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Abstract
The main objective in this paper is to propose an efficient numerical formulation for solving the time-fractional distributed-
order advection–diffusion equation. First, the distributed-order term has been approximated by the Gauss quadrature rule. 
In the next, a finite difference approach is applied to approximate the temporal variable with convergence order O(�2−�) as 
0 < 𝛼 < 1 . Finally, to discrete the spacial dimension, an upwind local radial basis function-finite difference idea has been 
employed. In the numerical investigation, the effect of the advection coefficient has been studied in terms of accuracy and 
stability of the proposed difference scheme. At the end, two examples are studied to approve the impact and ability of the 
numerical procedure.

Keywords  Radial basis functions (RBFs) · Finite difference (FD) scheme · Fractional convection–diffusion · Time-
fractional distributed-order advection–diffusion equation · Local meshless method · Upwind method

1  Introduction

The fractional PDEs with distributed-order derivative are 
solved by some approaches such as multi-fractal memory 
kernels [37], the matrix approach [35], a novel difference 
procedure [28], compact difference technique [43], two 
ADI difference schemes [25], second-order finite difference 
approximation [53], discontinuous spectral element methods 
[52], hybrid functions approximation [32], and discontinu-
ous Galerkin method [41].

Recently, Atangana and Baleanu [6] developed a new 
fractional derivative to describe some questions in the 
field of fractional calculus. Authors of [7] convoluted Rie-
mann–Liouville–Caputo derivative with the Mittag–Leffler 
function for the Atangana–Baleanu fractional differential 

operators. The model of transmission dynamics of vector-
borne diseases is proposed in [3] to the concept of fractional 
differentiation and integration. Authors of [31] considered 
a new time distributed-order and two-sided space-fractional 
advection–dispersion equation.

The RBF-FD method has been introduced in [21, 23, 24]. 
Author of [38] developed a generalization of the RBF-FD 
method that computes RBF-FD weights in finite-sized neigh-
borhoods around the centers of RBF-FD stencils. The local 
RBF method has been used for solving some models such as 
high-dimensional time-fractional convection–diffusion equa-
tion [36], the convection-dominated diffusion problems [39], 
and incompressible viscous Navier–Stokes equations [26].

The time-fractional distributed-order advection–diffusion 
equation is
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Also, for w∶[0, 1] → ℝ , we have the following conditions:

Furthermore, C
0
D�

t
 denotes

The Legendre wavelet approach has been proposed in [44] 
for the solution of the linear and nonlinear distributed frac-
tional differential equations. A novel second-order numeri-
cal approximation for the Riemann–Liouville tempered 
fractional derivative is derived in [17] using the tempered 
Grünwald difference operator and its asymptotic expansion. 
The numerical solution of distributed-order time-fractional 
PDEs is studied in [33] based on the mid-point quadrature 
rule and linear B-spline interpolation. The main aim of [29] 
is to discuss the properties of the time-tempered fractional 
derivative, and studying the well-posedness and the Jacobi-
predictor–corrector algorithm for the tempered fractional 
ordinary differential equation. The Keller Box method is 
used in [34] to spatially discretise the fractional subdiffusion 
equation. Author of [18] developed fourth-order fractional-
compact difference operator to solve the time–space tem-
pered fractional diffusion-wave equation. A new high-order 
numerical algorithm and its error analysis are developed in 
[19] for solving the Riesz tempered space-fractional diffu-
sion equation. Authors of [20] developed a class of high-
order numerical algorithms for Riesz derivatives based on 
constructing new generating functions.

The aim of [4, 5] is to prove the existence of the solution to 
the Cauchy problem for the time distributed-order diffusion 
equation as well as to calculate it. Authors of [10] proposed 
diffusion-like equations with time- and space-fractional 
derivatives of the distributed order for the kinetic description 
of anomalous diffusion and relaxation phenomena. Authors 

(1)

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1

�
0

w(𝛼)C
0
D𝛼

t
u(�, t)d𝛼 = Δu(�, t) − 𝜈 ⋅ ∇u(�, t) + f (�, t), (x, y) = � ∈ Ω, 0 < t ≤ T ,

u(�, 0) = 𝜓(�), (x, y) = � ∈ Ω,

u(�, t) = g(�, t), (x, y) = � ∈ 𝜕Ω.

∀ 𝛼 ∈ [0, 1], w(𝛼) > 0, and

1

∫
0

w(𝛼)d𝛼 = W > 0.

(2)

�
�u(x, y, t)

�t�
= C

0
D�

t
u(x, y, t)

=
1

Γ(1 − �) ∫
t

0

�u(x, s)

�s

ds

(t − s)�
, � ∈ (0, 1).

of [11] provided explicit strong solutions and stochastic ana-
logs for distributed-order time-fractional diffusion equations 
on bounded domains with Dirichlet boundary conditions. The 
main aim of [30] is to study the uniqueness and existence 
solution of the boundary value problems for the generalized 
time-fractional diffusion equation of distributed order over 
an open bounded domain. Author of [45] developed efficient 
algorithms based on the Legendre-tau approximation for one- 
and two-dimensional fractional Rayleigh–Stokes problems 
for a generalized second-grade fluid.

The Jacobi–Gauss–Lobatto (J–G–L) collocation approach 
is used in [9] to solve the distributed-order time- and Riesz 
space-fractional Schrödinger equation (DOT–RSFSE). 
Authors of [47] constructed and analyzed a Legendre spec-
tral-collocation method for the numerical solution of distrib-
uted-order fractional initial value problems. The main aim of 
[48] is applying a Legendre collocation method for solving 
distributed-order fractional optimal control problems. Two 
efficient spectral algorithms based on the Jacobi–Galerkin 
methods are proposed in [27] for solving unsteady advec-
tion–reaction–diffusion equations with constant and vari-
able coefficients. Authors of [46] derived the generalized 
necessary conditions for optimal control problems with 
dynamics described by ordinary distributed-order fractional 
differential equations (DFDEs) and then they proposed an 
efficient numerical scheme for solving an unconstrained 
convex distributed optimal control problem governed by the 
DFDE. Existence and uniqueness of solutions of a nonlinear 
tempered fractional boundary value problems are studied in 
[49]. Author of [50] derived and analyzed an exponentially 
accurate Jacobi spectral-collocation method for the numeri-
cal solution of nonlinear terminal value problems involv-
ing the Caputo fractional derivative. Author of [50] proved 
that the convergence rate for non-smooth solutions can be 
enhanced using a suitable smoothing transformation, which 
allows us to adjust a parameter in the solution in view of a 
priori known regularity of the given data. A Legendre–Jac-
obi collocation approach is developed in [51] for solving a 
nonlinear system of two-point boundary value problems with 
derivative orders.

Author of [1] proposed an error estimate of second-
order finite difference scheme for solving the Riesz space 
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distributed-order diffusion equation. The main aim of [13] 
is to propose a new numerical scheme based on the spec-
tral element procedure for simulating the neutral delay dis-
tributed-order fractional damped diffusion-wave equation. 
The main aim of [2] is to combine the alternating direc-
tion implicit approach with the interpolating element-free 
Galerkin method to solve two-dimensional distributed-
order time-fractional diffusion-wave equation. A finite 
element method has been proposed in [14] for solving the 
Rayleigh–Stokes problem for a heated generalized second-
grade fluid with fractional derivatives. An error estimate has 
been proposed in [15] to solve the two-dimensional weakly 
singular integro-partial differential equation with space and 
time-fractional derivatives based on the finite element/finite 
difference scheme. Authors of [16] applied the homotopy 
analysis method to solve nonlinear fractional partial differ-
ential equations such as the fractional KdV, K(2, 2), Burg-
ers, BBM-Burgers, cubic Boussinesq, coupled KdV, and 
Boussinesq-like B(m, n) equations.

In the advection–diffusion equation, there are two impor-
tant constants, e.g., advection and diffusion parameters [12]. 
The main difficulty of this equation is when the advection 
constant is larger than the diffusion parameter in which there 
are a few numerical procedures that solve the mentioned 
problems to find an acceptable result. In the current paper, 
we employ an upwind local RBF-FD technique to overcome 
the mentioned difficulty. Also, we could solve this equation 
on the non-rectangular domains.

2 � Semi‑discrete scheme

To discrete the time variable and integral term, we employ 
the following notations:

At first, we want to discrete the integral term in the model 
(1)

Lemma 2.1  [8] The Gaussian–Legendre integration is

where xj are roots of Legendre polynomial Pn(x) and weights 
are defined as

tk = k�, � =
T

N
, k = 0, 1,… ,N,

h
�
=

1

2J
, �l = 1 + lh

�
, 0 ≤ l ≤ 2J.

(3)

1

∫
−1

f (x)dx =

n∑
j=1

wjf (xj) + En(f ), ∀ f (x) ∈ C∞[−1, 1],

We employ the following notations:

where un = u(x, y, tn).

Lemma 2.2  [40] Suppose 0 < 𝛼 < 1 and g(t) ∈ C2[0, tk] , it 
holds that

in which am = (m + 1)1−� − m1−� and

Lemma 2.3  [40] For any Q =
{
Q1,Q2,…QN

}
 and q, we 

obtain

Let

Then Eq. (1) can be written as follows:

(4)wj =
−2

(n + 1)Pn
�(xj)Pn+1(xj)

, j = 1, 2,… , n.

u
n−

1

2 =
1

2

(
un + un−1

)
, �tu

n−
1

2 =
1

�

(
un − un−1

)
,

|||||||
1

Γ(1 − �)

tk

�
0

v�(t)

(tk − t)�
dt − C

P
�

t
(v(t))

|||||||
≤ C

�
max |v��(t)|�2−�

0≤t≤tk
,

C
P
�

t
(v(t)) =

�
−1

Γ(2 − �)

[
a0v(tk) −

k−1∑
m=1

(ak−m−1

− ak−m)v(tm) − ak−1v(t0)

]
.

N∑
n=1

[
a0Qn −

n−1∑
k=1

(
an−k−1 − an−k

)
Qk − an−1q

]
Qn

≥ t−�
N

2
�

N∑
n=1

Q
2
n
−

t1−�
N

2(2 − �)
q2, N = 1, 2, 3,… .

(5)�
�(x, y, t) =

1

Γ(1 − �)

t

∫
0

�u(x, y, s)

�s

ds

(t − s)�
.

(6)

1

�
0

w(𝛼)𝜗𝛼(x, y, t)d𝛼 = Δu(x, y, t) − 𝜈 ⋅ ∇u(x, y, t)

+ f (x, y, t), (x, y) ∈ Ω, 0 < t ≤ T .
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If we set

then

Applying Lemma 2.1, we get

in which

and also

At this moment, we know

then we have

Now, substituting (9) in (8), we obtain

(7)J(�, x, y, t) = w(�)��(x, y, t),

(8)

1

∫
0

J(�, �, t)d� = Δu(�, t) − � ⋅ ∇u(�, t) + f (�, t).

(9)

1

∫
0

J(�, x, y, t)d�

=

Nq∑
l=0

�lJ(�l, x, y, t) − en
J
(2n)(�, x, y, t)

(2n)!

|||||�=�

=

Nq∑
l=0

�lJ(�l, x, y, t) +RGauss

=

Nq∑
l=0

�lw(�l)�
�l(x, y, t) +R

n−
1

2

�
,

(10)

RGauss = − en
J
(2n)(�, x, y, t)

(2n)!

|||||�=�
,

R
n−

1

2

�
=RGauss + h

�

Nq∑
l=0

�lw(�l)R
�l

1
,

R
�l

1
= C

�l
max

|||||
�
2v(x, y, t)

�t2

|||||
�
3−�l

0≤t≤tn
.

(11)||RGauss
|| ≤ C1en,

|||R
�l

1

||| ≤ C2�
3−�l ,

(12)

||||||
R

n−
1

2
�

||||||
=

||||||
RGauss −

Nq∑
l=0

�lw(�l)R
�l

1

||||||
≤||RGauss

|| +
||||||

Nq∑
l=0

�lw(�l)R
�l

1

||||||
≤ C(en + �

1+
1

2Nq ).

as Lemma 2.2 gives

in which there exists a positive constant C such that

Omitting the small term E
n−

1

2

�
 in Eq. (14), we can get

2.1 � Stability and convergence of the semi‑discrete 
scheme

In the current section, we study the stability and convergence 
of the time-discrete scheme.

Theorem 2.4  Let Un ∈ H1
0
(Ω) . Then difference scheme (16) 

is unconditionally stable.

Proof  Multiplying both sides of Eq. (16) by Un−
1

2 and inte-
grating on Ω give

(13)
Nq∑
l=0

�lw(�l)�
�l +RGauss = Δu − � ⋅ ∇u + f + E

n−
1

2

�
,

(14)

Nq∑
l=0

{
�lw(�l)

1

Γ(2 − �l)�

{
a
�l

0
u
n−

1

2 −

n−1∑
k=1

(
a
�l

n−k−1

−a
�l

n−k

)
u
k−

1

2 − a
�l

n−1
�

}}

= Δu(x, y, t
n−

1

2

) − � ⋅ ∇u(x, y, t
n−

1

2

)

+ f (x, y, t
n−

1

2

) + E
n−

1

2

�
,

(15)E
n−

1

2

𝛼
< C𝜏3−𝛼max .

(16)

Nq∑
l=0

{
�lw(�l)

1

Γ(2 − �l)�

{
a
�l

0
U

n−
1

2 −

n−1∑
k=1

(
a
�l

n−k−1

−a
�l

n−k

)
U

k−
1

2 − a
�l

n−1
�

} }

= ΔU
n−

1

2 − � ⋅ ∇U
n−

1

2 + f (x, y, t
n−

1

2

).

(17)

Nq∑
l=0

{
�lw(�l)

1

Γ(2 − �l)�

{
a
�l

0

‖‖‖U
n−

1

2
‖‖‖
2

L2(Ω)
−

n−1∑
k=1

(
a
�l

n−k−1

−a
�l

n−k

)(
U

k−
1

2 ,Un−
1

2

)
− a

�l

n−1

(
�,Un−

1

2

) } }

=

(
ΔU

n−
1

2 ,Un−
1

2

)
−

(
� ⋅ ∇U

n−
1

2 ,Un−
1

2

)

+

(
f (x, y, t

n−
1

2

),Un−
1

2

)
.
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By simplification the above relation, we can get

Applying Lemma 2.3 for the left-hand side of Eq. (18), 
results

The Cauchy–Schwarz and Young’s inequalities, yield

(18)

Nq�
l=0

�
�lw(�l)

Γ(2 − �l)�

�
a
�l

0

���U
n−

1

2
���L2(Ω) −

n−1�
k=1

�
a
�l

n−k−1

−a
�l

n−k

����U
k−

1

2
���L2(Ω) − a

�l

n−1
‖�‖L2(Ω)

�����U
n−

1

2
���L2(Ω)

+
���∇U

n−
1

2
���
2

L2(Ω)
≤ −

�
� ⋅ ∇U

n−
1

2 ,Un−
1

2

�

+

�
f (x, y, t

n−
1

2

),Un−
1

2

�
.

(19)

Nq�
l=0

�lw(�l)

�
t
−�l
N

2Γ(2 − �l)

N�
n=1

���U
n−

1

2
���
2

L2(Ω)

−
t
1−�l
N

Γ(2 − �l)(1 − �l)
‖�‖2

L2(Ω)

�

+

N�
n=1

���∇U
n−

1

2
���
2

L2(Ω)
≤ −

N�
n=1

�
� ⋅ ∇U

n−
1

2 ,Un−
1

2

�

+

N�
n=1

�
f
�
x, y, t

n−
1

2

�
,Un−

1

2

�
.

(20)

Nq�
l=0

N�
n=1

�lw(�l)t
−�l
N

2Γ(2 − �l)

���U
n−

1

2
���
2

L2(Ω)

−

Nq�
l=0

�lw(�l)t
1−�l
N

Γ(2 − �l)(1 − �l)
‖�‖2

L2(Ω)

+

N�
n=1

���∇U
n−

1

2
���
2

L2(Ω)
≤

Nq�
l=0

N�
n=1

Γ(2 − �l)

�lw(�l)t
−�l
N

���� ⋅ ∇U
n−

1

2
���
2

L2(Ω)

+

Nq�
l=0

N�
n=1

�lw(�l)t
−�l
N

4Γ(2 − �l)

���U
n−

1

2
���
2

L2(Ω)

+

Nq�
l=0

N�
n=1

Γ(2 − �l)

�lw(�l)t
−�l
N

���f
n−

1

2
���
2

L2(Ω)

+

Nq�
l=0

N�
n=1

�lw(�l)t
−�l
N

4Γ(2 − �l)

���U
n−

1

2
���
2

L2(Ω)
.

After simplification the above inequality, we can write

or equivalently

The use of Grönwall’s inequality, gives

also, using the Poincare inequality we can get the following 
relation:

(21)

N�
n=1

���∇U
n−

1

2
���
2

L2(Ω)

≤
Nq�
l=0

N�
n=1

Γ(2 − �l)

�lw(�l)t
−�l
N

���� ⋅ ∇U
n−

1

2
���
2

L2(Ω)

+

Nq�
l=0

N�
n=1

Γ(2 − �l)

�lw(�l)t
−�l
N

���f
n−

1

2
���
2

L2(Ω)

+

Nq�
l=0

�lw(�l)t
1−�l
N

Γ(2 − �l)(1 − �l)
‖�‖2

L2(Ω)
,

(22)

���∇U
n−

1

2
���
2

L2(Ω)
≤

Nq�
l=0

n�
j=1

Γ(2 − �l)

�lw(�l)t
−�l
n

���� ⋅ ∇U
j−

1

2
���
2

L2(Ω)

+

Nq�
l=0

n�
j=1

Γ(2 − �l)

�lw(�l)t
−�l
n

���f
j−

1

2
���
2

L2(Ω)

+

Nq�
l=0

�lw(�l)t
1−�l
n

Γ(2 − �l)(1 − �l)
‖�‖2

L2(Ω)
.

(23)

���∇U
n−

1

2
���
2

L2(Ω)

≤
⎡⎢⎢⎣

Nq�
l=0

n�
j=1

Γ(2 − �l)

�lw(�l)t
−�l
n

���f
j−

1

2
���
2

L2(Ω)

+

Nq�
l=0

�lw(�l)t
1−�l
n

Γ(2 − �l)(1 − �l)
‖�‖2

L2(Ω)

⎤⎥⎥⎦
exp

⎛⎜⎜⎝

Nq�
l=0

�Γ(2 − �l)

�lw(�l)

n�
j=1

t�l
n

⎞⎟⎟⎠

≤
⎡⎢⎢⎣

Nq�
l=0

n�
j=1

Γ(2 − �l)

�lw(�l)t
−�l
n

���f
j−

1

2
���
2

L2(Ω)

+

Nq�
l=0

�lw(�l)t
1−�l
n

Γ(2 − �l)(1 − �l)
‖�‖2

L2(Ω)

⎤⎥⎥⎦
exp

⎛⎜⎜⎝

Nq�
l=0

�Γ(2 − �l)

�lw(�l)

n�

1 − n�

⎞⎟⎟⎠
,
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Finally, we have the following inequality:

which completes the proof. 	�  ◻

Theorem 2.5  Let un and Un be solutions of Eqs. (14) and 
(16), respectively, and they belong to H1

0
(Ω) . Then, differ-

ence scheme (16) is convergent with convergence order 
O(�

3

2 ).

Proof We define the following notation:

Subtracting Eq. (16) from Eq. (14), gives

Multiplying both sides of Eq. (26) by Φn−
1

2 and integrating 
on Ω result in

(24)

���U
n−

1

2
���
2

L2(Ω)
≤CΩ

���∇U
n−

1

2
���
2

L2(Ω)

≤C
⎡
⎢⎢⎣

Nq�
l=0

n�
j=1

Γ(2 − �l)

�lw(�l)t
−�l
n

���f
j−

1

2
���
2

L2(Ω)

+

Nq�
l=0

�lw(�l)t
1−�l
n

Γ(2 − �l)(1 − �l)
‖�‖2

L2(Ω)

⎤
⎥⎥⎦
.

(25)

���U
n−

1

2
���L2(Ω) ≤CΩ

⎡
⎢⎢⎣

Nq�
l=0

n�
j=1

Γ(2 − �l)

�lw(�l)t
−�l
n

���f
j−

1

2
���L2(Ω)

+

Nq�
l=0

�lw(�l)t
1−�l
n

Γ(2 − �l)(1 − �l)
‖�‖

L2(Ω)

⎤⎥⎥⎦
,

Φn = un − Un.

(26)

Nq∑
l=0

{
�lw(�l)

1

Γ(2 − �l)�

{
a
�l

0
Φ

n−
1

2 −

n−1∑
k=1

(
a
�l

n−k−1

−a
�l

n−k

)
Φ

k−
1

2

} }
= ΔΦ

n−
1

2 − � ⋅ ∇Φ
n−

1

2 + E
n−

1

2

�
.

(27)

Nq∑
l=0

{
�lw(�l)

1

Γ(2 − �l)�

{
a
�l

0

‖‖‖Φ
n−

1

2
‖‖‖
2

L2(Ω)

−

n−1∑
k=1

(
a
�l

n−k−1
− a

�l

n−k

)(
Φ

k−
1

2 ,Φn−
1

2

)}}

= −

(
∇Φ

n−
1

2 ,∇Φn−
1

2

)
−

(
� ⋅ ∇Φ

n−
1

2 ,Φn−
1

2

)

+

(
E
n−

1

2

�
,Φn−

1

2

)
,

and also, we can get

Summing the above relation for n from n = 1 to n = N 
results in

Employing Lemma 2.3 for the left-hand side of Eq. (29) 
gives

Using the Cauchy–Schwarz and Young’s inequalities, the 
following relation can be constructed:

(28)

Nq∑
l=0

{
�lw(�l)

1

Γ(2 − �l)�

{
a
�l

0

‖‖‖Φ
n−

1

2
‖‖‖L2(Ω)

−

n−1∑
k=1

(
a
�l

n−k−1
− a

�l

n−k

)‖‖‖Φ
k−

1

2
‖‖‖L2(Ω)

}}
‖‖‖Φ

n−
1

2
‖‖‖L2(Ω)

+
‖‖‖∇Φ

n−
1

2
‖‖‖
2

L2(Ω)
≤ ‖‖‖v ⋅ ∇Φ

n−
1

2
‖‖‖L2(Ω)

‖‖‖Φ
n−

1

2
‖‖‖L2(Ω)

+

(
E
n−

1

2

�
,Φn−

1

2

)
.

(29)

Nq∑
l=0

{
�lw(�l)

1

Γ(2 − �l)�

N∑
n=1

{
a
�l

0

‖‖‖Φ
n−

1

2
‖‖‖L2(Ω)

−

n−1∑
k=1

(
a
�l

n−k−1
− a

�l

n−k

)‖‖‖Φ
k−

1

2
‖‖‖L2(Ω)

}}
‖‖‖Φ

n−
1

2
‖‖‖L2(Ω)

+

N∑
n=1

‖‖‖∇Φ
n−

1

2
‖‖‖
2

L2(Ω)
≤

N∑
n=1

‖‖‖v ⋅ ∇Φ
n−

1

2
‖‖‖L2(Ω)

‖‖‖Φ
n−

1

2
‖‖‖L2(Ω)

+

N∑
n=1

(
E
n−

1

2

�
,Φn−

1

2

)
.

(30)

Nq∑
l=0

N∑
n=1

�lw(�l)t
−�l
N

2Γ(2 − �l)

‖‖‖Φ
n−

1

2
‖‖‖
2

L2(Ω)
+

N∑
n=1

‖‖‖∇Φ
n−

1

2
‖‖‖
2

L2(Ω)

≤
Nq∑
l=0

{
�lw(�l)

1

Γ(2 − �l)�

N∑
n=1

{
a
�l

0

‖‖‖Φ
n−

1

2
‖‖‖L2(Ω)

−

n−1∑
k=1

(
a
�l

n−k−1
− a

�l

n−k

)‖‖‖Φ
k−

1

2
‖‖‖L2(Ω)

}}
‖‖‖Φ

n−
1

2
‖‖‖L2(Ω)

+

N∑
n=1

‖‖‖∇Φ
n−

1

2
‖‖‖
2

L2(Ω)
≤

N∑
n=1

‖‖‖v ⋅ ∇Φ
n−

1

2
‖‖‖L2(Ω)

‖‖‖Φ
n−

1

2
‖‖‖L2(Ω)

+

N∑
n=1

(
E
n−

1

2

�
,Φn−

1

2

)
.
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Simplifying the above relation yields

or equivalently

From relation (15), we can conclude the following estimates:

(31)

Nq∑
l=0

N∑
n=1

�lw(�l)t
−�l
N

2Γ(2 − �l)

‖‖‖Φ
n−

1

2
‖‖‖
2

L2(Ω)
+

N∑
n=1

‖‖‖∇Φ
n−

1

2
‖‖‖
2

L2(Ω)

≤
N∑
n=1

2Γ(2 − �l)

�lw(�l)t
−�l
N

‖‖‖v ⋅ ∇Φ
n−

1

2
‖‖‖
2

L2(Ω)

+

Nq∑
l=0

N∑
n=1

�lw(�l)t
−�l
N

4Γ(2 − �l)

‖‖‖Φ
n−

1

2
‖‖‖
2

L2(Ω)

+

Nq∑
l=0

N∑
n=1

2Γ(2 − �l)

�lw(�l)t
−�l
N

‖‖‖‖E
n−

1

2

�

‖‖‖‖
2

L2(Ω)

+

Nq∑
l=0

N∑
n=1

�lw(�l)t
−�l
N

4Γ(2 − �l)

‖‖‖Φ
n−

1

2
‖‖‖
2

L2(Ω)
.

(32)

N∑
n=1

‖‖‖∇Φ
n−

1

2
‖‖‖
2

L2(Ω)
≤

N∑
n=1

2vΓ(2 − �l)

�lw(�l)t
−�l
N

‖‖‖∇Φ
n−

1

2
‖‖‖
2

L2(Ω)

+

Nq∑
l=0

N∑
n=1

2Γ(2 − �l)

�lw(�l)t
−�l
N

‖‖‖‖E
n−

1

2

�

‖‖‖‖
2

L2(Ω)

,

(33)

‖‖‖∇Φ
n−

1

2
‖‖‖
2

L2(Ω)
≤

n∑
j=1

‖‖‖∇Φ
j−

1

2
‖‖‖
2

L2(Ω)

≤
n∑
j=1

2vΓ(2 − �l)

�lw(�l)t
−�l
N

‖‖‖∇Φ
j−

1

2
‖‖‖
2

L2(Ω)

+

Nq∑
l=0

n∑
j=1

2Γ(2 − �l)

�lw(�l)t
−�l
n

‖‖‖‖E
j−

1

2

�

‖‖‖‖
2

L2(Ω)

.

Multiplying � on both sides of the above relation and apply-
ing the Grönwall’s inequality, we arrive at

Finally, we can obtain the following bound:

	�  ◻

(34)

‖‖‖∇Φ
n−

1

2
‖‖‖
2

L2(Ω)
≤

n∑
j=1

‖‖‖∇Φ
j−

1

2
‖‖‖
2

L2(Ω)

≤
n∑
j=1

2vΓ(2 − �l)

�lw(�l)t
−�l
N

‖‖‖∇Φ
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1

2
‖‖‖
2

L2(Ω)

+

Nq∑
l=0

n∑
j=1

2Γ(2 − �l)

�lw(�l)t
−�l
n

‖‖‖‖E
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1

2

�

‖‖‖‖
2

L2(Ω)

≤
n∑
j=1

2vΓ(2 − �l)

�lw(�l)t
−�l
N

‖‖‖∇Φ
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‖‖‖
2
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+

Nq∑
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(
�
3−�max
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Γ(2 − �l)

�lw(�l)t
−�l
n

≤
n∑
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−�l
N

‖‖‖∇Φ
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1

2
‖‖‖
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�
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(35)
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�
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���Φ

n−
1

2
���L2(Ω) ≤

√
C∗(�max,�)T�

3−�max .
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3 � Radial basis function approximation

The main advantage of the mesh-free methods is that they 
are not dependent on any mesh or element. The mesh-free 
methods are related to a set of scattered data points. Thus, 
we can consider any geometry as a computational domain. 
One of the mesh-free techniques is the RBF collocation pro-
cedure. Thus, we explain some basic concepts.

D e f i n i t i o n  3 . 1   [ 4 2 ]  A  s y m m et r i c  f u n c t i o n 
� ∈ ℝ

d ×ℝ
d
⟶ ℝ is so-called strictly conditionally posi-

tive definite of order m, if for all sets X = {x1,… , xN} ⊂ ℝ
d , 

and all vectors c ∈ ℝ
d satisfying

as for p ∈ ℙ
d
m−1

is positive, whenever c ≠ 0.

2 4 6

1

2

3

4

5

6

0

hX,Ω

Let � be a strictly conditionally positive definite of 
order m, then the interpolation of a continuous function 
f ∶ ℝ

d
⟶ ℝ on a set X = {x1,… , xN} is

such as l = (
d + m − 1

m − 1
) and {p1, p2,… , pl} is a basis of ℙd

m−1
 

. We want to find N + l unknown coefficients ci and �j as

N∑
i=1

cip(xi) = 0,

cTAc =

N∑
i=1

N∑
j=1

ci�j�(xi − xj),

Pf (x) =

N∑
i=1

ci�(x − xi) +

l∑
j=1

�jpj(x),

and

Definition 3.2  [42] The density of X in Ω is the number

3.1 � Preliminary for local meshless collocation 
method

The local interpolation concept is as follows: [23, 24]

in which

1.	 y is a set of center points,
2.	 Ii is support domain of ith node,
3.	 𝜆 is the unknown coefficient that must be calculated.

Employing the interpolation condition yields [23, 24]

The vector-matrix form of Eq. (38) is

in which

•	 � =

[
f (x1), f (x2),… , f (x|Ii|)

]T
,

•	 �jk = �

(‖‖‖xj − xk
‖‖‖2
)
, j, k ∈ Ii.

The local RBF operator can be introduced [23, 24]

Also, we can write

in which

Thus, Eqs. (39) and (41) result [23, 24]

in which w⃗i is the stencil weights at RBFs center i.

Pf (xi) = fi, i = 1,… ,N,

N∑
i=1

cipj(xi) = 0, 1 ≤ j ≤ l.

h = hX,Ω = sup
x∈Ω

min
xj∈X

‖‖‖x − xj
‖‖‖.

(37)Pmf (x) =
∑
j∈Ii

𝜆j𝜙

(‖‖‖x − yj
‖‖‖
)
,

(38)Pmf (xj) = f (xj).

(39)�𝜆 = �,

(40)Lf (x) =
∑
j∈Ii

�jL�

(‖‖‖x − yj
‖‖‖2
)
.

(41)Lf (x) = ΛT
𝜆,

(42)(Λ)i = �

(‖‖x − yi
‖‖2
)
, i ∈ Ii.

(43)Lf (x⃗)||Ii =
(
ΛT

�
−1
)
�
|||Ii =

(
w⃗i

)
� ,
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3.2 � The meshless local RBF‑FD (LRBF‑FD) technique

Let arbitrary points (xi, yi) ∈ Ω be scattered in the com-
putational domain Ω̄ . We can consider a support domain 
including ni nodes for each point (xi, yi) ∈ Ω as is depicted 
in Fig. 1. According to the previous section, the weight coef-
ficients at each local domain can be calculated as

(44)
�
mv(x, y)

�xm

||||(x,y)=(xi,yi)
=

ni∑
j=0

�
m,x

i,j
v(xi

j
, yi

j
),

i = 0, 1, 2,… ,N.

Also, the mth derivative of RBFs at center point (xi, yi) is

where �j is a RBF. By collocating all nodes in the local 
domain of center point (xi, yi) in Eqs. (45) and (46), the fol-
lowing matrix equations have been resulted:

in which A is the interpolation matrix.

3.3 � The upwind LRBFs‑DQ approach

Shu et al. [39] developed a new version of LRBFs-DQ tech-
nique based on the upwind approach. We consider model 
(6) as follows:

At first, we employ nodes between the center point and its 
support that are depicted in Fig. 2. Also, we call these points 
as the “mid-points”.

Applying the LRBFs-DQ technique to discrete the space 
variable gives

where [39]

•	 �i,k denotes the conservative variables at the mid-points,
•	 �

(x)

i,k and �(y)
i,k

 are weight coefficients based on the first-order 
derivatives in the x- and y-directions, respectively,

•	 ni denotes the total number of supporting points for the 
reference point i.

(45)

�
m
�j(x, y)

�xm

|||||(x,y)=(xi,yi)
=

ni∑
p=0

�
m,x

i,p
�j(x

i
p
, yi

p
),

i, j =
{
0, 1, 2,… , ni

}
, i ≠ j,

(46)

�
m
�j(x, y)

�ym

|||||(x,y)=(xi,yi)
=

ni∑
p=0

�
m,y

i,p
�j(x

i
p
, yi

p
),

i, j =
{
0, 1, 2,… , ni

}
, i ≠ j,

(47)
[�x,m] =[A]−1

[
�
m
�(xi, yi)

�xm

]
,

[�y,m] =[A]−1
[
�
m
�(xi, yi)

�ym

]
,

(48)
C
0
D�

t
� + [M(�) −H(�)]�x + [N(�) − J(�)]�y = �.

(49)

C
0
D�

t
�i = −

ni∑
k=0

{
�
(x)

i,k

[
M(�i,k) −H(�i,k)

]

+�
(y)

i,k

[
N(�i,k) − J(�i,k)

]}n

+ �|n
i
,

Fig. 1   Configuration in the local support

Fig. 2   Configuration in the local support
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From Eq. (49), we can derive a new flux according to the 
mid-point and a unit vector

Thus, we have

in which [39]

�⃗𝛼
𝜌
=
(
𝜇i,k, 𝜂i,k

)
.

(50)
�i,k =�i,k

[
M(�i,k) −H(�i,k)

]
+ �i,k

[
N(�i,k) − J(�i,k)

]
,

Fig. 3   The used computational regions

Fig. 4   Error obtained based on the values of � on rectangular domain 
for Example 1
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(51)

�i,k =
�
(x)

i,k√(
�
(x)

i,k

)2

+

(
�
(y)

i,k

)2

,

�i,k =
�
(y)

i,k√(
�
(x)

i,k

)2

+

(
�
(y)

i,k

)2

.

By assuming

Equation (49) can be rewritten as follows:

4 � Numerical surveys

Here, we report the obtained results based on the developed 
technique on the non-rectangular domains that are depicted 
in Fig. 3.

4.1 � Example 1

We will study the following model:

with the homogeneous initial and boundary conditions. 
Also, w(�) = Γ(3 − �) and the analytical solution is

thus, the source term can be obtained from the analytical 
solution. In this example, the effect of the advection coef-
ficient has been studied. Figure 4 displays the error obtained 
based on the values of � on rectangular domain for Example 
1. In Fig. 5, the graphs of approximate and error have been 

(52)Θi,k =

√(
�
(x)

i,k

)2

+

(
�
(y)

i,k

)2

.

(53)C
0
D�

t
�i = −

N1∑
k=0

Θi,k�i,k + �|i.

(54)

1

∫
0

w(�)C
0
D�

t
ud� =

�
2u

�x2
+

�
2u

�y2
− �

�u

�x
− �

�u

�y
+ f (x, y, t),

u(x, y, t) = exp(−�2t) sin(�x) sin(�y);

Fig. 5   Graph of approximate and error with � = 10 on rectangular domain for Example 1

Table 1   Errors obtained on rectangular domain for Example 1

N � = 1 � = 5 � = 10 � = 50

20 8.2231 × 10
−3

2.3474 × 10
−2

5.5567 × 10
−2

9.3878 × 10
−2

40 2.4013 × 10
−3

8.6381 × 10
−3

1.0227 × 10
−2

4.2288 × 10
−2

60 6.5230 × 10
−4

2.3342 × 10
−3

7.2301 × 10
−3

1.2879 × 10
−2

80 1.0027 × 10
−4

7.8896 × 10
−4

1.4011 × 10
−3

7.3074 × 10
−3

120 7.2284 × 10
−5 3.0010 × 10

−4
8.4753 × 10

−4
1.8902 × 10

−3

150 2.1040 × 10
−5

9.0022 × 10
−5 2.1562 × 10

−4
8.8873 × 10

−4

200 8.5270 × 10
−6

4.5011 × 10
−5

9.4411 × 10
−5 2.0701 × 10

−4

Table 2   Errors obtained on domain Ω
2
 for Example 1

N � = 1 � = 5 � = 10 � = 50

20 3.2212 × 10
−3

7.7742 × 10
−3

2.3387 × 10
−2

8.3214 × 10
−2

40 8.0312 × 10
−4

2.2287 × 10
−3

8.9723 × 10
−3

1.0339 × 10
−2

60 2.1897 × 10
−4

7.9900 × 10
−4

3.0001 × 10
−3

7.6698 × 10
−3

80 7.6698 × 10
−5 1.9834 × 10

−4
7.8896 × 10

−4
2.8510 × 10

−3

120 2.0334 × 10
−5

8.7769 × 10
−5 1.2001 × 10

−4
7.9630 × 10

−4

150 9.7756 × 10
−6

1.3989 × 10
−5

7.5799 × 10
−5 2.0013 × 10

−4

200 3.5387 × 10
−6

9.0061 × 10
−6

3.0201 × 10
−5

9.8740 × 10
−5



884	 Engineering with Computers (2021) 37:873–889

1 3

depicted with � = 10 on rectangular domain for Example 1. 
Tables 1 and 2 show the errors obtained based on the differ-
ent values of advection coefficient � with rectangular domain 
and domain Ω2 for Example 1. Figures 7, 9, 11 and 13 dem-
onstrate the approximation solutions based on the different 
computational geometries. Figures 6,  8, 10 and 12 illustrate 
error obtained based on the different values of and �  for the 
computational domains Ω1 , Ω2 , Ω3 and Ω4 , respectively.

4.2 � Example 2

Consider the following model:

(55)

1

∫
0

w(�)C
0
D�

t
u(x, y, t)d� =

�
2u(x, y, t)

�x2
+

�
2u(x, y, t)

�y2

− �

�u(x, y, t)

�x
− �

�u(x, y, t)

�y

+ f (x, y, t),

with the homogeneous initial and boundary conditions. The 
analytical solution is

where � is a positive constant as this solution belongs to 
Sobolev space H

�+
1

2

0
 and also w(�) = Γ(3 − �) . Figure 14 

demonstrates error obtained with � = 7∕4 and different 
values of � and also Fig. 15 illustrates error obtained with 
� = 50 and different values of � for Example 2. Further-
more, Fig. 16 displays approximate solution with � = 50 
and different values of � for Example 2. Table 3 presents 
the error achieved based on the values of � =

4

3
 and � =

13

3
 . 

According to these parameters, we choose different advec-
tion coefficients � = 10 and � = 50 . In Table 3 the effect 
of the regularity solution and advection coefficient can be 
observed, clearly.

u(x, y, t) = t2(1 − x2)�(1 − y2)� ,

Fig. 6   Error obtained based on the values of � on domain Ω
2
 for 

Example 1

Fig. 7   Graph of approximate and error with � = 10 on domain Ω
2
 for Example 1

Fig. 8   Error obtained based on the values of � on domain Ω
3
 for 

Example 1
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Fig. 9   Graph of approximate and error with � = 10 on domain Ω
3
 for Example 1

Fig. 10   Error obtained based on the values of � on domain Ω
4
 for 

Example 1

Fig. 11   Graph of approximate and error with � = 10 on domain Ω
4
 for Example 1

Fig. 12   Error obtained based on the values of � on domain Ω
4
 for 

Example 1
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5 � Conclusion

In the current manuscript, the fractional distributed-order 
advection–diffusion equation has been investigated by a 
truly meshless method. In the developed technique, the 
time derivative has been approximated by a finite difference 
scheme. As well as, the spatial variable has been discre-
tized by a meshless local procedure based on the upwind 
RBF-FD technique. The effect of the advection coefficient 
has been checked in the approximation results. Also, the 
used technique has been applied on some irregular domains. 
The stability and convergence of the proposed method are 
numerically studied.

Fig. 13   Graph of approximate and error with � = 10 on domain Ω
4
 for Example 1

Fig. 14   Error obtained with � = 7∕4 for Example 2

Fig. 15   Error obtained with � = 50 for Example 2
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