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Abstract
In recent years, the parameterized level set method (PLSM) has attracted widespread attention for its good stability, high 
efficiency and the smooth result of topology optimization compared with the conventional level set method. In the PLSM, the 
radial basis functions (RBFs) are often used to perform interpolation fitting for the conventional level set equation, thereby 
transforming the iteratively updating partial differential equation (PDE) into ordinary differential equations (ODEs). Hence, 
the RBFs play a key role in improving efficiency, accuracy and stability of the numerical computation in the PLSM for 
structural topology optimization, which can describe the structural topology and its change in the optimization process. In 
particular, the compactly supported radial basis function (CS-RBF) has been widely used in the PLSM for structural topol-
ogy optimization because it enjoys considerable advantages. In this work, based on the CS-RBF, we propose a PLSM for 
structural topology optimization by adding the shape sensitivity constraint factor to control the step length in the iterations 
while updating the design variables with the method of moving asymptote (MMA). With the shape sensitivity constraint 
factor, the updating step length is changeable and controllable in the iterative process of MMA algorithm so as to increase 
the optimization speed. Therefore, the efficiency and stability of structural topology optimization can be improved by this 
method. The feasibility and effectiveness of this method are demonstrated by several typical numerical examples involving 
topology optimization of single-material and multi-material structures.

Keywords Compactly supported radial basis function · Parameterized level set method · Shape sensitivity constraint 
factor · MMA algorithm · Structural topology optimization

1 Introduction

As an effective and powerful design tool, structural topol-
ogy optimization is to find the optimal material distribution 
within a certain design domain by minimizing or maximiz-
ing the objective function and satisfying the prescribed 
constraint and boundary conditions. Since the homogeni-
zation method for the topology optimization of linearly 
elastic structures was proposed by Bendsøe and Kikuchi 
in 1988 [1], the theory on topology optimization of con-
tinuum structure has developed rapidly. A number of meth-
ods for structural topology optimization have been proposed 

correspondingly and grown in popularity thereupon. For the 
topology optimization of continuum structure, the meth-
ods can be mainly divided into the following categories: 
the homogenization method [1]; the density-based method 
[2–4]; the level set method [5–8]; the phase-field method 
[9]; the evolutionary optimization method [10] and so on. 
Among them, the level set method can well deal with rela-
tively complex structural boundaries, thereby becoming a 
hot research spot in recent years.

The level set method was first applied to topology optimi-
zation design by Osher and Sethian in 1988 [11], and then 
Allaire et al. proposed the level set method combined with 
shape derivative to solve the shape and topology optimiza-
tion problem in 2004 [6]. In the level set topology optimiza-
tion algorithm, representation of the level set equation and 
the filtering scheme of sensitivity plays a decisive role in 
the optimization effectiveness. Thus, selecting an appropri-
ate representation of the level set equation and the corre-
sponding scheme of sensitivity filtering has been becoming 
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a hot research direction in recent years. In the conventional 
level set strategy for dealing with topology optimization, the 
level set function needs reinitializing frequently to maintain 
a signed distance function, which gives the shortest distance 
to the nearest point on the interface, using a PDE(partial 
differential equation)-based method [12] or a fast marching 
method [13], [14]. The re-initialization is an important pro-
cess in the conventional level set method to keep the gradient 
norm of level set function constant and make the evolution 
process stable.

Another issue of the conventional level set method is lack 
of the capacity to create new holes inside the material design 
domain, which makes it relatively easy to get stuck at a local 
minimum. A general way to overcome this weakness is to 
put a sufficient number of holes in the initial design to keep 
the complexity of the structural topology since the level set 
method has no difficulty in handling topology change by 
merging holes [6], [8]. After that, some alternative level set 
methods have been developed with nucleation capacity to 
alleviate the dependency of the final solution on the initial 
design [15–19]. Among these alternative level set methods, 
a couple of ones have shown excellent capability of nucleat-
ing new hole inside the two-dimensional domains [16], [17].

To improve the numerical efficiency, several level set 
methods for structural topology optimization have been 
put forward successively. Xia et al. [20] proposed a semi-
Lagrange method in 2006 to solve the problem of structural 
topology optimization based on level set method. The semi-
Lagrange method can get rid of the limitation of iterative 
step size and improved optimization efficiency. Luo et al. 
[21] proposed a semi-implicit scheme in 2008 to remove the 
restraint of the Courant-Friedrichs-Lewy (CFL) condition 
of the explicit schemes when the level set method is used in 
structural shape and topology optimization. Luo et al. [22] 
proposed a meshless Galerkin level set method in 2012 to 
deal with the numerical calculation, which is difficult in con-
ventional level set method.

In addition to the above-mentioned methods, a param-
eterized level set equation was proposed in 2004 by Wang 
et al. [23], which made a significant advancement in the level 
set method. In the parameterized level set method (PLSM), 
the radial basis functions (RBFs) are often used to perform 
interpolation fitting for the conventional level-set equation, 
thereby transforming the iteratively updating partial differ-
ential equation (PDE) into ordinary differential equations 
(ODEs). In general, there are two types of RBFs used in 
the PLSM: one is the globally supported radial basis func-
tion (GS-RBF), and the other is the compactly supported 
radial basis function (CS-RBF). In 2008, Luo et al. [16] 
proposed a level set-based parameterization method for 
structural shape and topology optimization, where the CS-
RBF is employed to describe the implicit representation of a 
desired smoothness and accuracy. Hence the mathematically 

more difficult PDE-driven optimization problem is trans-
formed into an easier parametric optimization, leading to 
an efficient updating scheme that is directly derived from 
the stationary optimality criteria conditions. Compared with 
the conventional level set method by directly solving either 
a Hamilton–Jacobi equation [24] or a reaction-diffusion 
equation [25], the PLSM evolves boundaries by updating 
a set of parameterized coefficients at grid points [16], [23]. 
The PLSM has a number of advantages. First, it is capable 
of avoiding some numerical manipulations caused by solv-
ing the Hamilton–Jacobi equation with a finite difference 
scheme. Second, an approximate re-initialization scheme 
can be applied to the method, to improve the gradient of the 
level set function around the interface as well as to preserve 
the ability of nucleation of internal holes. Third, smooth 
boundaries can be obtained without implementing any filter 
or additional smoothing schemes. Furthermore, the method 
can be used for optimization of irregular design domains of 
unstructured meshes without difficulty [26].

In the PLSM with GS-RBF and CS-RBF, there is actu-
ally a huge difference with relevance to “global support” 
and “compact support”, which is described as follows. The 
CS-RBF not only significantly contributes high computa-
tional efficiency, but also helps change the original Ham-
ilton–Jacobi PDE into a system of ODEs and finally to a 
set of algebraic equations (AEs). It thoroughly parameter-
izes the original Hamilton–Jacobi PDE. Correspondingly, 
the original topology optimization problem is changed to 
a “size” optimization problem, to which a lot of highly 
efficient and mature optimization algorithms in structural 
optimization, such as optimality criteria (OC), sequential 
linear programming (SLP), sequential quadratic program-
ming (SQP), and sequential convex programming-method 
of moving asymptotes (SCP-MMA), can be readily applied. 
The original CFL condition has been completely removed 
thus. Sometimes, the “size” optimization problem with CS-
RBF can be regarded as a generalized SIMP method, with 
the expansion coefficients as the design variables rather than 
the elemental densities as design variables. In this setting, it 
can be considered that the PLSM with CS-RBF is essentially 
a SIMP method, as the expansion coefficients are bounded 
rather than unbounded [27]. However, the GS-RBF lim-
its the application scope of PLSM in practice: it can only 
handle small size of two-dimensional (2D) problems and 
is hard to deal with three-dimensional (3D) examples. Fur-
thermore, the GS-RBF can only transform the original PDE 
into a system of ODEs. The current dominant numerical 
methods for solving ODEs are the finite difference methods 
(FDMs), such as Up-wind scheme and Runge–Kutta method. 
Hence, the GS-RBF only partially releases the hurdles of the 
CFL condition, but the time step limitation is still exciting 
in ODEs. In this way, the numerical methods for solving 
ODEs still need to be followed up to solve the structural 
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optimization problems, since the algorithms of OC, SLP, 
SQP, and SCP-MMA are difficult to directly apply. More-
over, the shape parameter of the GS-RBF has an obvious 
influence on the accuracy of interpolation, but there is still 
lack of an effective scheme to determine the optimal value 
of the shape parameter. Hence, to overcome the unfavora-
ble features related to the global support, the CS-RBF is 
well accepted due to its strictly positive definiteness and 
sparsity of the collection matrices [28–30]. One of the most 
important papers to detail the features and benefits of the 
PLSM with CS-RBF was published in 2007 [27], and the 
unified structural optimization model was described by the 
PLSM that applies CS-RBF with favorable smoothness and 
accuracy for interpolation 7 years later [31]. Compared with 
the GS-RBF, although the CS-RBF has a slightly reduced 
accuracy of interpolation, the improvement of optimization 
speed can cover such a weak influence. It is noteworthy that: 
the bounds for the design variables in the PLSM can be eas-
ily determined; and the moving limit for the design variables 
can also be easily settled with a few numerical skills to sta-
bilize the optimization procedure [16]. However, this is not 
a shortcoming of the PLSM, but the numerical requirement 
when MMA or other optimization methods are used. Moreo-
ver, it is easy to understand that: the re-initializations are to 
resurrect a signed-distance function behavior of the level-
set surface; and Up-wind differencing in the conventional 
level set methods may make the function lose shapes in the 
under-resolved regions owing to unwanted front energy dis-
sipation, when marching the shape on finite-difference grid 
[32]. It should be emphasized that the solution of PLSM 
after the CS-RBF parameterization has nothing to do with 
the numerical process of the PDE.

In some applications, it is observed that the level set 
method does not lead to enough topological changes, and 
in particular the level set methods presented above cannot 
reconstruct inner contours like a ring-type structure in an 
automatic way. Many shape optimization problems, in par-
ticular those arising from inverse obstacle problems, are ill-
posed, i.e. either there exists no solution and/or they do not 
depend on the data in a stable way. To solve the problems, 
a level set approach by including the topological derivative 
was generalized for shape optimization and reconstruction, 
which is related to changes in the objective functional corre-
sponding to the introduction of (infinitesimally) small holes 
[33]. The approach was applied for a simple model problem 
in shape reconstruction, where the topological derivative 
can be computed without additional effort. Numerical tests 
related to the model problem demonstrated that the gener-
alized method based on shape and topological derivative 
successfully reconstructs obstacles in situations where the 
conventional level set approach fails.

Subsequently, Ho et al. [34] proposed a dynamic node 
optimization algorithm based on RBF to simplify the 

solution of parametric level set equations in 2013. Then, 
a level set topology optimization method with cubic spline 
curve as the RBF [35] greatly enriched the research on the 
PLSM and the corresponding theory. In 2017, Zhang et al. 
[36] introduced a closed B-spline curve to solve shape and 
topology optimization of the holes in the complex design 
domain. Also in 2017, Jahangiry and Tavakkoli [37] used 
the non-uniform rational B-spline (NURBS) basis function 
to approximate the level set equation, so that the sensitivity 
analysis can be directly derived from the objective func-
tion. Recently, Wang et al. [38] developed a level set mod-
eling technique for designing and optimization of solid/
cellular structures, called cellular level set in B-splines 
(CLIBS), which is highly scalable, potentially leading to 
high definition modeling and optimization applications on 
a large-scale computing platform.

Topology optimization has benefited considerably from 
three decades of development and been already applied in 
many areas. With the in-depth study of topology optimiza-
tion theory, multi-material topology optimization methods 
[39], [40] and 3D structural topology optimization meth-
ods [41], [42] make the established optimization model 
closer to the practical working conditions. To obtain the 
optimized shell and infill simultaneously, a multi-scale 
level set topology optimization method has been used to 
design shell-infill structures [43]. In addition, some topol-
ogy optimization methods that deal with dynamic con-
straints [44] and random uncertainties [45] have also come 
into being. Furthermore, the level set method has also been 
applied to topology optimization of frequency-dependent 
viscoelastic structures [46].

With the development of computer simulation analysis 
software (such as ANSYS and MATLAB) and high-per-
formance computers as well as other electronic devices, 
structural topology optimization has developed rapidly 
in theory and methodology. At present, the level set 
method for structural topology optimization has many 
advantages, such as high optimization speed, no filtering 
steps required, no gray-scale element generated and clear 
boundary of optimization results. Nevertheless, the exist-
ing level set method also has certain deficiencies. Because 
structural boundary is implicitly represented with a PDE 
by the level set method, a large computational cost is often 
required to solve the PDE for topology optimization. In the 
process of solving the PDE by the level set method, the 
evolution of structural boundary to an extent has depend-
ence on the initialization of structural boundary, and the 
mesh-dependence phenomenon sometimes occurs. This 
can easily make the obtained structural boundary not 
smooth, and even cause the numerical instability in the 
topology optimization process. To overcome the deficien-
cies, by adding shape sensitivity constraint factor, we pro-
pose an improved PLSM based on CS-RBF for structural 
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topology optimization with relatively high speed, good 
stability and reasonable results.

In this work, a PLSM with shape sensitivity constraint 
factor is proposed to solve structural topology optimization. 
In this method, the CS-RBF interpolation is employed to 
transform the PDE into the ODEs, thus avoiding directly 
calculating the relatively complex PDE. In addition, this 
method adopts the gradient-based mathematical program-
ming algorithm MMA to update the design variables, so the 
stability of optimization process and the accuracy of opti-
mization results are guaranteed. With the shape sensitivity 
constraint factor, the updating step length is changeable and 
controllable in the iterative process of MMA algorithm so as 
to increase the optimization speed. The derivation of shape 
function and sensitivity analysis effectively avoids tedious 
computational steps of initializing the level set function, so 
that the optimization result is less dependent on the initial 
design and can form new holes. Compared with the conven-
tional level set method and the PLSM based on GS-RBF 
interpolation, the proposed method can greatly enhance 
the optimization efficiency on the premise of ensuring the 
accuracy of optimization results. Furthermore, the proposed 
method exhibits relatively good stability for topology opti-
mization problems. At the same time, the parameterized 
scheme makes the optimization step size no longer lim-
ited by the CFL condition, thereby improving the solving 
efficiency.

The rest of the paper is arranged as follows. The math-
ematical model and principle of the PLSM based on CS-
RBF are introduced in Sect. 2. The PLSM based on CS-RBF 
by adding shape sensitivity constraint factor is proposed in 
Sect. 3, where the sensitivity analysis and the optimization 
process are described as well. The model for topology opti-
mization of multi-material structure is described by the pro-
posed method in Sect. 4. In Sect. 5, several typical numerical 
examples are presented to demonstrate the feasibility and 

effectiveness of the proposed method. Finally, the conclu-
sions are given in Sect. 6.

2  Parameterization of level set functions

2.1  The level set method for structural topology 
optimization

In structural topology optimization via the conventional level 
set method, design boundary of the structure is implicitly 
represented by the zero-value curve of a higher-dimensional 
level set equation. By numerically solving the Hamilton–Jac-
obi equation, the normal velocity of the level set equation 
is obtained. By calculating the normal velocity field, the 
zero-value curve of the level set equation is gradually moved 
to achieve the result of boundary evolution. Therefore, the 
motion of zero-value curve of higher-dimensional level set 
equation is controlled by a set of numerical solutions of the 
Hamilton–Jacobi PDEs to which are set the initial values.

Taking the 2D structure as an example, its structural 
boundary is implicitly represented by the zero-value curve of 
a 3D level set equation defined in the design domain D ⊂ R2 . 
The material distribution of the structure is shown in Fig. 1, 
and the relationship between the value of the level set equa-
tion and the material distribution is expressed as follows. 

In Eq. (1), D denotes the design domain; � denotes the 
solid part with material to be designed; �� denotes bound-
ary of the design domain, namely the zero-value curve 

(1)

⎧⎪⎨⎪⎩

𝛷(x, t) > 0 ⇔ x ∈ 𝛺

𝛷(x, t) = 0 ⇔ x ∈ 𝜕𝛺

𝛷(x, t) < 0 ⇔ x ∈ D�𝛺

Fig. 1  Relationship between the level set equation and the material distribution of design domain. (a In 3D coordinates; b In 2D coordinates)
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described by level set equation; and x denotes a point in 
the design domain. To achieve the evolution of structural 
boundary, a dynamic virtual time factor t  is introduced to 
describe the dynamic change of the zero-value curve of level 
set equation, and the Hamilton–Jacobi PDE [47] is expressed 
as follows.

In Eq. (2), Vn = V ∙ (∇�(x, t)∕ |∇�(x, t)|) represents the 
normal velocity field. Where, V = dx∕dt is the velocity field; 
�(x, t) represents the value of level set equation at the point 
x ; x is the design variable; and t  is a virtual time factor. 
Therefore, the solution of the PDE moving along the normal 
direction is the boundary of the level set equation curve.

Based on the boundary representation by the level set 
method above, the structural topology optimization prob-
lem with the minimal average compliance can be formu-
lated as:

In Eq. (3), J(�) is the overall compliance value of the 
structure; Eijkl is the elastic modulus of the material; � is the 
strain tensor; H(�) is the Heaviside smoothing equation; � 
is the value of level set equation; � is the allowable displace-
ment in the displacement field U ; � is virtual displacement; 
�0 is a fixed displacement constraint; �D

�
 represents a fixed 

boundary of the structure; Vmax is the maximum allowable 
volume of the material; a(�, �) = L(�) is the weak form of 
the material elastic equilibrium equation; a(�, �) and L(�) 
are, respectively, expressed as follows.

where p is a body force of the material and � is the boundary 
load; �kl(�) is the strain tensor on the virtual displacement; 
�  is the boundary condition.

In the optimization problem under static load equilibrium 
state, the virtual displacement � is equal to the actual dis-
placement � , so Eqs. (4) and (5) meet the constraint require-
ments. At this time, the mathematical model of Eq. (3) is 

(2)
��(x, t)

�t
− Vn|∇�(x, t)| = 0

min ∶ J(�) = ∫D

�ij(�)Eijkl�kl(�)H(�)d�

s.t ∶ a(�, �) = L(�),∀� ∈ U, �|�D
�

= �0

(3)∫D

H(𝛷)d𝛺 < Vmax

(4)a(�, �) = ∫D

�ij(�)Eijkl�kl(�)d�

(5)L(�) = ∫D

p�d� + ∫
�

��d�

transformed into a minimum problem with only one volume 
constraint, as shown below.

It can be seen from Eq. (3a) that structural topology opti-
mization problem via the level set method is transformed 
into a minimum problem with a volume constraint. For this 
problem, the gradient-based method [7] is employed to solve 
the objective function. By combining the constraint condi-
tions with the objective function, the Lagrange equation is 
established as follows.

where, � is the Lagrange multiplier, whose value is always 
positive; �

(∫
D
H(�)d� − Vmax

)
 is the term involving vol-

ume constraint of structural topology optimization. As the 
volume constraint changes continuously, the multiplier is 
constantly updated by a simple scheme named bi-section 
algorithm [48]. According to References [8] and [33], the 
topological derivative of the Lagrange equation with respect 
to the virtual time t is established as follows.

2.2  Parameterization process of level set equation

In the conventional level set method for structural topol-
ogy optimization, the level set equation is expressed by 
an implicit PDE, and its explicitly analytical expression is 
unknown. Therefore, in the process of topology optimization 
via the level set method, the level set equation must be dis-
cretized by distance transformation. In the Eulerian method, 
the numerical procedure for solving the Hamilton–Jacobi 
PDE is inevitable. The numerical procedure requires the 
selection of appropriate Up-wind scheme [11], [49], nor-
mal velocity field and re-initialization algorithm to solve the 
equation, and these steps may restrict the actual effect of the 
level set method. For example, the step of re-initialization 
for the level set equation will hinder the generation of new 
holes in the material. In the numerically solving process, the 
discretization itself will also adversely affect the optimiza-
tion results of the level set method. Therefore, a parameteri-
zation approach is used to interpolate the level set equation 
in this section, which avoids the defects of the conventional 
level set method in the discretization process.

min ∶ J(�) = ∫D

�ij(�)Eijkl�kl(�)H(�)d�

(3a)s.t ∶ ∫D

H(𝛷)d𝛺 − Vmax < 0

(6)

L(�,�) = ∫D

�ij(�)Eijkl�kl(�)H(�)d� + �

(
∫D

H(�)d� − Vmax

)

(7)
�L(�,�)

�t
= ∫D

(� − �ij(�)Eijkl�kl(�))Vnds
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With the interpolation scheme and optimization model 
based on the RBF, a globally smoother level set equation 
can be obtained, which effectively improves the numerical 
accuracy and stability of the level set method. The RBF, a 
radial symmetry function centered on a specific point [16], 
can be expressed as follows. 

where ‖∙‖ represents the Euclidean distance in the design 
domain and � represents the geometric position of a particular 
point; and a series of uncorrelated basis functions are formed 
using only one fixed equation form �(‖‖� − xi

‖‖) . According 
to the scope of action, the RBFs can be divided into GS-RBF 
and CS-RBF. Since the interpolation function generated by 
GS-RBF is related to the nodes in the entire design domain, it 
takes a lot of computational cost using GS-RBF in interpola-
tion calculation. Compared with the GS-RBF, the CS-RBF 
is only affected by the nodes within the supported radius r . 
Therefore, the CS-RBF function matrix is a sparse matrix, 
which can save a lot of computational cost in the interpolation 
calculation, and meanwhile keep a similar accuracy of the 
calculation results. In addition, the CS-RBF at one node is a 
radial symmetric matrix, so strictly positive definiteness can 
be guaranteed when related matrix operations are performed. 
To ensure a certain smoothness of the curve, the second-order 
continuous CS-RBF is used for curve interpolation.

where

where r represents the influence coefficient between the 
finite element node � with the coordinates (x, y) and the ref-
erence point xc with the coordinates (xc

i
, yc

i
) , which is deter-

mined by the search radius dmin and the Euclidean distance 
from � to xc . To simplify the calculation, it is generally pre-
ferred to take 2 to 4 times the node size. The level set equa-
tion can be fitted with m different center-point-interpolation 
functions as follows.

In Eq. (11), �i(t) denotes the coefficient of the i th CS-
RBF interpolation, which is the design variable of the level 
set function. �i(�) is the i th CS-RBF mentioned above. By 
substituting Eq. (11) into Eq. (2), the Hamilton–Jacobi PDE 
is transformed into:

(8)�i(�) = �(‖‖� − xi
‖‖) , xi ∈ D

(9)�(r) = max
{
0, (1 − r)4

}
(4r + 1)

(10)r =

√
(x − xc

i
)2 + (y − yc

i
)2

dmin

(11)�(�, t) =

m∑
i=1

�i(t)�i(�)

(12)
m∑
i=1

∙
�
i
(t)�i(�) − Vn|∇�| = 0

Then, the normal velocity Vn in Eq. (12) can be formu-
lated as:

Substituting Eq.  (13) into Eq.  (7), the derivative of 
Lagrange equation to the virtual time factor is expressed as: 

By applying the chain rule, Eq. (14) can be written as:

In Eq. (15), �J
��i

 is the sensitivity of objective function, and 
�V

��i
 is the shape derivative or shape sensitivity.

3  Optimization algorithm of adding shape 
sensitivity constraint factor

3.1  Shape sensitivity constraint factor

As is known from Eq. (15), in the case of parameterization, 
the level set equations of structural boundary have been trans-
formed from PDE to ODEs. According to Eq. (11), the value 
of the level set equation �(�, t) changes with the expansion 
coefficients �i(t) of the respective RBFs. For solving the 
ODEs, the gradient-based optimization algorithm can be used 
to numerically solve the equation, including the OC method 
[3] and the MMA method [50]. Since the MMA algorithm has 
a rigorous theoretical and mathematical derivation basis, it is 
often used to update the design variables to achieve the goal of 
updating the level set equation values at the nodes.

In this work, to enhance the computational efficiency of 
structural topology optimization, a shape sensitivity constraint 
factor is introduced to control the input variable of the MMA 
algorithm. Then, the constrained shape derivative or shape 
sensitivity is written as:

where � is the shape sensitivity constraint factor.
Substituting Eq. (16) into Eq. (15), then the derivative of 

Lagrange equation to the virtual time factor is described as:

where the sensitivity of objective function �J
��i

 and shape 
derivative or shape sensitivity �V

��i
 are, respectively, formu-

lated as follows.

(13)
Vn =

1

|∇�|
m∑
i=1

∙
�
i
(t)�i(�)

(14)
dL

dt
=

m∑
i=1

∙
�
i
(t)∫

�

(� − �ij(�)Eijkl�kl(�))
1

|∇�|�i(�)ds

(15)
dL

dt
=

m∑
i=1

�J

��i

∙
�
i
(t) + �

m∑
i=1

�V

��i

∙
�
i
(t)

(16)
�V

��i
= � ⋅

�V

��i

(17)
dL

dt
=

m∑
i=1

�J

��i

∙
�
i
(t) + �

m∑
i=1

� ⋅

�V

��i

∙
�
i
(t)
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For the simplicity of numerical solution, the Dirac func-
tion can be used to transform the boundary integral into the 
integral of the entire design domain, as is shown below.

where, �(�) denotes the Dirac function, which is the deriva-
tive of the Heaviside function H(�).

3.2  Selection of shape sensitivity constraint factor 
value

In this section, the cantilever beam structure is chosen as an 
example to study the effect of different values of shape sen-
sitivity constraint factor on the results via the parameterized 
level set topology optimization method based on CS-RBF 
proposed in this paper. Figure 2 shows the design domain 
and boundary conditions of the cantilever beam structure. 
The ratio of the length and width of the design domain is 2:1, 
where the left side is fixed and a downward force F = 1 is 
applied at the midpoint of the right side. The design domain 
is divided into 80 × 40 quadrilateral meshes. The Young’s 
modulus of the solid material is set to E0 = 1 . To avoid the 
singularity of the calculation results, the Young’s modulus 
of the void material is set to Emin = 10−9 . The Poisson’s 
ratio is set to � = 0.3 , and the volume fraction constraint is 
set to 0.4. The Lagrange multiplier � is set to 1. Then, the 
convergence process of objective function and volume con-
straint is analyzed with different values of the shape sensitiv-
ity constraint factor � . Figures 3 and 4 show the convergence 
curves of objective function and volume fraction for topol-
ogy optimization of cantilever beam with different values 

(18)
�J

��i
= −∫

�

�ij(�)Eijkl�kl(�)
1

|∇�|�i(�)ds

(19)
�V

��i
= ∫

�

� ⋅

1

|∇�|�i(�)ds

(20)ds = �(�)|∇�|d�

of shape sensitivity constraint factor � = 0.005 , � = 0.01 , 
� = 0.02 , � = 0.05 and � = 0.1 , respectively.

From Figs. 3 and 4, it can be found that in the topology 
optimization process of single-material cantilever beam: 
when the value of � is 0.005, the values of objective func-
tion (structural compliance) and volume fraction remain 
stable after just 20 iterations or so, but the stable value of 
structural compliance is relatively large, which indicates the 
convergence condition is relatively quickly reached while the 
optimal result is not achieved in this case; when the value of 
� is greater than 0.01 and less than 0.05, although the opti-
mization iteration process also remains relatively stable, the 
convergence speed of the optimization iteration decreases 

Fig. 2  Design domain and boundary conditions of cantilever beam 
structure
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gradually with the continuous increase value of � ; when 
the value of � is greater than 0.05, the objective function 
(structural compliance) and volume fraction fail to reach 
their respective stable values even after 200 iterations. This 
means that numerical oscillation is likely to occur in the 
optimization iteration process if the value of � is set some-
what large. Therefore, under the condition that the value of 
� is small enough, reasonably selecting the value of � can 
lead to both good stability and high efficiency of topology 
optimization by this method.

3.3  Description of the numerical algorithm

The flow chart describing the implementing process of the 
optimization aelastic moduli of materiallgorithm in this 
work is shown in Fig. 5.

The implementation process of the optimization algo-
rithm shown in Fig. 5 can also be described as the follow-
ing iterative steps:

1 Initialize Φ0, ϕi, calculate the values of design variables 
�i and then generate meshes;

Fig. 5  Flow chart showing parameterized level set topology optimization process with shape sensitivity constraint factor
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2 Start iteration, and set the iterative number n = 1: 200;
3 Implement Finite element analysis, calculation of dis-

placement matrix U, global stiffness matrix K and value 
of structural compliance C;

4 Calculate the values of the objective function sensitivity 
�J

��i
 and the shape derivative or shape sensitivity �V

��i
 

according to Eqs. (18) and (19) respectively;
5 Apply the MMA algorithm to update the values of 

design variables �i;
6 Update the value of the corresponding level set equation 

according to Eq. (11);
7 Check whether or not the convergence condition 

||J(�)n+1 − J(�)n|| ≤ Tolerance is met: If the convergence 
condition is not met repeat steps 3–6. If the convergence 
condition is met, stop the iteration and output the data 
such as the iterative curves of structural compliance and 
volume fractions

4  Topology optimization of multi‑material 
structure by this method

In the above two sections, the PLSM based on CS-RBF with 
shape sensitivity constraint factor is proposed for topology 
optimization of single-material structure. To further demon-
strate the effectiveness of the proposed method, this method is 
applied to topology optimization of multi-material structure. 
The model for topology optimization of multi-material struc-
ture by this method is described in this section.

For the linearly elastic problem with minimum compliance 
as an objective function, the model for topology optimization 
of multi-material structure here refers to the multi-material 
mathematical model with the level set method in Ref. [40], 
so the elastic modulus E3(�,�k) (for the sake of simplicity, 
topology optimization of three-material structure is taken as 
an example) in the multi-material structural design domain is 
formulated as:

 where, �k represents the k th level set function; E1 , E2 and 
E3 indicate the elastic moduli of material 1, material 2 and 
material 3, respectively. The volume fractions of three mate-
rials can be written as follows.

(21)

E
3(�,�

k
) =H(�1)H(�2)E1 + H(�1)(1 − H(�2))H(�3)E2

+ H(�1)(1 − H(�2))(1 − H(�3))E3

(22)

V1 = ∫
�

H(�1)d�

V2 = ∫
�

H(�1)(1 − H(�2))d�

V3 = ∫
�

H(�1)(1 − H(�2))(1 − H(�3))d�

where, V1 denotes total volume fraction of material 1, mate-
rial 2 and material 3; V2 denotes total volume fraction of 
material 2 and material 3; V3 denotes the volume fraction 
of material 3.

Referring to the multi-material level set topology optimiza-
tion method in Ref. [51], the derivative of the objective func-
tion to the design variables �k

i
, (k = 1, 2, 3) are expressed 

as: dJ
��k

i

= −
∑m

i=1
∫
�
�ij(�)

�E3(�,�k)

��k
i

�kl(�)d� , (k = 1, 2, 3) (23)

According to Eq. (21), the derivation of the elastic modu-
lus to the design variables are formulated as follows.

where, �(�k), (k = 1, 2, 3) indicate the Dirac functions; �i(�) 
indicates the i th CS-RBF at point � . Similarly, according to 
the expressions of volume fractions in Eq. (22), the shape 
derivatives of the volume fractions to the design variables 
�k
i
, (k = 1, 2, 3) can be calculated, and when the shape sen-

sitivity constraint factor � is added, the corresponding for-
mulas for calculating shape sensitivity by this method are 
expressed as follows.

According to Eqs. (24) and (25), the MMA algorithm can 
be used to update the design variables �k

i
, (k = 1, 2, 3) by the 

recursive method.

5  Numerical examples

In this section, three typical numerical examples of struc-
tural topology optimization are presented to demonstrate 
the feasibility and effectiveness of the proposed method. 
Each individual numerical example comprises two cases 

(24)

�E3(�,�i)

��1

i

= �(�1)�i(�)
(
H(�2)E1 + (1 − H(�2))

× H(�3)E2 + (1 − H(�2))(1 − H(�3))E3

)
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��2

i

= �(�2)�i(�)H(�1)
(
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(
H(�3)E2

+(1 − H(�3))E3

))
�E3(�,�i)

��3

i

= �(�3)�i(�)H(�1)(1 − H(�2))
(
E2 − E3

)

(25)
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i
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which involve topology optimization of single-material and 
multi-material structures, respectively. In these examples, 
the proposed method is used to perform structural topology 
optimization with the minimum compliance as the objec-
tive function and the volume fractions as the constraints. 
Then, the topology optimization results obtained by this 
method are analyzed or compared with those obtained by 
other methods, to highlight the efficiency and advantage of 
the proposed method.

5.1  Cantilever beam

For the cantilever beam structure in this example, the design 
domain and boundary conditions are also shown in Fig. 2. 
The ratio of the length and width of the design domain is 
2:1, the left side is fixed, and a downward force F = 1 is 
applied at the midpoint of the right side. The design domain 
is also divided into 80 × 40 quadrilateral meshes. This exam-
ple consists of two cases. The first case of this example 
involves topology optimization of single-material cantilever 
beam structure, which is used to verify the relatively high 
efficiency of the proposed PLSM based on CS-RBF com-
pared with the PLSM based on GS-RBF. In this case, the 
parameter settings are provided below this paragraph. The 
Young’s modulus of the solid material is set to E0 = 1 . To 
avoid the singularity of the calculation results, the Young’s 
modulus of the void material is set to Emin = 10−9 . The 
Poisson’s ratio is set to � = 0.3 , and the volume fraction 
constraint is set to 0.4. The shape sensitivity constraint factor 
is set to � = 0.01 , and the Lagrange multiplier � is set to 1.

Figure 6 (a–d) show the topology optimization process 
of single-material cantilever beam structure by the proposed 
PLSM based on CS-RBF, where black color represents the 
solid material and white color represents the void. Figure 7 
shows the final topology optimization results of single-
material cantilever beam structure obtained by the proposed 

PLSM based on CS-RBF and the PLSM based on GS-RBF 
in Ref. [52]. Figures 8 and 9 show the objective function 
iteration curves and volume fraction iteration curves for 
topology optimization of single-material cantilever beam 
structure by the two methods, respectively. In Figs. 8 and 
9, the red lines represent the curves of objective function 
and volume fraction in the optimization process by the pro-
posed PLSM based on CS-RBF, and the blue lines represent 
the curves of objective function and volume fraction in the 
optimization process by the PLSM based on GS-RBF in Ref. 
[52]. As shown in Figs. 8 and 9: the convergence condition 
is satisfied by the proposed PLSM based on CS-RBF after 
106 iterations, and the compliance of 74.0453 and the vol-
ume fraction of 0.4004 are reached in the meanwhile; the 
convergence condition is satisfied by the PLSM based on 
GS-RBF in Ref. [52] after 127 iterations, and meanwhile the 
compliance of 72.0189 and the volume fraction of 0.4001 
are reached. It can be concluded that the convergence rate of 

Fig. 6  Topology optimization process of single-material cantilever 
beam structure by the proposed PLSM based on CS-RBF. (a Optimi-
zation result after 20 iterations; b Optimization result after 40 itera-
tions; c Optimization result after 60 iterations; d Optimization result 
after 60 iterations, namely the optimal topology result)

Fig. 7  Optimal topology results of single-material cantilever beam 
structure. (a Optimal topology result obtained by the proposed PLSM 
based on CS-RBF; b Optimal topology result obtained by the PLSM 
based on GS-RBF in Ref. [52])
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line represents the change of compliance obtained by the proposed 
PLSM based on CS-RBF; and blue line represents the change of com-
pliance obtained by the PLSM based on GS-RBF in Ref. [52])
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objective function by the proposed PLSM based on CS-RBF 
is higher than that by the PLSM based on GS-RBF.

Due to large difference in the computational amount of 
interpolation between the CS-RBF and the GS-RBF per 
iteration, the two factors of iteration number and objec-
tive function value cannot clearly approach a conclusion 
that the speed of the proposed PLSM based on CS-RBF is 
higher than that of the PLSM based on GS-RBF. Therefore, 
a computer whose configuration with Intel Core i5-3450 
CPU@3.2 GHz and 16 GB of memory is chosen to cal-
culate the time consumed by the proposed PLSM based 
on CS-RBF and the PLSM based on GS-RBF in Ref. [52], 
respectively, where the same convergence and initial design 
conditions are set. The comparative analysis data are listed 
in Table 1.

Table 1 shows that: for the proposed PLSM based on 
CS-RBF, the time consumed in a single iteration is only 
0.0485 s, the number of iterations is 106, and the total time 
consumed from the initial design to the optimal result is 
5.478 s; while for the PLSM based on GS-RBF in Ref. [52], 

the time consumed in a single iteration is 0.1723 s, the num-
ber of iterations is 127, and the total time consumed from 
the initial design to the optimal result is 22.17 s. It can be 
found from Table 1 that: the time spent per iteration by the 
proposed PLSM based on CS-RBF in this paper is 71.85% 
lower than that by the PLSM based on GS-RBF; and the 
total time spent in the optimization process by the proposed 
PLSM based on CS-RBF in this paper is 75.29% lower than 
that by the PLSM based on GS-RBF.

From Table 1 and Fig. 8, it can be concluded that the 
optimization speed is greatly improved at the cost of a small 
amount of compliance (2.8%). Therefore, the proposed 
method can effectively enhance the optimization efficiency 
and reduce design cost in engineering practice.

The second case of this example involves topology opti-
mization of three-material cantilever beam structure, which 
is used to further demonstrate the effectiveness of the pro-
posed method. In this case, the design domain and bound-
ary conditions are the same as those in the first case of this 
example. The design domain is also divided into 80 × 40 
quadrilateral meshes. The parameter settings in this case are 
provided below this paragraph. The porous structure shown 
in Fig. 10 represents the initial material distribution of three-
material cantilever beam structure, where the red part rep-
resents material 1, the green part represents material 2, and 
the blue part represents material 3. The corresponding elas-
ticity moduli of the three materials are set to E1 = 1 , E2 = 3 
and E3 = 9 , respectively. The volume fraction constraints 
of the three materials are set to Vol1 = 0.1 , Vol2 = 0.1 and 
Vol3 = 0.3 , respectively.

Topology optimization of three-material cantilever 
beam structure is carried out by the proposed method and 
the multi-material level set method in Ref. [40]. Figure 11 
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Fig. 9  Curves of volume fraction in topology optimization of single-
material cantilever beam structure by two different methods. (Red 
line represents the change of volume fraction obtained by the pro-
posed PLSM based on CS-RBF; and blue line represents the change 
of volume fraction obtained by the PLSM based on GS-RBF in Ref. 
[52])

Table 1  Comparison of time cost, iteration numbers and optimal value of compliance for topology optimization of single-material cantilever 
beam structure by two different methods

Optimization methods Time spent for each itera-
tion (seconds)

Number of itera-
tions

Optimal value of com-
pliance

Time spent for 
all iterations 
(seconds)

The proposed PLSM based on CS-RBF 0.0485 106 74.05 5.478
The PLSM based on GS-RBF in Ref. [52] 0.1723 127 72.02 22.17

Fig. 10  Initial material distribution of three-material cantilever beam 
structure
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represents the final topology optimization results of three-
material cantilever beam structure obtained by the two 
above-mentioned methods. From Fig. 11, it can be seen that 
the boundary of topology optimization result obtained by the 
proposed method is clearer than that by the multi-material 
level set method in Ref. [40]. Figures 12 and 13 represent 
the convergence curves of objective function and volume 
fraction in topology optimization of three-material cantile-
ver beam structure by the two above-mentioned methods, 
respectively. It can be found from Figs. 12 and 13 that: when 
topology optimization iteration stops at 116 steps by the 
proposed method, the value of objective function is 9.937, 
and meanwhile volume fractions of the three materials are 
Vol1 = 0.1001 , Vol2 = 0.0999 and Vol3 = 0.3000 , respec-
tively; when topology optimization iteration stops at 150 
steps by the multi-material level set method in Ref. [40], 
the value of objective function is 10.105, and meanwhile 
volume fractions of the three materials are Vol1 = 0.1063 , 
Vol2 = 0.0944 and Vol3 = 0.3038 , respectively.

In this case, it can be concluded that compliance of the 
final topology optimization result obtained by the proposed 
method is lower than that obtained by the multi-material 
level set method in Ref. [40], and the number of iteration 
steps by this method is less than that by the multi-material 
level set method in Ref. [40] in the optimization process. 
In other words, this method greatly improves the effect and 
speed in topology optimization of three-material cantilever 
beam structure.

5.2  Two‑bar bracket

Figure 14 shows the design domains and boundary condi-
tions of two-bar bracket structure, where the ratio of the 
length and width of the design domain is 2:1. The left side 
is fixed and a downward force F = 1 is applied at the mid-
point of the right side. The design domains are divided into 
50 × 100 quadrilateral meshes. In Fig. 14, (a) represents 
the design domain of solid material and its boundary con-
ditions, (b) represents the design domain of solid material 
with a circular hole whose radius equals 15 times the size 
of the divided meshes and its boundary conditions, and (c) 

represents the design domain of porous material and its 
boundary conditions. This example consists of two cases. 
The first case of this example involves topology optimization 
of single-material two-bar bracket structure with different 
design domains, which is used to verify the stability of the 
proposed method. In this case, the parameter settings are 
provided below this paragraph. The Young’s modulus of 

Fig. 11  Final topology optimization results of three-material canti-
lever beam structure obtained by two different methods. (a Optimal 
topological structure by the proposed method; b Optimal topological 
structure by the multi-material level set method in Ref. [40])
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the solid material is set to E0 = 1 . To avoid the singularity 
of the calculation results, the Young’s modulus of the void 
material is set to Emin = 10−9 . The Poisson’s ratio is set to 
� = 0.3 , and the volume fraction constraint is set to 0.3. The 
shape sensitivity constraint factor is set to � = 0.01 , and the 
Lagrange multiplier � is set to 1.

Figure 15 shows the topology optimization results of 
single-material two-bar bracket structure with three dif-
ferent initial design domains by the proposed method. Fig-
ure 16 shows the curves of objective function in the topology 
optimization of single-material two-bar bracket structure 
with three different initial design domains by the proposed 
method. As shown in Fig. 15, the distribution of material 
is almost the same as one another for the final topology 

optimization results of single-material two-bar bracket 
structure with three different initial design domains by the 
proposed method. As shown in Fig. 16, the compliance val-
ues are 8.0879, 8.0968, and 8.0846 corresponding to the 
final topology optimization results of single-material two-
bar bracket structure with initial design domains of solid 

(a) (b) (c)

Fig. 14  Design domains and boundary conditions of two-bar bracket structure.  (a design domain of solid material; b design domain of solid 
material with a circular hole whose radius equals 15 times the size of the divided meshes; c design domain of porous material)

Fig. 15  Final topology optimization results of single-material two-bar 
bracket structure with three different initial design domains. ((a), (b) 
and (c) represent optimal topology results of single-material two-bar 
bracket structure with initial design domains of solid material, solid 
material with a circular hole whose radius equals 15 times the size of 
the divided meshes and porous material, respectively)
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Fig. 16  Curves of objective function in topology optimization of 
single-material two-bar bracket structure with three different initial 
design domains. (The legends ‘a’, ‘b’ and ‘c’ represent the compli-
ance values of single-material two-bar bracket structure with initial 
design domains of solid material, solid material with a circular hole 
whose radius equals 15 times the size of the divided meshes and 
porous material, respectively)
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material, solid material with a circular hole, and porous 
material, respectively.

From this case, it can be found that: when the proposed 
method is used under the same constraints, the topology 
optimization results of single-material two-bar bracket struc-
ture are not affected by the initial design domains. It proves 
that the proposed method in this paper has good stability for 
structural topology optimization.

The second case of this example involves topology opti-
mization of three-material two-bar bracket structure, which 
is used to further demonstrate the effectiveness of the pro-
posed method. In this case, the design domain and bound-
ary conditions are the same as those illustrated in Fig. 14a. 
The parameter settings in this case are provided below this 
paragraph. Figure 17a shows the initial material distribution 
of three-material two-bar bracket structure, where the red 
part represents material 1, the green part represents mate-
rial 2, and the blue part represents material 3. The corre-
sponding elasticity moduli of the three materials are set to 
E1 = 1 , E2 = 3 and E3 = 9 , respectively. The volume frac-
tion constraints of the three materials are set to Vol1 = 0.1 , 
Vol2 = 0.1 and Vol3 = 0.3 , respectively. The design domain 
is also divided into 50 × 100 quadrilateral meshes.

Figure 17b illustrates the optimal topology result of three-
material two-bar bracket structure obtained by the proposed 
method after 64 iterations, and the corresponding compli-
ance value is 0.81051. It can be found from the optimal 
result that: the strong material (material 3) is distributed in 
the main portion of the optimized structure to bear most of 
the stress induced by the external force, the volume frac-
tion of which is large; the volume fraction of the interme-
diate strength material (material 2) and the weak material 
(material 1) are small, which are distributed in the form of 

auxiliary materials to consolidate the overall performance 
of the structure.

Figure 18 shows the iterative curves of the objective func-
tion and volume fraction in topology optimization of three-
material two-bar bracket structure by this method. From 
Fig. 18, it can be found that: after only 20 iterations, the 
values of objective function and volume fraction gradually 
become stable, indicating that this method has the advan-
tages of high speed and stable process, no numerical oscil-
lation, and no other adverse effects when applied to topology 
optimization of multi-material two-bar bracket structure.

From this case, it can be concluded that this method can 
maintain high efficiency of the optimization process and 
good stability of the optimization results in the topology 
optimization of relatively complex multi-material structure.

5.3  Three‑point‑load bridge

The design domain of the three-point-load bridge is shown 
in Fig. 19, where the ratio of length and width is 8:3. The 
lower-left corner of the design domain is fixed and the 
lower-right corner of the design domain is simply supported. 
Two downward forces of F = 1 are applied at the one-fourth 
point and the three-fourth point of the lower side, and mean-
while a downward force of F = 2 is applied at the midpoint 
of the lower side. This example consists of two cases. The 
first case of this example involves topology optimization of 
single-material three-point-load bridge, which is presented 
to highlight the effectiveness and advantage of the proposed 
method. In this case, the parameter settings are provided 

(a) (b)

Fig. 17  Initial material distribution and final topology optimization 
result of three-material two-bar bracket structure.  (a Initial material 
distribution of three-material two-bar bracket structure; b Optimal 
topology of three-material two-bar bracket structure by the proposed 
method)
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Fig. 18  Curves of objective function and volume fraction in topol-
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tively)



869Engineering with Computers (2021) 37:855–872 

1 3

below this paragraph. The design domain is divided into 
80 × 30 quadrilateral meshes, the Young’s modulus of the 
solid material is set to E0 = 1 . To avoid the singularity of 
the calculation results, the Young’s modulus of the void 
material is set to Emin = 10−9 . The Poisson’s ratio is set to 
� = 0.3 , and the volume fraction constraint is set to 0.4. The 
shape sensitivity constraint factor is set to � = 0.02 , and the 
Lagrange multiplier � is set to 1. To make the optimization 
process quick, a porous structure is also used in this case. 
Thus, the radius of the hole in the design domain is set to 
r = 3.

In this case, the SIMP interpolation method, the conven-
tional level set method and the proposed method are used 
for solving the same structural topology optimization design 
problem, and then the final topology optimization results 
obtained by the three methods are compared to highlight the 
effectiveness and advantage of the proposed method.

The final topology optimization results of single-material 
three-point-load bridge obtained by the proposed method, 
the conventional level set method, and the SIMP interpola-
tion method are shown in Figs. 20, 21, and 22, respectively. 
From Figs. 20, 21, and 22, it can be found that the proposed 
method is the most satisfactory in terms of the smoothness.  

Figures 23 and 24 show the iterative curves of objective 
function and volume fraction in the topology optimization 
of single-material three-point-load bridge by the three dif-
ferent methods, respectively. In Figs. 23 and 24, the red lines 
represent the topology optimization process via the proposed 

method, the compliance value of the final optimization result 
is 239.2, and the corresponding volume fraction is 0.3999; 
the blue lines represent the topology optimization process 
via the conventional level set method, the compliance value 
of the final optimization result is 273.0, and the correspond-
ing volume fraction is 0.4001; the green lines represent 
the topology optimization process via the SIMP interpo-
lation method, and the optimization process has a final 

Fig. 19  Initial design domain of three-point-load bridge

Fig. 20  Final topology optimization result of single-material three-
point-load bridge by the proposed method

Fig. 21  Final topology optimization result of single-material three-
point-load bridge by the conventional level set method

Fig. 22  Final topology optimization result of single-material three-
point-load bridge by the SIMP interpolation method
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Fig. 23  Curves of objective function in the topology optimization 
of single-material three-point-load bridge by three different meth-
ods. (Red, blue, and green lines represent the values of compliance 
obtained by the proposed method, the conventional level set method, 
and the SIMP interpolation method, respectively)
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compliance value of 290.9 and a volume fraction of 0.4000. 
From Figs. 23 and 24, it can be found that: among the three 
methods, the proposed method has resulted in the smallest 
compliance value of optimal result (239.2 < 273.0 < 290.9) 
in the case of almost identical volume fractions.

The second case of this example involves topology opti-
mization of three-material three-point-load bridge, which is 
used to further demonstrate the effectiveness and advantage 
of the proposed method. In this case, the design domain 
and boundary conditions are the same as those in the first 
case of this example. The parameter settings in this case 
are provided below this paragraph. Figure 25a indicates the 
initial material distribution of three-material three-point-
load bridge, where the red part represents material 1, the 
green part represents material 2, and the blue part repre-
sents material 3. The corresponding elasticity moduli of the 

three materials are set to E1 = 1 , E2 = 3 and E3 = 9 , respec-
tively. The volume fraction of the three materials are set to 
Vol1 = 0.1 , Vol2 = 0.1 and Vol3 = 0.3 , respectively.

Figure 25b shows the optimal topology result of three-
material three-point-load bridge by the proposed method 
after 177 iterations, and the corresponding compliance value 
is 24.975. It can also be found from the optimal result that: 
the strong material (material 3) is distributed in the main 
portion of the optimized structure to bear most of the stress 
induced by the external force, the volume fraction of which 
is large; the volume fraction of the intermediate strength 
material (material 2) and the weak material (material 1) are 
small, which are distributed in the form of auxiliary materi-
als to consolidate the overall performance of the structure.

Figure 26 shows the iterative curves of the objective func-
tion and volume fraction in the topology optimization of 
three-material three-point-load bridge by this method. From 
Fig. 26, it can also be found that: after only 20 iterations, the 
values of objective function and volume fraction gradually 
become stable, indicating that the proposed method has the 
advantages of high speed and stable process, no numerical 
oscillation, and no other adverse effects when applied to 
topology optimization of multi-material multi-point-load 
bridge.

From this case, it can also be concluded that this method 
can maintain high efficiency of the optimization process and 
good stability of the optimization results in the topology 
optimization of relatively complex multi-material structure.

6  Conclusions

In this contribution, a PLSM based on CS-RBF with 
shape sensitivity constraint factor is proposed for struc-
tural topology optimization. The parameterized level set 
topology optimization method based on CS-RBF has 
good numerical stability, by which the optimal design 
results with smooth boundary can be obtained. Inherit-
ing the advantages mentioned above, the proposed method 
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Fig. 24  Curves of volume fraction in the topology optimization of 
single-material three-point-load bridge by three different methods. 
(Red, blue, and green lines represent the values of volume fraction 
obtained by the proposed method, the conventional level set method, 
and the SIMP interpolation method, respectively)

(a) (b)

Fig. 25  Initial material distribution and final topology optimization result of three-material three-point-load bridge. (a Initial material distribu-
tion of three-material three-point-load bridge; b Optimal topology of three-material three-point-load bridge by the proposed method)
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controls the objective function by adding shape sensitivity 
constraint factor in the process of updating the design vari-
ables via the MMA algorithm. With the shape sensitivity 
constraint factor, the step length is changeable and control-
lable in the updating iterative process of MMA algorithm 
so as to increase the speed of the proposed method. The 
balance of convergence speed and numerical stability can 
be reached by the values of sensitivity and shape deriva-
tive. Under the condition that the optimized design result 
has enough accuracy, the computational cost is greatly 
reduced and the convergence speed is also increased. Sev-
eral typical single-material and multi-material numerical 
examples are presented to demonstrate the effectiveness 
and feasibility of the proposed method. Numerical simula-
tion results show that: besides greatly reducing the com-
putational cost, this method has the following advantages. 
(1) This method has good numerical stability, by which 
the optimization results with smooth boundary can be 
obtained. (2) The optimization results have little depend-
ence on the initial designs when new holes are generated. 
(3) With the help of shape sensitivity constraint factor, it 
is no longer necessary for this method to initialize the level 
set equation, so the stability of the optimization process is 
greatly enhanced. (4) Since the gradient-based MMA algo-
rithm with rigorous theoretical derivation is used to update 
the design variables, this method is suitable for the com-
plex optimization design system with multiple constraints.

In this work, the proposed method has already been dem-
onstrated by the examples involving topology optimization 

of 2D structures. As stated in the introduction above, the 
PLSM based on CS-RBF is essentially a SIMP method. 
The SIMP method has already been applied to addressing 
3D topology optimization problems. Therefore, it is certain 
that the proposed method can also be extended to dealing 
with topology optimization of 3D structures. Nevertheless, 
achieving this goal currently is quite challenging for us due 
to some technical difficulties. Accordingly, we intend to 
pursue this goal by tackling these technical difficulties in 
future work.
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