler containing different number of spherical overlapping pores of 
350–450 µm in diameter via JavaScript scripts execution



953Engineering with Computers (2021) 37:951–973	

1 3

diameter is redefined to meet the required criteria to fit the 
intender microstructure, such as pore interconnectivity and 
size distribution (Fig. 3b). Finally, a CAD geometry is com-
pletely defined as a script, which after being imported to an 
FEA Preprocessor or CAD package is seen as the remaining 
solid phase of the intersection between the interior of the 
external body and the exterior of the union of spheres, as 
shown in Fig. 3c.

Two sets of 3D CAD geometries containing randomly 
distributed spherical pores have been generated using DEM, 
where one set corresponds to cylinder-based geometries, 
while the second set is cube-based, similar to those shown 
in Fig. 1. These two general shapes have been selected due to 
their relevance on both numerical and experimental studies 
of mechanical behavior of metallic foams. While experimen-
tal tests use cylindrical specimens for compressive testing 
[16, 17], numerical simulations are oriented toward the char-
acterization of mechanical behavior based on a reduced RVE 
in association to a multiscale scheme [18, 19], and hence, 
the cubic-shaped geometry is more suited for orthogonal 
load testing [20–22].

Originally presented to model the behavior of granular 
media, the DEM is a powerful numerical tool to model the 
random distribution of pores generated in foam fabrication 
methods such as SHP due to the solid mixing process [17] or 
in liquid metal infiltration process [23, 24]. The DEM repre-
sents the medium as a collection of material particles exhib-
iting independent rigid body motion behavior where the total 
external force acting over each particle is determined by the 
interaction with neighboring particles in which each pair 
interaction force is governed by a low-range contact force 
law [15]. In this work, a Hertz-type law with dampening has 
been considered for this purpose, where the total force has a 
normal component and a tangential component contributing 
to the linear and angular momentum Newton’s conservation 
law correspondently. This type of contact law is found to be 
usual on the simulation of granular media [25–27].

Geometries based on cylinders of 6.75 mm in diam-
eter (D) and 5.4 mm in height (H), and cubes of size (A) 
6.75 mm containing 100, 500, 1000, 2000, and 4000 pores 

with diameters (d) ranging from 350 to 450 µm have been 
created using DEM open software LIGGGHTS [28]. An 
H∕D ratio of 0.8 has been chosen to avoid flexural deflection 
and inelastic buckling, in accordance with geometric recom-
mendations for short specimens in ASTM E9-09 standard 
[29]. A ratio of characteristic length to maximum pore size 
of 15 (i.e., D/d for cylinders and A/d for cubes) was cho-
sen, to allow the inclusion of a wide range of number of 
pores throughout the tests. The maximum number of pores 
was set to 4000, as loading times into the FEA preprocessor 
becomes excessive.

Cylinder-based geometries have been set to have its 
revolution axis coaxial with the Z-axis, while the base is 
contained in the X–Y plane protruding through the Z > 0 
subspace. On the other hand, cube-shaped geometries were 
oriented to have three of its faces aligned with the X–Y, Y–Z, 
and Z–X planes, while its remaining three faces contained in 
the X, Y , Z > 0 subspace.

DEM special domain used considered 1 time the maxi-
mum pore size (450 µm) for each side, being the radius, 
lower and upper height limits for cylinders and for each 
lower and upper direction for cubes, to promote the pres-
ence of pores on the surface of the resulting geometry and 
particle size was set to 0.25 times the maximum pore size 
(112 µm) to achieve interconnection between pores on the 
generated CAD geometries.

For both geometry types, the conditions for particles 
insertion were initial velocity (0.5 mm/s on each direction), 
high Young’s modulus (5.0e8 MPa), and coefficient of res-
titution (0.95) and near zero gravity with the intention of 
generating high level of interaction between particles and 
maintaining high total kinetic energy in the system during 
simulation, according to Pérez et al. [9].

Results from DEM simulations were post-processed using 
a purposely developed Python script to generate ANSYS 
v18 Design Modeler input JavaScript scripts, using the cor-
responding center of the particles and assigning a uniformly 
distributed random value for each pore diameter between 
350 and 450 µm, similar to Ref. [9]. The aforementioned 
script follows the following pseudo-code structure. 

Fig. 3   Two-dimensional repre-
sentation of the RVE generation 
of porous media with open-
cell porosity: a Pores’ center 
distribution obtained by DEM; 
b Uniform random definition of 
pores diameter; and c resulting 
foam geometry
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1. #Define Type of Geometry
2. (Geo.Type) = {CUBE, CYLINDER}
3. #Define Characteristic Lengths
4. Switch Case (Geo.Type):
5. CUBE: (Geo.charlength) = [(A)]
6. CYLINDER: (Geo.charlength) = [(H), (D)]
7. #Define Pore Minimum and Maximum Diameters
8. (pore_diam) = [(min_diam), (max_diam)]
9. #Retrieve List of Centers
10. input_file.open()
11. for each line in (input_file):
12. Append info to (X_vector) and (Y_vector) and (Z_vector)
13. input_file.close()
14. #Build JavaScript file
15. output_file.open()
16. #Set Global Dimensions
17. Switch Case (Geo.Type):
18. CUBE: output_file.write((A))
19. CYLINDER: output_file.write((H), (D))
20. #Write Instructions for Basic Extrusion
21. Switch Case (Geo.Type):
22. CUBE:
23. output_file.write(Build Square of Edge (A))
24. output_file.write(Extrude Square (A) Units)
25. CYLINDER:
26. output_file.write(Build Circle of Diameter (D))
27. output_file.write(Extrude Circle (H) Units)
28. #Write instructions for Pores as Cutting Operations
29. for i in range(list_of_pores):
30. #Define Pore Center and Diameter
31. (diameter) = random.uniform((pore_diam.min),(pore_diam.max))
32. (center)=(X_vector[i],Y_vector[i],Z_vector[i])
33. #Write Instructions
34. output_file.write(Create Sphere Cut with (center), (diameter))
35. output_file.close()

of convex polytopes [37]. It is worth noticing that a gen-
eral non-convex set can be approximated by a non-convex 
polytope and the approximating non-convex polytope can 
be rewritten as a union of convex and simpler polytopes. 
Hence, in principle, the volume of non-convex sets can be 
computed using algorithms and techniques intended for the 
treatment of convex polytopes, but the convex representation 
of non-convex polytopes can be extremely expensive and 
algorithms efficiency can be severely affected by the number 
of instances needed to represent the original set [38].

Although spheres from which pores are generated cor-
respond to convex three-dimensional bodies, the union of 
two or more pores, which is called a macro-pore, is not 
guaranteed to hold this property [39]. In the case of the 
CAD geometries treated in this work, the existing over-
lap between spheres in relation to the sphere diameters is 
mainly unknown, which supposes that the generated volume 
is highly likely to form a non-convex set. Due to this non-
convexity, the application of the previously described algo-
rithms is restricted and a different technique, such as simple 
quadrature, may be applicable [40]. This problem has been 
tackled in fields such as biochemistry, where the volume of 

2.2 � The Monte Carlo simulation

Volume computation of polytopes is a problem which has 
been studied for at least 3 decades [30–32], and since then, 
author has been using different approaches to provide poly-
nomial solutions to this problem, at least for low-dimen-
sional cases. One of the most common approaches is based 
on the principle of divide-and-conquer, and the polyhe-
dron is divided into smaller and simpler instances where 
the volume can be computed after by addition. Algorithms 
such as volume decomposition [33] and triangulation [34] 
are examples of this approach. Another commonly used 
approach is based on the approximation of volume by means 
of the Monte Carlo (MC) simulation. Here, various algo-
rithm implementations have been developed for the volume 
estimation of convex n-dimensional polytopes for which 
validation is restricted to low-dimension geometries with 
known volume, whether it is analytically or not [35, 36]. 
These algorithms are typically based under a ‘hit-and-run’ 
technique and random walks used for a uniform sampling 
throughout the geometry surface of the n-dimensional vol-
ume, providing a polynomial time solution for the treatment 
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proteins, represented as a collection of overlapping spheres, 
can be computed using algorithms based on volume decom-
position [41] or the MC simulation [14].

2.2.1 � Direct Monte Carlo simulation (DMCS)

In this work, the MC simulation is used as a mechanism to 
gather information about an analytic 3D CAD geometry. In 
this approach, a set of N independent Bernoulli random vari-
ables, XN

j
 , are evaluated, each one according to a probability 

distribution function such as:

where each XN
j

 corresponds to an independent three-dimen-
sional vector in the subspaces enclosed by the exterior sur-
face of the geometry. As all the information relative to the 
pores is known a priori (being its centers and radii), an alter-
native which poses an equivalent but less expensive to solve 
problem is the one on estimating the void volume inside 
the geometry and then to compute the solid portion as the 
difference between the solid volume and the estimated void 
volume. In this manner, the probability distribution function 
proposed in Eq. 1, can be rewritten as:

With this, for each Bernoulli random variable, if the vec-
tor XN

j
 happens to reside inside a pore, it considers a ‘hit’, 

while if it does not reside inside any void, it is considered a 
‘miss’. For any given number N of Bernoulli random vari-
ables, it is known that they follow a Binomial distribution, 
where its estimation, �N , of the expected value, � , is deter-
mined as the product between the probability of success (or 
‘hit’) and the total number of independent variables, N. As 
the expected value of any given distribution is known from 
the evaluation of every variable, the probability of ‘hit’ on 
any Binomial distribution, pN , may be determined as a func-
tion of the number of independent variables as:

With this, as the number of independent Bernoulli vari-
ables increases, the estimator, �N , tends to the real expected 
value, � , of the Binomial distribution [42] and, as a conse-
quence, the real probability of success, p , is found. This is:

In terms of the DMCS, each Bernoulli random variable 
evaluation of the binary probability function in Eq. 2 is 
named a membership oracle call, since there is an algorithm 

(1)f (X) =

{
1 X ∈ solid

0 Elsewise
,

(2)f (X) =

{
1 X ∈ a void

0 X ∉ any void
.

(3)pN =
�N

N
.

(4)lim
N→∞

pN = lim
N→∞

�N

N
= p.

established a priori to determine whether the returned for an 
arbitrary input value is 0 or 1. Later, the wanted percentage 
porosity of a CAD geometry foam is associated with the 
probability of success of the related Binomial distribution 
followed by the random points submitted to the membership 
oracle.

2.2.2 � Random point generation

A Latin Hypercube Sampling (LHS) [34] strategy was used 
to generate the sampling points to be submitted to the mem-
bership oracle. To implement the LHS, each dimension of 
the domain is stratified in m equiprobable strata. Later, each 
stratum is randomly sampled one time. For cubes, each 
dimension has a span from 0 to A; therefore, each stratum 
has equal length l = A∕m . Whether for cylinders, to achieve 
the equiprobability condition in cylindrical coordinates, it is 
required that each stratum has a different length in the radial 
direction (R), so the volume of each stratum can remain con-
stant, and hence, the jth radial stratum will be of length lR

j
:

Later, each stratum, Si,j,k , is defined as:

whether for cylinders, each stratum is defined by:

where the lengths of the strata in the other directions 
l� = 2�∕m and lz = H∕m are constant. Although, for arbi-
trary parallelepipeds, individual lengths, li = Ai∕m shall be 
used for the ith dimension in Eq. 6, the proposed implemen-
tation does not feature this option.

Finally, for each stratum, SN
n
= Si,j,k , a uniform random 

point ( XN
n

 ) is generated where:

where n =
[
0,
(
m3 − 1

)]
 or in terms of the total number of 

Bernoulli random variables, n = [0, (N − 1)].

2.2.3 � Porosity estimation

The expected value, �k , for an arbitrary number, k, of ran-
dom measurements of the random variable X distributed 

(5)lR
j
=

√
(j−1)

k

(
D

2

)
.

(6)S
CUBE
i,j,k

=

⎡⎢⎢⎣

il, (i + 1)l

jl, (j + 1)l

kl, (l + 1)l

⎤⎥⎥⎦
�{i, j, k} ∈ [0, 1,… , (m − 1)],

(7)

S
CYL
i,j,k

=

⎡⎢⎢⎣

√
ilR,

√
i + 1lR

jl� , (j + 1)l�

klz, (k + 1)lz

⎤⎥⎥⎦
�{i, j, k} ∈ [0, 1,… , (m − 1)],

(8)

X
N
n
= Xi,j,k =

{
X ∈ Si,j,k ⊂ ℝ

3∀i, j, k ∈ {0, 1,… , (m − 1)}
}
,
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Binomial with parameters n and p is known to tend to the 
expected value of the Binomial distribution, µ, this is:

The prior is based on the premise that the random vari-
able X, which represents the number of successes in any 
random sampling of size n, is distributed Normal with mean 
� = np and variance �2 = np(1 − p) . This is:

A standardization of the later Normal distribution results 
in a new random variable Z also distributed Normal defined 
by:

The above random variable Z, measured by Xi∕ni associ-
ated with the previously defined Binomial distribution, is 
then distributed Normal with mean value p and variance 
p(1 − p) . As mean value of a collection of k random samples 
Z̄ is known to be

it is necessary that the summation term in Eq. 10 satisfies:

From Eq. 11, given that

it follows consequently that

Hence, for a random sample of measurements of the prob-
ability of success, pi = Xi∕ni , of the Binomial distribution 
done by arbitrary samples over the distribution, it is guar-
anteed that its mean value, p̄ , represents an estimator of the 
unknown probability of success, p [43].

2.2.4 � Convergence

As it is known that the sample mean, p̄ , in general will not 
coincide with the random distribution mean, p, it is a com-
mon practice to evaluate the accuracy of the results from MC 
simulations based on the distribution of the independently 
computed sample mean. Therefore, rather than computing 

(9)𝜆
�
X̄
�
=

k∑
i=1

1

k
𝜇i = n

�
𝜇

n

�
= 𝜇.�k → ∞ .

(10)X = N
(
�, �2

)
= N(np, np(1 − p)).

(11)Z =
Xi−nip

nip(1−p)
=

Xi

ni
−p

p(1−p)
.

(12)E
�
Z̄
�
= 𝜇(z) =

1

k

k∑
i

Zi = 0�k → ∞,

(13)1

k

k∑
i=1

�
Xi

ni
− p

�
= 0�k → ∞.

(14)1

k

k∑
i=1

p =
1

k
(kp) = p, �k → ∞ ,

(15)p =
1

k

k∑
i=1

Xi

ni
=

1

k

k∑
i=1

pi = p̄�k → ∞.

the exact value of the distribution, p, a confidence inter-
val is established to limit the error on the estimator of the 
mean, p̄ [44, 45]. For normally distributed variables with 
unknown standard deviation and small sample sizes, n, it 
is well known that a confident interval for the mean, with a 
confidence level of (1 − �) , can be established based on the 
estimator of both the mean,  p̄n , and the standard deviation, 
Sn , or rather the standard error, Sn∕

√
n , by:

where tn−1 is the Student’s distribution of (n − 1 ) degrees of 
freedom. Furthermore, when the sample size is large enough 
(e.g., n ≥ 30 ), the Student’s distribution can be approxi-
mated by the Standard’s Normal distribution (Z). Hence, 
Eq. 16 can be restated as:

When the standard normal percentile Z(1 − �∕2) = 3 , 
Eq. 17 takes the form of the well-known three-sigma rule, 
which established a confidence interval with a confidence 
level of 99.97%. Hence, for any sample size, an uncertainty 
level, ε, can be established, although its confidence level will 
increase as the sample size increases. With this, a stopping 
rule for the sampling algorithm can be established based on 
the sample size and its standard deviation as:

where the parameter a is the number of standard deviations 
allowed in the uncertainty and the corresponding confident 
level is related to the confidence level of either the student 
or the standard normal distribution percentile as:

In this article, the three-sigma rule and a minimum sam-
ple size of 4 MC experiments have been adopted for the 
stopping rule of the MC simulations, which establishes a 
minimum confidence level of 94%. This is:

2.2.5 � Performance

For each MC experiment, N calls to the membership oracle 
are needed. In addition, each call to the oracle is resolved in 

(16)
Pr

�
p̄n − tn−1

�
1 −

𝛼

2

�
Sn√
n
≤ p ≤ p̄n + tn−1

�
1 −

𝛼

2

�
Sn√
n

�
= 1 − 𝛼,

(17)

Pr
�
p̄ − Z

�
1 −

𝛼

2

�
Sn√
n
≤ p ≤ p̄ + Z

�
1 −

𝛼

2

�
Sn√
n

�
= 1 − 𝛼.

(18)a
Sn√
n
≤ � ⇒

Sn√
n
≤

�

a
,

(19)a =

⎧
⎪⎨⎪⎩

tn−1

�
1 −

𝛼

2

�
n < 30

Z
�
1 −

𝛼

2

�
n ≥ 30.

(20)Pr
�
p̄n − 3

Sn√
n
≤ p ≤ p̄n + 3

Sn√
n

�
≥ 0.939�n ≥ 4.
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a maximum of m independent operations, given by the evalu-
ation of the distance between the random sample point and 
the center of the pores contained in all the neighbor cells, 
defined by the linked lists; this means that, in the worst-case 
scenario, the membership oracle will evaluate the pores con-
tained in a maximum of 27 cells (i.e., the central cell and all 
the adjacent cells that shares one face or vertex with it) as 
every other pore is discarded since they are too far from the 
point so that it is possible for it to be inside them. With this, 
if each independent operation made by the oracle is consid-
ered equal to one FLOP, it is expected for the algorithm to 
perform a complete experiment in a total amount of FLOP 
with an upper bound given by:

Hence, the total FLOPs required to perform an arbitrary 
MC experiment for any given geometry are determined by 
the number of pores contained in the geometry and the num-
ber of calls made to the oracle. If an iterative process is 
considered, where a total of k MC independent experiments 
are performed, the total FLOP is determined by the sum-
mation of the times required to execute each individual MC 
experiment. Assuming a process where each MC experiment 
is preformed using N calls to the oracle, it is expected for 
the algorithm to require a total number of computing opera-
tions of:

From Eq. 22, the implemented algorithm is expected to 
exhibit a time performance linear with both the number of 
pores, given by the expected number of pores, m, contained 
in the neighboring cell space and the base number of calls to 
the oracle, N. In this work, the implemented algorithm con-
siders a constant sampling size, similar to the test procedure 
presented by Liu et al. [36], although an LHS strategy was 
adopted to improve sampling efficiency. A total of 50 strata 
per dimension, which translates to a sample size of 125 thou-
sand points per MC experiment, were used. Using the LHS 

(21)FLOPN
total

= N ⋅ m.

(22)FLOPtotal = k ⋅ N ⋅ m.

strategy and linked lists to identify neighboring pores, it is 
expected to achieve faster convergence than uniform random 
sampling as generated samples are non-collapsing in space 
and linked lists allow to dismiss verification of very distant 
pores and, therefore, unnecessarily to check.

2.3 � Implementation

An algorithm to compute porosity percentage based on the 
DMCS introduced in the previous section was implemented. 
A complete version of the Python code can be found in 
“Appendix A”. For the execution of the code, the usage of 
Python libraries numpy for scientific computing and numba, 
through its jit decorator, for computational optimization, 
along with the built-in modules math, random, and sys for 
file handling and arithmetic operations was required. When 
a geometry is under analysis, independent MC experiments 
are performed using a given number of samples size, N, from 
which the success probability, pi , is estimated. MC experi-
ments are performed until the standard error, Sn∕

√
n , of the 

estimated success probability, p̄ , given by the samples mean, 
reaches a prescribed error, �∕3.

2.3.1 � Function for retrieving geometry information 
contained in FEA preprocessor script

The first step in the code execution consists in gathering the 
information regarding the geometry under analysis which 
is retrieved from the corresponding input JavaScript scripts 
for ANSYS preprocessor. This is achieved by the sequential 
reading of the script file, from which general dimensions 
of the geometry (i.e., diameter, D, and height, H, for cylin-
ders and the side, A, for cubes) as well as the complete lists 
for the pores (i.e., center position in directions x, y, z and 
radii). Once all the relevant information is retrieved, the file 
is closed and dismissed.
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1. def retrieve_file_info(inp_file):
2. # File is read line by line
3. with open(inp_file) as ifile:
4. n_void = 0
5. radii, x, y, z = [], [], [], []
6. for line in ifile:
7. if 'var H=' in line: # Cylinder he

ight
8. l_H = float(line.strip("var H=").strip(";\n"))
9. if 'var D=' in line: # Cylinder di

ameter
10. l_D = float(line.strip("var D=").strip(";\n"))
11. if 'var A=' in line: # Cube edge s

ize
12. l_A = float(line.strip("var A=").strip(";\n"))
13. if ('radio=0;' not in line and 'radio=' in line): # Sphere radi

us
14. n_void += 1
15. radii.append(float(line.strip("radio=").strip("; \n")))
16. if ('posicionx=0;' not in line and "posicionx=" in line): # Sphere cent

er X-coordinate
17. x.append(float(line.strip("posicionx=").strip("; \n")))
18. if ('posiciony=0;' not in line and "posiciony=" in line): # Sphere cent

er Y-coordinate
19. y.append(float(line.strip("posiciony=").strip("; \n")))
20. if ('posicionz=0;' not in line and "posicionz=" in line): # Sphere cent

er Z-coordinate
21. z.append(float(line.strip("posicionz=").strip("; \n")))
22. ifile.close()
23. # Checks retrieved type of geometry and sets zero the unused variables
24. if not 'l_A' in locals(): # Checks if i

s not a Cube
25. l_A = 0
26. elif not ('l_D' in locals() and 'l_H' in locals()): # Checks if i

s not a Cylinder
27. l_H, l_D = 0, 0
28. else: # Acts if doe

s not detect neither a cube nor a cylinder
29. l_A , l_D, l_H = 0, 0, 0
30. print('Error retrieving file info. Not a Cylinder nor a Cube was found.')
31. sys.exit(2)
32. return l_H,l_D,l_A,np.asarray(x),np.asarray(y),np.asarray(z),np.asarray(radii),n_

void

2.3.2 � Function to build the linked lists

The process of building the linked lists was capsuled in a 
function called build_lists. This function takes as input the 
information of the pores (i.e., pores’ center and radii) and 
returns as output the linked lists head and list and two arrays 
containing the values of the corresponding grid lengths and 
the point from which the grid is deployed, respectively. First, 
temporal arrays are built to capture the extreme most coordi-
nates that the spheres will have in the n-dimensional space 
(three-dimensional for this application). This is achieved 
by adding and subtracting the corresponding radii to each 
sphere center and selecting the minimum and maximum val-
ues (lines 3, 4, and 5). Then, the corresponding number of 
cells in each dimension is defined (line 8) by dividing the 

difference between the two extreme values by the biggest 
sphere diameter (line 6), and by the math.ceil() function, the 
closest upper integer is selected. With this, it is clear that no 
pore residing more than one cell away can be considered for 
evaluation, later by the membership oracle, as it will be away 
from the random point by, at least, two times the maximum 
radius. Later, the corresponding grid lengths are computed 
by dividing the corresponding dimensional span by the 
recently defined number of cells (line 9). Finally, for each 
sphere in the array, its corresponding cell value is computed 
and stored in the linked lists by filling the corresponding cell 
with its index in the head list and pushing the already stored 
information into the list list under the corresponding index.
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1. def build_lists(x_vec, y_vec, z_vec, r_vec):
2. # Temp Lists
3. x_ext = [np.amin(x_vec - r_vec), np.amax(x_vec + r_vec)]
4. y_ext = [np.amin(y_vec - r_vec), np.amax(y_vec + r_vec)]
5. z_ext = [np.amin(y_vec - r_vec), np.amax(z_vec + r_vec)]
6. r_max = max(r_vec)
7. # Cells definition
8. C = [math.ceil((x_ext[1] - x_ext[0])/(2*r_max)), math.ceil((y_ext[1] - y_ext[0])/

(2*r_max)), math.ceil((z_ext[1] - z_ext[0])/(2*r_max))]
9. diff = [(x_ext[1] - x_ext[0])/C[0], (y_ext[1] - y_ext[0])/C[1], (z_ext[1] - z_ext

[0])/C[2]]
10. # Arrays Allocation
11. list = np.zeros(len(r_vec))
12. head = np.zeros((C[0],C[1],C[2]))
13. # Lists Filling
14. for i in range(len(r_vec)):
15. CELL = [math.floor((x_vec[i]-x_ext[0])/diff[0]), math.floor((y_vec[i]-

y_ext[0])/diff[1]), math.floor((z_vec[i]-z_ext[0])/diff[2])]
16. list[i] = int(head[CELL[0],CELL[1],CELL[2]])
17. head[CELL[0],CELL[1],CELL[2]] = int(i+1)
18. return head, list, diff, [x_ext[0], y_ext[0], z_ext[0]]

2.3.3 � Function for the execution of independent MC 
experiments

Once all the information that defines the geometry to be 
analyzed is retrieved, an iterative cycle is generated to per-
form each MC experiment. For this purpose, the process was 
encapsulated as a function, monte_carlo_exp. Each inde-
pendent simulation consists in a single uniform random sam-
pling of each domain strata; therefore, a total of N = �3

i=1
ni 

random points are generated throughout the entire domain, 
in a non-collapsing way. Each random 3D point is defined 
as a vector in Cartesian coordinates (i.e., dart[i]) and then 
is parsed to the membership oracle to resolve whether it 
corresponds to a ‘hit’ or a ‘miss’. As for the cylinder-based 

geometries, cylindrical coordinates are used to stratify the 
domain; each generated random point (temp) must be trans-
formed to its corresponding Cartesian coordinates (dart) 
prior to submission to the membership oracle. These random 
points correspond to those defined in Eq. 8, where each stra-
tum is defined in Eq. 6 for cube-based and in Eq. 7 cylinder-
based geometries.

Once the N random points are evaluated, the quotient of 
the summation of hits over every dimension and the total 
generated points is returned to the main program as the com-
puted success probability of the experiment, pi, according 
to Eq. 15.

1. def monte_carlo_exp(H, D, A, x_vec, y_vec, z_vec, r_vec, seeds):
2. # Allocates list for sampling results
3. sampling_list = np.zeros([nx,ny,nz])
4. for k in range(nz):
5. for j in range(ny):
6. for i in range(nx):
7. # Takes a smple from the [i,j,k] stratum
8. if A!=0: # CUBE
9. dart = [random.uniform(dx*(i),dx*(i+1)), random.uniform(dy*(j),dy

*(j+1)), random.uniform(dz*(k),dz*(k+1))]
10. if (D != 0 and H != 0): # CYLINDER
11. tmp = [random.uniform(dr*math.sqrt(i),dr*math.sqrt(i+1)), random.

uniform(dt*(j),dt*(j+1)), random.uniform(dz*(k),dz*(k+1))]
12. dart = [tmp[0]*np.cos(tmp[1]), tmp[0]*np.sin(tmp[1]), tmp[2]]
13. # Evaluates the sampling point
14. sampling_list[i,j,k] = member_oracle(np.asarray(dart), head, list, np

.asarray([x_vec, y_vec, z_vec]), r_vec, vecDelta, vecMin)
15. # # Computes expected value E[x]
16. hits_num = sum(sum(sum(sampling_list)))
17. # Returns the computed probability p(x,n) = E[x]/n
18. return float(hits_num/seeds)
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Results in this article were obtained by stratifying the 
three-dimensional space in 50 strata per spatial dimension, 
giving a sample size of 125 thousand points for each MC 
experiment.

2.3.4 � Function for the evaluation of membership oracle 
calls

When any random sampling point, defined by its coordinates 
(i.e., vecP[i]), is parsed to the membership oracle to be eval-
uated, the function member_oracle was generated to answer 
based on the information given a priori regarding the list of 
voids, defined by the center positions, vecPores, and its radii, 

vecRadii. This function identifies the corresponding grid cell 
associated with the coordinates of the random point, and 
then, it iterates looking for the surrounding cells checking if 
any of the spheres that lies in the neighborhood of the corre-
sponding cell will satisfy the ‘hit’ condition, using the linked 
lists. This ‘hit’ condition, as stated in Eq. 2, means that if the 
distance from the point to the center of a sphere is less than 
its radius, then the point lays inside the sphere, returning a 
1 as a result, hence ‘hit’, stopping the iteration. In the case 
of after checking all the relevant cells, no ‘hit’ is found, the 
function returns a 0, hence ‘miss’. The numba decorator jit 
for Just-In-Time compilation is used to speed up the code.

Fig. 4   Computed percentage porosity and standard error versus num-
ber of generated random points for a cube-based geometry of size 
6.75 [mm] with 4000 pores (CUBE_4000_1) using 125,000 random 
points per iteration

1. @numba.jit
2. def member_oracle(vecP, head, list, vecPores, vecRadii, vecDelta, vecMin):
3. # Initiates variable assuming no hit
4. Cell = np.zeros(3)
5. # Defines Central Cell
6. Cell = [math.floor((vecP[i]-vecMin[i])/vecDelta[i]) for i in range(3)]
7. # Evaluates arround the central cell
8. for cell_x in [int(Cell[0]), int(Cell[0]-1), int(Cell[0]+1)]:
9. for cell_y in [int(Cell[1]), int(Cell[1]-1), int(Cell[1]+1)]:
10. for cell_z in [int(Cell[2]), int(Cell[2]-1), int(Cell[2]+1)]:
11. test = int(head[cell_x, cell_y, cell_z])
12. while test != 0:
13. #Evaluate Distance to the Pore
14. if (vecP[0]-vecPores[0,test-1])**2 + (vecP[1]-vecPores[1,test-

1])**2 + (vecP[2]-vecPores[2,test-1])**2 <= vecRadii[test-1]**2:
15. return 1
16. #Update Test Pore
17. test = int(list[test-1])
18. return 0

2.3.5 � Main program

To run the previously showed functions, a short main pro-
gram is coded at the end of the Python script file, where 
the geometry information (i.e., filename with its extension) 
is provided as system argument and a few computation 
parameters (i.e., LHS grid size, uncertainty tolerance, and 
minimum MC iterations) are defined in lines 2 through 4. 
After that, the function retrieve_file_info is called in line 17 
and all the information regarding the geometry is gathered 
according to the already explained structure. Subsequently, 
in lines 19 and 20, the corresponding domain strata are 
defined based on the retrieved type of geometry. Then, in 
line 23, the build_lists function is called to generate all the 
required data to speed up the membership oracle response. 
With this, from line 26 through 31, an iterative procedure is 
defined to perform subsequent MC experiments by calling 
the monte_carlo_exp function, which is only exit when both 
conditions (i.e., minimum number of MC experiments and 
standard error threshold) are achieved. Finally, in lines 34 
and 35, relevant results such as the required number of MC 
experiments (or iterations) and computed (average) percent-
age porosity are printed in screen.
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1. # Input Parameters
2. n_grid = 50 # LHS Grid size per dimension
3. c_int = 5.0*10**(-4) # Confidence Interval Size
4. min_iter = 4 # Minimum MC iterations
5. # Variables
6. inppath = sys.path[0]+"/" # Work Path
7. c_iter = 1 # Iterations Counter
8. usum = 0 # Sum of computed porosities
9. sum2 = 0 # Sum of the square of computed porosities
10. stderr = 1 # Std Error of computed porosities
11. [nx, ny, nz] = [n_grid]*3 # Latin Hypercube Sampling Grid Size
12. ni = n_grid**3 # Monte Carlo Sampling Size (1x each stratum)
13. try:
14. file = sys.argv[1]
15. print("File: "+file)
16. # Retrieve File Information
17. H,D,A,Xvec,Yvec,Zvec,Rvec,n_sph = retrieve_file_info(inppath + file)
18. # Definition of Strata Sizes
19. if A != 0: [dx, dy, dz] = [A/n_grid]*3

# Strata sizes for CUBE
20. if D !=0 and H != 0: [dr, dt, dz] = [D/(2*math.sqrt(n_grid)), (2*np.pi)/n_grid, H

/n_grid] # Strata sizes for CYLINDER
21. # Linked Lists Building
22. print('Building Neighbour Lists')
23. head, list, vecDelta, vecMin = build_lists(Xvec, Yvec, Zvec, Rvec)
24. # MC Independent Simulations
25. print("Computing Volume Using "+str(ni)+" MC Points.")
26. while stderr >= c_int/3 or c_iter <= min_iter:
27. inst_porosity = monte_carlo_exp(H,D,A,Xvec,Yvec,Zvec,Rvec,ni)
28. [usum, sum2] = [usum+inst_porosity, sum2+inst_porosity**2]
29. [mean_val, std_dev] = [usum/c_iter, math.sqrt((sum2-

(usum**2/c_iter))/c_iter)] # Mean Value and Std Deviation of Porosity
30. stderr = std_dev/math.sqrt(c_iter)

# Standard Error for current iteration
31. c_iter += 1
32. print("Porosity Computation: DONE")
33. # Prints results in screen
34. print('Iterations needed: '+str(c_iter-1))
35. print("Computed percentage porosity: "+str(round(mean_val*100,2))+"%")
36. except:
37. print("Error: Unexpected Exit")
38. sys.exit(2)

3 � Results

Algorithm implementations proposed in previous works are 
focus in using the MC method for the computation of vol-
ume in n-dimensional convex polytopes [35, 36]. Algorithms 
such as the one presented by Liu et al. [36], which is based 
on a Markov chain method, or the one presented by Emeris 
and Fisikopoulos [37], based on a ‘hit-and-run’ random 
walk method are simple and efficient but limited to convex 
geometries. On the other hand, regarding non-convex sets, 
algorithms such the one presented by Cazals et al. [41] and 
Till et al. [14] give solutions, based on decomposition and 
the uniformly random sample MC simulations, respectively, 
to a union of spheres.

In this work, a membership oracle approach has been 
followed to implement a simple yet efficient algorithm to 
estimate the actual percentage porosity of three-dimensional 
non-convex geometries, represented by the intersection 
of the exterior of a union of spheres and the interior of a 
bounding volume. This algorithm has been particularized 

for the case of porous three-dimensional cubic-based and 
cylinder-based geometries. Percentage porosity, for different 
instances containing a wide range of number of pores, has 
been computed using a confidence interval stopping pro-
cedure and results have been compared with the reference 
value obtained by importing the corresponding geometries 
into ANSYS v18 Design Modeler module to quantify its 
accuracy. Both computed percentage porosity and runtime 
have been compared with available program McVol, an MC-
based software for protein volume computation developed 
by Till et al. [14], as a benchmark.

A data set with a total of 40 geometries was used. The 
data set is composed by 20 cube-based and 20 cylinder-based 
geometries, all generated using DEM software LIGGGHTS. 
A total of eight subsets generated by running DEM simula-
tion using 100, 500, 1000, 2000, and 4000 elements, con-
tained in two basic geometry types (i.e., cube and cylinder), 
were used. For each subset, 200 unique distributions of pores 
per number of elements used per basic geometry type were 
generated, from which 200 distinct geometries were then 
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created. Later, four geometries were randomly selected for 
each subset, to obtain a workable size data set. Each geom-
etry was individually identified based on the basic geometry 
type, the total number of spherical pores, and a correlative 
(e.g. CUBE_100_1, CYL_2000_3). Results using the pro-
posed method were obtained using an LHS grid of 50 strata 
per dimension, representing a sample size of 125 thousand 
random points per iteration and an uncertainty of 0.5% was 
established as convergence criteria, under the three-sigma 
rule.

For each geometry in the data set, a total of 20 independ-
ent analysis were run using both the proposed method and 
McVol and loaded into ANSYS v18 Design Modeler module 
to retrieve the reference value of percentage porosity. To use 
McVol, all 40 geometries of the data set were transformed 
to the corresponding input file .pqr and scaled, so the maxi-
mum pore radius did not exceed 5 [Å], as required by the Till 

et al. All other setup parameters for McVol were reused from 
the example case provided in the documentation. For each 
analysis, both percentage porosity and runtime ware regis-
tered and results between the proposed method and McVol 
were compared. Runtimes were measured using the standard 
C function time().

To establish the convergence character of the proposed 
implementation, the instantaneous percentage porosity 
and the standard error were registered for each iteration 
of the MC experiment. In Fig. 4, results from the analy-
sis of the cube-based geometry containing 4000 pores, 
CUBE_4000_1, are shown, where samples of 125,000 
random points per iteration were used. As it can be seen, 
as the number of random points increases, the correspond-
ing mean percentage porosity stabilizes, while the standard 
error decreases asymptotically. This behavior is expected 

Fig. 5   Average runtime to compute the percentage porosity for geometries containing different number of pores using DMCS (this work) and 
McVol [14] after 20 independent runs for a cube-based geometries and b cylinder-based geometries

Fig. 6   Average MC iterations needed to achieve convergence of 
0.5% uncertainty in standard error versus number of pores of cube-
based size 6.75 mm and cylinder-based diameter 6.75 mm and height 
5.4 mm foam geometries

Table 1   Average runtime of analysis of 4 different geometries after 
20 independent runs using the proposed method and McVol for cube-
based size 6.75 mm and cylinder-based diameter 6.75 mm and height 
5.4 mm geometries containing pores of 350–450 µm in diameter

Subset This work McVol

Avg [s] Std Dev [s] Avg [s] Std Dev [s]

CUBE_100 9.1 0.1 12.3 0.1
CUBE_500 10.7 0.1 42.7 0.1
CUBE_1000 17.3 0.1 76.1 0.1
CUBE_2000 31.3 0.1 121.9 0.1
CUBE_4000 54.5 0.6 119.2 12.7
CYL_100 12.8 3.7 10.7 5.2
CYL_500 21.2 2.3 41.1 5.2
CYL_1000 37.8 2.7 65.4 5.1
CYL_2000 69.0 4.4 78.4 10.2
CYL_4000 102.3 8.9 70.5 10.3
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and predicted in Eq. 18, as the standard error normalized the 
standard deviation of the measured values by the square root 
of the number of measurements. Also, as the standard error 
decreases, the stabilizing behavior of the mean percentage 
porosity tends to the expected value of the corresponding 
distribution, and the uncertainty of the confidence interval 
decreases for a constant confidence level (see Eq. 17).

Regarding runtime requirements, the currently available 
method to compute the percentage porosity in this type of 
geometries is to import the geometry into the FEA preproc-
essor. This process is expensive, especially when geometries 
contain a large number of pores, as it can be seen in Fig. 2. 
As an alternative, the DMCS poses a much faster way to 
estimate the percentage porosity. In Fig. 5, the average runt-
ime for the proposed implementation, for each subset, is 
provided and compared to that obtained by analyzing the 
same geometries using McVol. The average runtime was 
measured for all four geometries in each subset after 20 inde-
pendent runs.

For the average case, based on the analyzed subsets, 
the runtime of the proposed algorithm scales linear with 
respect to the number of contained pores (R2 = 0.995 and 
R2 = 0.978). In the case of cube-based geometries, Fig. 5a 
shows that for all the analyzed range, the proposed algo-
rithm is consistently faster than McVol, although, for cyl-
inder-based geometries, in Fig. 5b, results for the proposed 
implementation show to be faster for geometries containing 
2000 pores or less. As suspected, when comparing the aver-
age runtime of the proposed implementation for both cube-
based and cylinder-based geometries, cube-based geometries 
exhibit faster average runtimes, of nearly half, than its cylin-
drical counterparts. Either way, for the analyzed range, the 
proposed method showed an average convergence time of 
order O(n) , where n is the number of contained pores.

The difference in runtime between cube-based and cyl-
inder-based geometries is believed to be based on two main 
factors: (a) the fact that cylinder-based geometries require 
on average more iterations to achieve convergence and (b) 
each iteration is slower than for cube-based geometries as 
the equiprobable space is more complex and a transforma-
tion from cylindrical to cartesian coordinates must be done 
after each random point is generated, to be evaluated by the 
membership oracle. Regarding required number of iterations 
to achieve convergence, Fig. 6 shows the average number of 
iterations needed to achieve the established convergence cri-
terion as a function of the number of pores. The average has 
been measured as the average of the four geometries of each 
subset. Examination of Fig. 6 shows that for any given num-
ber of pores, the number of iterations needed to achieve con-
vergence is consistently higher for cylinder-based geometries 
than for the cube-based ones. Measurement of the cumu-
lative time required to execute the corresponding lines to 
generate the 125 thousand random points per iteration have 

shown a consistent average time of 2.4 µs per point for the 
cube-based geometries versus 7.84 µs per point for cylinder-
based geometries, which, in addition to the larger number of 
iteration needed, are supporting evidence of both assump-
tions. More details regarding average and standard deviation 
in runtime for the proposed method and McVol can be seen 
in Table 1. Alternatively, this difference in behavior may be 
influenced by a dependence of the runtime with respect to 
the percentage porosity, although this relation has not been 
addressed at this point.

The main objective of the propose method is to estimate 
the percentage porosity of non-convex sets, and the tested 
implementation is oriented toward foam geometries, repre-
sented by the intersection between the exterior of a union of 
spheres and the interior of a surrounding primitive geom-
etry such as a cube or a cylinder. The computed percentage 
porosity obtained by the proposed method, and by McVol, 
was compared by measuring the absolute error respect to 
the reference value, which is obtained by loading the cor-
responding geometries into ANSYS v18 Design Modeler 
module and retrieving the solid volume from there. Figure 7 
shows the results for the cube-based subsets, while Fig. 8 
shows the results obtained for the cylinder-based subsets.

More detailed information regarding the minimum, maxi-
mum, and average computed percentage porosity, as well as 
the absolute error, for each of the geometries contained in 
the data set is provided in Table 2 of “Appendix B”. Also, in 
“Appendix C”, Table 3 provides a more detailed information 
regarding the minimum, maximum, and average runtime for 
each of the tested geometries using both the proposed imple-
mentation and McVol.

Examination of Figs. 7 and 8 shows that although the pro-
posed method tends to produce less precise results; in gen-
eral, these results are more accurate than those produced by 
McVol. This difference is based on a key aspect that differ-
entiates the proposed method form it, which is the introduc-
tion of the exterior bound. While McVol defines a bounding 
box, which encloses the complete union of spheres, in our 
method, the domain is bounded by the exterior primitive vol-
ume and allows the spheres to intersect this boundary. Fur-
ther examination of Fig. 7 shows that the computed results 
using the proposed method are bounded by 0.35%, which 
is lower than the 0.5% percent limit established a priori for 
the uncertainty. On the other hand, detailed examination of 
Fig. 8 shows that the absolute error distribution for cylinder-
based subsets was less predictable than for cube-based ones. 
Figure 8d shows the widest distribution of error obtained in 
computing the percentage porosity of cylinder containing 
2000 pores, as high as 1%, while Fig. 8a–c, e shows an excel-
lent prediction capability for all the other cases, less than 
0.2% in all cases which is, again, less than the prescribed 
0.5% uncertainty.
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Fig. 7   Comparison of absolute error in percentage porosity computation of cube-based geometries of size 6.5 mm by the proposed method and 
McVol [14] for geometries containing a 100, b 500, c 1000, d 2000, and e 4000 distributed pores
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Fig. 8   Comparison of absolute error in percentage porosity computation of cylinder-based geometries of diameter 6.75 mm and height 5.4 mm 
by the proposed method and McVol [14] for geometries containing a 100, b 500, c 1000, d 2000, and e 4000 distributed pores
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Measurements of the difference between the computed 
percentage porosity and its reference value for geometries 
containing a larger number of pores (i.e., greater than 4000 
pores) could not be considered for this work due to the 
excessive time required to import each geometry into the 
FEA preprocessor, though similar results are expected. On 
the other hand, the proposed implementation considers just 
the use of a single-thread algorithm and, due to the poten-
tial for parallelization of the independent MC experiments, 
further optimizations can be done to achieve better time per-
formance. It is known by the authors that Python libraries 
such as Joblib and Numba provide fast and easy alternatives 
for that matter.

4 � Conclusions

A single-thread algorithm for DMCS, partially based on 
the one presented by Liu et al. [36], has been implemented 
in the Python language to estimate percentage porosity in 
cylindrical and cubical geometries containing interconnected 
spherical voids analytically defined with spatial distribution 
obtained by DEM simulation and uniformly random radii, 
as those required by Perez et al. [10] in the study metallic 
foams fabricated by means of PM and the SHP technique. 
The complete Python script was developed using less than 
120 code lines, when comment lines are not counted, and 
only the Python libraries numpy and numba, along with the 
three build-in modules math, random, and sys have been 
used.

The proposed implementation showed a significant gain 
in performance time for the task with respect to the currently 
used technique, which requires the execution of the complete 
sequence of CAD extrusion and cut operations by the FEA 
preprocessor. The time consumption to compute the percent-
age porosity showed a reduction between 84 and 99% when 
geometries containing between 100 and 4000 spherical pores 
were analyzed.

When compared to other similar software, the proposed 
implementation has shown to be able to achieve consist-
ently smaller errors in approximating the percentage poros-
ity of foam geometries than McVol. These better results 
are believed to be related to a better suited definition of 
the domain restrictions of the set. While McVol relies on 

defining a bounding box that contains the whole union of 
spheres, the proposed implementation gives a more precise 
restriction of the outer boundary of the domain, whether it is 
a box (i.e., a cube) or a cylinder. Although, when cylinders 
are considered for analysis, a trade-off must be done, and 
sometimes, performances are loss in exchange for precision. 
In addition, the proposed implementation relies on a statis-
tical criterion to stop computations, rather than a unique 
measure or an arbitrary samples size.

The DMCS has been showed to provide a simple yet 
powerful tool in estimating the porosity percentage in 3D 
non-convex analytical geometries, as the accuracy in the 
computed results provides an estimation error below the pre-
scribed uncertainty, with respect to the percentage porosity 
obtained by the generation of the geometries by the FEA 
preprocessor, in seven of the eight subsets of the tested data 
set. This estimation error represents a neglectable difference 
for the primary purpose for which the algorithm has been 
developed.

In addition to this implementation, future work related to 
this algorithm includes further performance improvements 
by means of parallel computing and its extension to more 
general geometries such as polyhedrons and other volumes.

Appendix A

In this appendix, the complete Python code script is pre-
sented. This code runs in single core configuration allow-
ing to estimate the porosity of cylindrical- or cubic-shaped 
foam geometries containing randomly distributed spherical 
pores when a complete analytical description of it (i.e. over-
all dimensions and pores location and dimension) is given 
in a JavaScript script file. The code uses Eq. 15 to average 
the results obtained by a series of Monte Carlo simulations, 
based on an LHS strategy, according Eqs. 5, 6, 7, and 8. The 
code will iterate until two established criteria are met, which 
are a minimum number of iteration and a maximum standard 
error, according to Eq. 18. This code requires the user to 
provide the filename with its extension as system argument 
(e.g., Cube_100_1.js). The path to the file is assumed to be 
the current work directory 
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1. import numpy as np
2. import numba
3. import random
4. import math
5. import sys
6. ######################
7. # FUNCTIONS
8. ######################
9. def retrieve_file_info(inp_file):
10. # File is read line by line
11. with open(inp_file) as ifile:
12. n_void = 0
13. radii, x, y, z = [], [], [], []
14. for line in ifile:
15. if 'var H=' in line: # Cylinder he

ight
16. l_H = float(line.strip("var H=").strip(";\n"))
17. if 'var D=' in line: # Cylinder di

ameter
18. l_D = float(line.strip("var D=").strip(";\n"))
19. if 'var A=' in line: # Cube edge s

ize
20. l_A = float(line.strip("var A=").strip(";\n"))
21. if ('radio=0;' not in line and 'radio=' in line): # Sphere radi

us
22. n_void += 1
23. radii.append(float(line.strip("radio=").strip("; \n")))
24. if ('posicionx=0;' not in line and "posicionx=" in line): # Sphere cent

er X-coordinate
25. x.append(float(line.strip("posicionx=").strip("; \n")))
26. if ('posiciony=0;' not in line and "posiciony=" in line): # Sphere cent

er Y-coordinate
27. y.append(float(line.strip("posiciony=").strip("; \n")))
28. if ('posicionz=0;' not in line and "posicionz=" in line): # Sphere cent

er Z-coordinate
29. z.append(float(line.strip("posicionz=").strip("; \n")))
30. ifile.close()
31. # Checks retrieved type of geometry and sets zero the unused variables
32. if not 'l_A' in locals(): # Checks if i

s not a Cube
33. l_A = 0
34. elif not ('l_D' in locals() and 'l_H' in locals()): # Checks if i

s not a Cylinder
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35. l_H, l_D = 0, 0
36. else: # Acts if doe

s not detect neither a cube nor a cylinder
37. l_A , l_D, l_H = 0, 0, 0
38. print('Error retrieving file info. Not a Cylinder nor a Cube was found.')

39. sys.exit(2)
40. return l_H,l_D,l_A,np.asarray(x),np.asarray(y),np.asarray(z),np.asarray(radii),n_

void
41. #
42. def monte_carlo_exp(H, D, A, x_vec, y_vec, z_vec, r_vec, seeds):
43. # Allocates list for sampling results
44. sampling_list = np.zeros([nx,ny,nz])
45. for k in range(nz):
46. for j in range(ny):
47. for i in range(nx):
48. # Takes a smple from the [i,j,k] stratum
49. if A!=0: # CUBE
50. dart = [random.uniform(dx*(i),dx*(i+1)), random.uniform(dy*(j),dy

*(j+1)), random.uniform(dz*(k),dz*(k+1))]
51. if (D != 0 and H != 0): # CYLINDER
52. tmp = [random.uniform(dr*math.sqrt(i),dr*math.sqrt(i+1)), random.

uniform(dt*(j),dt*(j+1)), random.uniform(dz*(k),dz*(k+1))]
53. dart = [tmp[0]*np.cos(tmp[1]), tmp[0]*np.sin(tmp[1]), tmp[2]]
54. # Evaluates the sampling point
55. sampling_list[i,j,k] = member_oracle(np.asarray(dart), head, list, np

.asarray([x_vec, y_vec, z_vec]), r_vec, vecDelta, vecMin)
56. # # Computes expected value E[x]
57. hits_num = sum(sum(sum(sampling_list)))
58. # Returns the computed probability p(x,n) = E[x]/n
59. return float(hits_num/seeds)
60. #
61. @numba.jit
62. def member_oracle(vecP, head, list, vecPores, vecRadii, vecDelta, vecMin):
63. # Initiates variable assuming no hit
64. Cell = np.zeros(3)
65. # Defines Central Cell
66. Cell = [math.floor((vecP[i]-vecMin[i])/vecDelta[i]) for i in range(3)]
67. # Evaluates around the central cell
68. for cell_x in [int(Cell[0]), int(Cell[0]-1), int(Cell[0]+1)]:
69. for cell_y in [int(Cell[1]), int(Cell[1]-1), int(Cell[1]+1)]:
70. for cell_z in [int(Cell[2]), int(Cell[2]-1), int(Cell[2]+1)]:
71. test = int(head[cell_x, cell_y, cell_z])
72. while test != 0:
73. #Evaluate Distance to the Pore
74. if (vecP[0]-vecPores[0,test-1])**2 + (vecP[1]-vecPores[1,test-

1])**2 + (vecP[2]-vecPores[2,test-1])**2 <= vecRadii[test-1]**2:
75. return 1
76. #Update Test Pore
77. test = int(list[test-1])
78. return 0
79. #
80. def build_lists(x_vec, y_vec, z_vec, r_vec):
81. # Temp Lists
82. x_ext = [np.amin(x_vec - r_vec), np.amax(x_vec + r_vec)]
83. y_ext = [np.amin(y_vec - r_vec), np.amax(y_vec + r_vec)]
84. z_ext = [np.amin(y_vec - r_vec), np.amax(z_vec + r_vec)]
85. r_max = max(r_vec)
86. # Cells definition
87. C = [math.ceil((x_ext[1] - x_ext[0])/(2*r_max)), math.ceil((y_ext[1] - y_ext[0])/

(2*r_max)), math.ceil((z_ext[1] - z_ext[0])/(2*r_max))]
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88. diff = [(x_ext[1] - x_ext[0])/C[0], (y_ext[1] - y_ext[0])/C[1], (z_ext[1] - z_ext
[0])/C[2]]

89. # Arrays Allocation
90. list = np.zeros(len(r_vec))
91. head = np.zeros((C[0],C[1],C[2]))
92. # Lists Filling
93. for i in range(len(r_vec)):
94. CELL = [math.floor((x_vec[i]-x_ext[0])/diff[0]), math.floor((y_vec[i]-

y_ext[0])/diff[1]), math.floor((z_vec[i]-z_ext[0])/diff[2])]
95. list[i] = int(head[CELL[0],CELL[1],CELL[2]])
96. head[CELL[0],CELL[1],CELL[2]] = int(i+1)
97. return head, list, diff, [x_ext[0], y_ext[0], z_ext[0]]
98. #
99. ######################
100. # MAIN PROGRAM
101. ######################
102. # Input Parameters
103. n_grid = 50 # LHS Grid size per dimension
104. c_int = 5.0*10**(-4) # Confidence Interval Size
105. min_iter = 5 # Minimum MC iterations
106. # Variables
107. inppath = sys.path[0]+"/" # Work Path
108. c_iter = 1 # Iterations Counter
109. usum = 0 # Sum of computed porosities
110. sum2 = 0 # Sum of the square of computed porosities
111. stderr = 1 # Std Error of computed porosities
112. [nx, ny, nz] = [n_grid]*3 # Latin Hypercube Sampling Grid Size
113. ni = n_grid**3 # Monte Carlo Sampling Size (1x each stratum)
114. try:
115. file = sys.argv[1]
116. print("File: "+file)
117. # Retrieve File Information
118. H,D,A,Xvec,Yvec,Zvec,Rvec,n_sph = retrieve_file_info(inppath + file)
119. # Definition of Strata Sizes
120. if A != 0: [dx, dy, dz] = [A/n_grid]*3

# Strata sizes for CUBE
121. if D !=0 and H != 0: [dr, dt, dz] = [D/(2*math.sqrt(n_grid)), (2*np.pi)/n

_grid, H/n_grid] # Strata sizes for CYLINDER
122. # Linked Lists Building
123. print('Building Neighbour Lists')
124. head, list, vecDelta, vecMin = build_lists(Xvec, Yvec, Zvec, Rvec)
125. # MC Independent Simulations
126. print("Computing Volume Using "+str(ni)+" MC Points.")
127. while stderr >= c_int/3 or c_iter <= min_iter:
128. inst_porosity = monte_carlo_exp(H,D,A,Xvec,Yvec,Zvec,Rvec,ni)
129. [usum, sum2] = [usum+inst_porosity, sum2+inst_porosity**2]
130. [mean_val, std_dev] = [usum/c_iter, math.sqrt((sum2-

(usum**2/c_iter))/c_iter)] # Mean Value and Std Deviation of Porosity
131. stderr = std_dev/math.sqrt(c_iter)

# Standard Error for current iteration
132. c_iter += 1
133. print("Porosity Computation: DONE")
134. # Prints results in screen
135. print('Iterations needed: '+str(c_iter-1))
136. print("Computed percentage porosity: "+str(round(mean_val*100,2))+"%")
137. except:
138. print("Error: Unexpected Exit")
139. sys.exit(2)

Appendix B

In this appendix, more detailed information regarding the 
computed percentage porosity for the data set obtained by 

means of the proposed algorithm and McVol after 20 inde-
pendent runs are presented in Table 2. 
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Table 2   Minimum, maximum, and average percentage porosity and absolute error respect to reference value obtained from ANSYS Design 
Modeler Module obtained after 20 independent runs using the proposed implementation and McVol

Geometry This work McVol

Min value (%) Max value (%) Avg value (%) Absolute error 
(%)

Min value (%) Max value (%) Avg value (%) Absolute 
error (%)

CUBE_100_1 1.07 1.11 1.09 0.016 1.10 1.11 1.10 0.025
CUBE_100_2 1.08 1.10 1.09 0.009 1.10 1.11 1.10 0.024
CUBE_100_3 1.08 1.11 1.09 0.049 1.10 1.11 1.10 0.060
CUBE_100_4 1.01 1.04 1.02 − 0.001 1.05 1.06 1.05 0.028
CUBE_500_1 5.19 5.53 5.25 0.062 5.32 5.34 5.33 0.135
CUBE_500_2 5.43 5.94 5.49 0.126 5.51 5.54 5.52 0.160
CUBE_500_3 5.39 5.92 5.46 0.145 5.50 5.52 5.51 0.194
CUBE_500_4 5.37 6.29 5.44 0.151 5.43 5.46 5.44 0.154
CUBE_1000_1 9.92 10.02 9.97 0.101 10.17 10.19 10.18 0.307
CUBE_1000_2 10.70 10.77 10.74 0.210 10.87 10.90 10.89 0.360
CUBE_1000_3 10.68 10.76 10.72 0.306 10.84 10.88 10.86 0.452
CUBE_1000_4 10.65 10.75 10.68 0.175 10.81 10.84 10.82 0.319
CUBE_2000_1 20.61 20.80 20.67 0.259 20.97 21.00 20.99 0.574
CUBE_2000_2 20.64 20.85 20.70 0.260 20.93 20.97 20.95 0.508
CUBE_2000_3 20.73 21.29 20.80 0.227 21.00 21.03 21.02 0.447
CUBE_2000_4 20.65 21.14 20.71 0.321 20.95 20.99 20.97 0.589
CUBE_4000_1 37.68 37.82 37.74 0.153 38.49 38.57 38.53 0.942
CUBE_4000_2 38.29 38.37 38.34 0.125 39.00 39.06 39.03 0.820
CUBE_4000_3 37.77 37.90 37.80 0.049 38.62 38.66 38.63 0.877
CUBE_4000_4 37.93 38.08 38.03 0.100 38.86 38.91 38.88 0.954
CYL_100_1 1.73 1.77 1.76 0.049 1.79 1.80 1.80 0.091
CYL_100_2 1.70 1.73 1.72 0.055 1.73 1.74 1.74 0.072
CYL_100_3 1.62 1.66 1.64 − 0.003 1.67 1.68 1.68 0.035
CYL_100_4 1.66 1.71 1.68 − 0.006 1.70 1.71 1.70 0.012
CYL_500_1 8.34 8.68 8.40 0.176 8.48 8.51 8.50 0.271
CYL_500_2 8.54 9.22 8.61 0.116 8.68 8.71 8.70 0.204
CYL_500_3 8.35 8.93 8.42 0.191 8.49 8.53 8.51 0.279
CYL_500_4 8.44 8.75 8.52 0.090 8.62 8.66 8.64 0.206
CYL_1000_1 16.14 16.24 16.19 0.087 16.47 16.51 16.49 0.391
CYL_1000_2 16.47 16.64 16.51 0.188 16.76 16.80 16.78 0.454
CYL_1000_3 16.73 16.84 16.76 0.116 16.94 16.97 16.95 0.305
CYL_1000_4 16.75 16.88 16.82 0.089 17.01 17.07 17.04 0.305
CYL_2000_1 32.00 33.02 32.47 0.528 32.53 32.60 32.57 0.627
CYL_2000_2 31.73 32.51 32.24 0.551 32.24 32.30 32.27 0.586
CYL_2000_3 32.01 32.64 32.43 0.537 32.50 32.58 32.54 0.647
CYL_2000_4 31.56 32.09 31.85 0.400 32.07 32.13 32.10 0.650
CYL_4000_1 56.93 57.07 57.01 0.067 58.29 58.34 58.32 1.379
CYL_4000_2 56.78 56.93 56.82 0.029 58.12 58.17 58.15 1.354
CYL_4000_3 56.76 56.87 56.82 − 0.010 58.14 58.20 58.17 1.343
CYL_4000_4 56.97 57.07 57.02 0.009 58.36 58.41 58.39 1.379
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Appendix C

In this appendix, more detailed information regarding 
the computed runtimes for the data set for the proposed 

Table 3   Minimum, maximum, 
and average runtime after 20 
independent runs using the 
proposed implementation and 
McVol

This Work Runtime

Geometry Minimum Maximum Average Minimum Maximum Average

CUBE_100_1 8.90 9.40 9.08 12.40 12.60 12.46
CUBE_100_2 8.90 9.30 9.08 12.20 12.80 12.34
CUBE_100_3 8.90 9.20 9.01 12.20 12.30 12.28
CUBE_100_4 8.90 9.80 9.09 12.10 12.50 12.23
CUBE_500_1 9.10 13.60 9.79 33.50 34.00 33.79
CUBE_500_2 9.20 21.80 11.57 45.80 46.50 46.12
CUBE_500_3 9.20 17.50 10.50 45.40 46.30 45.72
CUBE_500_4 9.20 19.70 10.83 45.00 45.60 45.29
CUBE_1000_1 9.60 22.90 13.36 57.90 59.00 58.51
CUBE_1000_2 10.10 48.60 22.43 82.90 84.10 83.45
CUBE_1000_3 9.70 33.50 18.01 80.60 83.40 82.15
CUBE_1000_4 9.70 29.50 15.59 79.50 81.30 80.13
CUBE_2000_1 10.50 62.90 33.33 120.10 121.60 120.86
CUBE_2000_2 10.60 63.00 29.98 120.50 122.50 121.25
CUBE_2000_3 10.60 55.50 32.47 120.20 124.20 121.50
CUBE_2000_4 10.60 53.00 29.51 122.70 124.80 123.81
CUBE_4000_1 12.20 95.50 52.63 118.60 122.80 120.61
CUBE_4000_2 12.30 92.70 54.18 117.80 121.50 119.51
CUBE_4000_3 12.20 96.40 59.27 115.40 119.10 117.48
CUBE_4000_4 12.20 94.60 51.94 117.80 121.80 119.34
CYL_100_1 12.30 13.10 12.62 10.30 10.60 10.39
CYL_100_2 12.20 18.50 13.07 10.80 11.10 10.94
CYL_100_3 12.10 13.30 12.63 10.90 11.10 11.03
CYL_100_4 12.70 15.40 12.76 10.40 10.90 10.56
CYL_500_1 12.50 45.80 22.14 37.60 38.50 37.92
CYL_500_2 12.80 46.30 20.73 42.00 42.50 42.21
CYL_500_3 12.80 44.50 22.91 41.70 42.70 42.12
CYL_500_4 12.70 39.80 18.96 41.90 42.50 42.12
CYL_1000_1 13.00 67.10 33.93 58.40 58.90 58.64
CYL_1000_2 13.40 73.70 36.73 67.70 70.60 68.53
CYL_1000_3 13.30 66.10 39.01 67.00 68.00 67.46
CYL_1000_4 13.10 74.90 41.36 66.60 67.50 66.99
CYL_2000_1 14.30 116.50 55.92 77.50 79.20 78.04
CYL_2000_2 14.60 123.80 78.36 78.60 79.70 78.93
CYL_2000_3 14.30 135.20 59.70 78.70 79.90 79.10
CYL_2000_4 14.50 126.40 81.97 77.20 78.20 77.55
CYL_4000_1 16.10 181.40 91.04 64.00 79.70 71.35
CYL_4000_2 15.90 158.30 95.72 63.60 75.20 65.11
CYL_4000_3 16.00 166.70 100.98 67.20 74.50 69.64
CYL_4000_4 16.00 188.70 121.47 70.50 77.40 75.76

algorithm and McVol after 20 independent runs are pre-
sented in Table 3.
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