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Abstract
Piles are widely applied to substructures of various infrastructural buildings. Soil has a complex nature; thus, a variety of 
empirical models have been proposed for the prediction of the bearing capacity of piles. The aim of this study is to propose a 
novel artificial intelligent approach to predict vertical load capacity of driven piles in cohesionless soils using support vector 
regression (SVR) optimized by genetic algorithm (GA). To the best of our knowledge, no research has been developed the 
GA-SVR model to predict vertical load capacity of driven piles in different timescales as of yet, and the novelty of this study 
is to develop a new hybrid intelligent approach in this field. To investigate the efficacy of GA-SVR model, two other models, 
i.e., SVR and linear regression models, are also used for a comparative study. According to the obtained results, GA-SVR 
model clearly outperformed the SVR and linear regression models by achieving less root mean square error (RMSE) and 
higher coefficient of determination (R2). In other words, GA-SVR with RMSE of 0.017 and R2 of 0.980 has higher perfor-
mance than SVR with RMSE of 0.035 and R2 of 0.912, and linear regression model with RMSE of 0.079 and R2 of 0.625.

Keywords  Driven pile · SVR · GA · Hybrid models

1  Introduction

Literature consists of many experimental and theoretical 
studies into the prediction of the load-bearing capacity and 
behavior of piles though the mechanisms have not yet clari-
fied completely for scholars of the field. In case of the piles 
that are driven into cohesionless soil, the problem is of high 
complexity and this is because of the sensitive nature of the 
factors that have impact on the behaviors of the pile. These 
factors can not only be quantified easily, but also involve 

extensive uncertainties. These factors include the stress and 
strain history of the soil, the impacts of soil fabric and com-
pressibility, installation effects, and the difficulty of attaining 
undisturbed samples of soil.

To address effectively these complexities, the correla-
tions with in situ experiments, e.g., the cone penetration 
test, the standard penetration test, and the pressure meter, 
are applied to numerous cases. Such tests show, to some 
degree, the natural conditions of soil though they suffer from 
many limitations. For instance, the standard penetration tests 
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have considerably inherent variability, and they do not show 
the compressibility of the soil. On the other hand, if such 
tests are correlated with load test data upon a regional basis, 
instead of employing general correlations, they can deliver 
acceptable predictions [1, 2].

The limitations of the correlations that are attained 
with the in situ tests have made the researchers to develop 
numerous empirical relations between pile capacity and 
soil parameters in both end-bearing and friction piles, on 
the basis of load test results. The aim is providing rapid 
and yet practically accurate estimations regarding the pile 
capacity. Four of the most popular empirical methods in 
the literature have been introduced by Meyerhof [3], Coyle 
and Castello [4], the American Petroleum Institute [5], and 
Randolph [6]. However, they either oversimplify or inap-
propriately consider the impacts of given factors. The factors 
include residual stresses, the stress history, and actual soil 
parameters that exist following the pile driving operation. 
The designing recommendations these methods provide for 
users have an inconsistency with the physical processes that 
dictate the actual pile capacity [6]. As a result, a substitute 
method needs to be developed in a way to resolve the uncer-
tainties that we face in the prediction process of the pile load 
capacity [2].

In recent years, in the geotechnical engineering fields of 
study, artificial neural networks (ANNs) have been imple-
mented effectively to a variety of applications [7–13]. A 
multivariate adaptive regression spline (MARS) approach 
was used by Samui [14] for the purpose of determining the 
ultimate capacity of the driven piles that are installed in 
sands. In MARS, a variety of parameters are used as the 
input variables, including driven pile area (A), effective ver-
tical stress at the tip of the pile ( �′

v
 ), soil at the tip of the 

derived pile ( �tip ) and angle of shear resistance of the soil 
surrounding the shaft ( �shaft ), and pile length (L). The pile 
ultimate bearing capacity is set as the MARS output. Samui 
[14] compared the results obtained from MARS to those of 
other ANN-based models, e.g., the generalized regression 
neural network (GRNN) model. In addition, an equation was 
eventually proposed on the basis of the proposed MARS. 
On the other hand, the driven pile bearing capacity in clay 
was studied by Dzagov and Razvodovskii [15]. Depending 
on the surrounding soil properties and the length of pile, the 
driven piles are capable of providing basic characteristics 
to be recognized as both end bearing and/or friction piles. 
Having integrated the artificial neural networks (ANNs) and 
genetic algorithm (GA), Momeni et al. [16] attempted to 
develop a hybrid model applicable to the prediction of the 
pile bearing capacity. Literature also contains other AI tech-
niques effectively applied to the prediction of the bearing 
capacities of a variety of piles by means of ANN [17–19], 
functional networks (FN) [20], relevance vector machines 
(RVM) [21], support vector machines (SVM) [22], extreme 

learning machines (ELM) [23], and MARS [20, 24]. ANN 
has been applied not only to the load-bearing capacity of 
piles, but also to the prediction of the settlement of piles on 
the basis of the cone penetration tests (CPT) [25]. On the 
other hand, ANN suffers from the drawback of poor gen-
eralization, which is due to the fact that, during the train-
ing process, it attains local minima and it requires iterative 
learning steps to achieve learning performances of a higher 
quality.

Moayedi and Jahed Armaghani [26] offered a combina-
tion of ANN and imperialism competitive algorithm (ICA) 
to predict bearing capacity of driven pile. Their results indi-
cated that the performance of ICA–ANN was comparable 
with higher accuracy in prediction of K of the bearing capac-
ity of driven pile than ANN one.

In other study, Moayedi and Hayati [27] predicted the 
friction capacity of driven piles through SVM, genetic pro-
gramming (GP) and adaptive neuro-fuzzy inference system 
(ANFIS). Performance assessment indicated that the ANFIS 
possessed superior predictive ability than the GP and SVM 
models.

The ANFIS model was compared with hybrid ICA–ANN 
for the prediction of bearing capacity of driven pile in the 
study conducted by Shaik et al. [28]. They showed the supe-
riority of ICA–ANN over ANFIS in terms of performance 
measures.

Recently, Harandizadeh et al. [29] presented a hybrid 
intelligent model based on ANFIS in combination with 
group method of data handling (GMDH) to predict bearing 
capacity of driven pile. Then the developed ANFIS–GMDH 
was optimized by particle swarm optimization (PSO). 
They compared the performance of proposed model with 
ANN performance, and indicated the effectiveness of 
ANFIS–GMDH–PSO model to predict the bearing capac-
ity of driven pile.

This research is mainly aimed to present a new artificial 
intelligent approach to predict the total bearing capacity of 
the driven pile that is installed inside the cohesionless soil 
using support vector regression (SVR) optimized by genetic 
algorithm (GA). In other words, the main contribution of 
this study is to propose a new GA-SVR model in the field 
of driven piles. To the best of our knowledge, no research 
has developed the GA-SVR model to predict vertical load 
capacity of driven piles in different timescales as of yet. 
Additionally, SVR and linear regression models are also 
used for comparison.

2 � Dataset

To develop the models capable of predicting the vertical 
capacity of piles, the dataset of Darrag [1] was used in this 
study. This database comprises in situ tests carried out on 
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soil together with the pile load test data coming from various 
parts of the world. In this database, there are input parame-
ters such as �tip , �shaft , L, �′

v
 , and A, whereas the output is set 

to be the total pile capacity (Qm). In the used database, �tip , 
�shaft , L, �′

v
 , A and Qm were varied in the ranges of 31–41, 

28–39, 3–47.2 m, 38–475 KN/m2, 0.0061–0.6568 m2 and 
75–5604 KN, respectively. In modeling processes of GA-
SVR, SVR and linear regression, the datasets were separated 
into two parts in a random way: training (47 data samples) 
and testing (12 data samples). A part of datasets used in this 
study is given in Table 1.

3 � Optimizing the SVR parameters by GA

3.1 � Support vector regression (SVR)

Support vector machines (SVM) have been recognized as a 
proper tool for predicting aims [30, 31]. The basis of SVM 
is the principle of structural risk minimization, and it enjoys 
an acceptable generalization with only a few number of 
data samples. SVM is actually a generation learning system 
that has been developed on the basis of developments that 
occurred in statistical learning theory. It helps researchers 
to map non-linear form of an n-dimensional input space and 
change it to a high-dimensional feature space in which, for 
instance, a linear classifier is applicable. SVM is capable of 
training the non-linear models on the basis of the principles 
of structural risk minimization, whose main aim is the mini-
mization of an upper bound of the generalization errors, not 
the minimization of the empirical errors (as aimed by other 
neural networks). The basis of such induction principle is 
the fact that generalization error is bounded by the sum of 
the empirical error and a confidence interval term, which 
is dependent upon the Vapnik–Chervonenkis (VC) dimen-
sion. In accordance with this principle, SVM can attain an 
optimal model structure through the establishment of an 
appropriate balance between the VC confidence interval and 
the empirical error, which finally results in a generalization 

performance with a higher quality compared to that of the 
other ANN [32]. An added bonus of SVM is that its training 
is an exclusively solvable quadratic optimization problem, 
and in SVM, the solution complexity is only dependent upon 
the intricacy of the desired solution, not upon the dimen-
sionality of the input space. As a result, SVM employs a 
non-linear mapping (on the basis of a kernel function) for 
the transformation of an input space into a high-dimensional 
space; then, within such space, it seeks for a non-linear rela-
tion between inputs and outputs. Note that SVM enjoys a 
rigorous theoretical background and, additionally, it is capa-
ble of finding global optimal solutions to the problems that 
have small training samples, non-linearity, high dimension, 
and local optima. In the beginning, SVM was developed to 
be applied to the pattern recognition problems [33], and it 
is only in the recent years that it has demonstrated a high 
capacity in solving a wide range of problems, e.g., non-lin-
ear regression. Support vector regression (SVR) employs 
the same principles as the SVM for classification, with only 
a few minor differences such as the margin of tolerance is 
set in approximation to the SVM which would have been 
requested from the problem [34]. For more detailed informa-
tion about the SVR, please refer to [34–38]. Figure 1 shows 
a view of SVR structure. In this figure, a∗

i
− ai and B param-

eters are the weights of support vectors and polarization, 
respectively.

3.2 � Model development

To have a high precision and efficiency in estimations made 
by SVR models, it is of high importance to accurately select 
the following SVR parameters: the regularization parameter 
(C), Kernel parameter ( � ), and epsilon ( � ) [40]. The values 
set for the above-noted parameters have a great impact on the 
model performance as explained in the following.

The C parameter (or box constraints) designates the pen-
alty of the approximation function. The C value is recom-
mended not to be too small or too large. In case it is too 
small, it considers an inadequate penalty upon the fitting of 
the training data, while in case it is selected too large, it can 

Table 1   A part of datasets used in this study

�shaft �tip �′

v
 (KN/m2) L (m) A (m2) Qm (KN)

33 33 335 29.3 0.0557 3203
35 35 178 17.7 0.0929 1779
32 37 176 17.5 0.3855 3069
32 34 198 21 0.2313 3200
31 31 134 16 0.0613 480
35.5 35.5 148 15.2 0.0864 1014
35 36.5 158 16.2 0.2109 2295
38 40 196 16.5 0.209 3923
33 37.5 210 20.2 0.1468 3042

Fig. 1   Structure of the SVR [39]



826	 Engineering with Computers (2021) 37:823–831

1 3

result in overfitting problems upon the training data [40]. 
The responsibility of the insensitivity loss function ( � ) is 
controlling the number of support vectors; this parameter 
also affects the SVR performance. On the other hand, the 
� parameter is for mapping non-linear function into higher 
dimensional space; in other words, it measures the SVR 
capacity of handling the problems of non-linearity [40, 41]. 
This is worth mentioning that numerous studies carried out 
previously into SVR performance still make use of manual 
or grid search for the purpose of choosing the hyperpa-
rameters of SVR [42]. The problem is that in cases where 
there is a broad parameter searching range, such approaches 
get computationally demanding and, at the same time, the 
achievement of the best parameters is of no guarantee in 
these approaches. Because of such shortages, researchers 
have designed some other techniques of searching aiming 
at solving the optimization problems. Remember that GA is 
a prevailing global optimization technique first introduced 
by Holland in 1975. It is highly attractive for scholars of 
numerous scientific fields because of its outstanding global 
searching capacity [41–44]. The present study makes the use 
of GA to find the optimal combination of SVR parameters. 

Figure 2 clearly depicts a flowchart of the optimization of 
SVR hyperparameters by means of GA.

3.2.1 � The proposed GA‑SVR

Here is proposed the GA-SVR model using the MATLAB 
2018b platform. The MATLAB SVM toolbox containing 
SVR was utilized to develop the model. This toolbox was 
integrated with Global Optimization Toolbox in MATLAB 
to optimize the parameters of SVR. In a random way, 80% 
of whole data were classified into training dataset and the 
remaining 20% were assigned to the testing dataset. In other 
words, 47 and 12 data samples were used for training and 
testing parts. The former was applied to developing the pro-
posed model.

In the training process, an algorithm is utilized to estab-
lish the functional relationship between the inputs and the 
corresponding target. Such process is normally done to 
explore the suitable set of SVR parameters, which decreases 
the cross-validation errors as far as possible. Before the 
beginning of model training, a normalization process was 
done on the training data in a way to make sure that it is 

Fig. 2   GA-SVR structure [45]
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computationally efficient. After that, the training data (inputs 
and target), the SVR parameter range, the population size 
and the number of generation were inserted into GA. In the 
present paper, the upper bound and lower bounds of the 
SVR parameters were specified as C (1e−08, inf), � (1e−6, 
8), � (1e−8, inf), whereas the maximum iteration and the 
population size were set to 300. Also, the values of 0.8 and 
0.25 were assigned for the crossover and mutation rates, 
respectively, based on trial and error method. When the 
functional relationships are learnt from the training dataset 
by the model in a successful way, it is the turn for the testing 
dataset to be employed for the purpose of validating the pre-
cision of the proposed model in its predictions. Table 2 lists 
the most proper set of SVR parameters that were achieved 
in the course of model training; they would be utilized later 
for testing upon the new dataset (testing dataset). Note that, 
the GA-SVR explained here was trained and tested based 
on five input parameters, i.e., �tip , �shaft , L, �′

v
 , and A. The 

performance of the proposed GA-SVR model to predict Qm 
is discussed in Sect. 4.

4 � Results and discussion

In this study, SVR, and GA-SVR models are used to predict 
Qm. To demonstrate the effect of input parameters on Qm, the 
different SVR and GA-SVR models were constructed based 
on different combinations of input parameters. In other 
words, six different SVR models and six different GA-SVR 
models were constructed in this study. The inputs of the 
mentioned models were according to the following:

•	 SVR model 1; inputs: �shaft , �tip , L, �′

v
 , and A

•	 SVR model 2; inputs: �tip , L, �′

v
 , and A

•	 SVR model 3; inputs: �shaft , L, �′

v
 , and A

•	 SVR model 4; inputs: �shaft , �tip , L, and A
•	 SVR model 5; inputs: �shaft , �tip , �′

v
 , and A

•	 SVR model 6; inputs: �shaft , �tip , L, and �′

v

•	 GA-SVR model 1; inputs: �tip , �shaft , L, �′

v
 , and A

•	 GA-SVR model 2; inputs: �tip , L, �′

v
 , and A

•	 GA-SVR model 3; inputs: �shaft , L, �′

v
 , and A

•	 GA-SVR model 4; input: �shaft , �tip , L, and A
•	 GA-SVR model 5; input: �shaft , �tip , �′

v
 , and A

•	 GA-SVR model 6; inputs: �shaft , �tip , L, and �′

v
.

Apart from the mentioned SVR and GA-SVR models, 
six different linear regression models were also constructed 
based on different independent parameters as follows:

•	 Linear regression model 1; inputs: �shaft , �tip , L, �′

v
 , and 

A
•	 Linear regression model 2; inputs: �tip , L, �′

v
 , and A

•	 Linear regression model 3; inputs: �shaft , L, �′

v
 , and A

•	 Linear regression model 4; inputs: �shaft , �tip , L, and A
•	 Linear regression model 5; inputs: �shaft , �tip , �′

v
 , and A

•	 Linear regression model 6; inputs: �shaft , �tip , L, and �′

v
.

The generally form of linear regression can be formulated 
as

where X , x1…x5 are the coefficients of equation, and can 
be determined by SPSS software. Considering the analyses, 
the following equations were constructed based on different 
input parameters:

Note that Eqs. 2–7 were constructed based on normalized 
inputs and output. From Eq. 2, it can be found that Qm has 
a direct relationship with �shaft , �tip , �′

v
 and A parameters, 

while it has an indirect relationship with the L parameter. To 
check the performance of all eighteen models (six SVR, six 
GA-SVR and six linear regression models), three well-known 
criteria, namely root mean square error (RMSE), coefficient 
of determination (R2) and mean absolute error (MAE) were 
used, which can be expressed as follows [46–56]:

(1)
Qm = X + x1 ⋅ �shaft + x2 ⋅ �tip + x3 ⋅ �

�

v
+ x4 ⋅ L + x5 ⋅ A,

(2)
Qm = − 0.034 + 0.034�shaft + 0.211�tip + 2.460��

v

− 2.079L + 0.850A,

(3)
Qm = − 0.021 + 0.234�tip + 2.408��

v
− 2.036L + 0.842A,

(4)
Qm = − 0.025 + 0.172�shaft + 3.022��

v
− 2.620L + 0.927A,

(5)
Qm = − 0.081 − 0.106�shaft + 0.457�tip + 0.424L + 0.743A,

(6)
Qm = − 0.096 − 0.058�shaft + 0.401�tip + 0.466��

v
+ 0.762A,

(7)
Qm = 0.065 − 0.181�shaft + 0.559�tip + 1.371��

v
− 0.954L.

(8)RMSE =

√√√
√1

n

n∑

i=1

(
Qma − Qmp

)2
,

Table 2   SVR parameters 
optimized by GA

Parameter Value

C 29.0682
� 4.1149
� 0.0082
Kernel function Radial 

basis 
function
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where Qma and Qmp are the actual and predicted Qm val-
ues, and n is the number of total data (here 59 data). A value 
closer to one for R2, and closer to zero for RMSE and MAE 
indicates a better model. The values of R2, RMSE and MAE 
obtained from linear regression, SVR and GA-SVR models 
are given in Table 3. It is worth mentioning that in the analy-
sis of the predictive models, we only consider the results of 
the testing phase. According to Table 3, among the linear 
regression models, model 1 has the lowest MAE and RMSE 
values, while model 3 has the highest R2 value. Also, among 
the SVR models, model 1 has the lowest MAE and RMSE 
values, and the highest R2 value. On the other hand, GA-
SVR model 1 has also the lowest MAE and RMSE values, 
and the highest R2 value among the other GA-SVR models. 
Considering all predictive models, it can be seen that model 
1 of GA-SVR with R2 of 0.980, RMSE of 0.017 and MAE of 
0.017 has the best performance compared to SVR and linear 
regression models, as bolded in Table 3. In other words, the 
results confirm the ability of GA to improve SVR results. 

(9)MAE =
1

n

n∑

i=1

|||
Qma − Qmp

|||
,

(10)

R2
=

�∑n

i=1

�
Qma − Qmmean

�2�
−

�∑n

i=1

�
Qma − Qmp

�2�

�∑n

i=1

�
Qma − Qmmean

�2�
,

Based on Table 3, model 6 of linear regression, SVR and 
GA-SVR models have the worst performance among the 
other models. In other words, when A, as an input param-
eter, was removed from the modeling, the highest RMSE 
and MAE, and the lowest R2 values were obtained. Conse-
quently, the A parameter can be considered as the most effec-
tive parameter to predict Qm. According to Table 3, model 
3 among the linear regression models, model 1 among the 
SVR models, and model 1 among the GA-SVR models have 
the highest R2 values in testing phase. For a better view, the 
R2 values obtained from the mentioned models are shown 
in Figs. 3, 4, and 5. From these figures, it was found that the 
GA-SVR possessed superior predictive ability than the SVR 
and linear regression models, since a very close agreement 
(R2 = 0.980) between the measured and the predicted values 
of Qm was obtained.   

5 � Conclusion

Achieving a high-precision model to predict vertical load 
capacity of driven piles is an important task in geotechni-
cal field. This study investigates the ability of GA-SVR 
model to predict vertical load capacity of driven piles 
in cohesionless soils. Additionally, the SVR and linear 
regression models were also employed and their results 
were compared to GA-SVR results. In modeling processes 
of GA-SVR, SVR and linear regression models, �tip , �shaft , 
L, �′

v
 , and A were adopted as the input parameters, while 

Table 3   Obtained RMSE, R2 
and MAE values from the 
predictive models

Model Statistical criteria

RMSE R2 MAE

Train Test Train Test Train Test

Linear regression model 1 0.101 0.079 0.821 0.516 0.082 0.048
Linear regression model 2 0.101 0.080 0.821 0.505 0.082 0.050
Linear regression model 3 0.106 0.079 0.804 0.625 0.087 0.055
Linear regression model 4 0.111 0.136 0.785 0.424 0.089 0.097
Linear regression model 5 0.108 0.120 0.795 0.021 0.087 0.089
Linear regression model 6 0.161 0.133 0.552 0.115 0.122 0.106
SVR model 1 0.063 0.035 0.931 0.912 0.061 0.034
SVR model 2 0.068 0.039 0.919 0.889 0.066 0.036
SVR model 3 0.066 0.037 0.924 0.899 0.063 0.035
SVR model 4 0.072 0.041 0.909 0.881 0.070 0.038
SVR model 5 0.076 0.041 0.899 0.878 0.073 0.038
SVR model 6 0.094 0.053 0.848 0.785 0.090 0.051
GA-SVR model 1 0.025 0.017 0.989 0.980 0.022 0.017
GA-SVR model 2 0.035 0.025 0.978 0.958 0.032 0.024
GA-SVR model 3 0.051 0.030 0.955 0.943 0.048 0.029
GA-SVR model 4 0.055 0.034 0.946 0.923 0.052 0.031
GA-SVR model 5 0.043 0.027 0.967 0.947 0.040 0.026
GA-SVR model 6 0.075 0.044 0.903 0.859 0.072 0.043
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Qm was the output parameter. In total, 59 data samples 
were used in the modeling, categorized to training and 
testing parts. To check the effect of each input parameters 
on Qm, the different GA-SVR, SVR and linear regression 
models were constructed based on different combina-
tions of input parameters. Accordingly, eighteen different 
models (six GA-SVR models, six SVR models and six 
linear regression models) were developed to predict Qm. 
After training and testing processes, the performance of 
the models was evaluated and compared using three com-
mon statistical performance metrics, namely R2, RMSE 
and MAE. According to the obtained results, it was dem-
onstrated that the accuracy of the GA-SVR was higher 
compared with SVR and linear regression models. In other 
words, GA-SVR model with R2 of 0.980 can predict Qm 
better than the SVR and linear regression models with 
R2 of 0.912 and 0.625, respectively. From the results of 
this study, it can be concluded that the GA was an excel-
lent optimization algorithm to improve the performance 
of SVR and has the potential to generalize. As a recom-
mendation, other optimization algorithms such as Flower 
Pollination Algorithm, Gravitational Search Algorithm, 
Imperialistic Competitive Algorithm and Locust Swarm 
Algorithm may be trialed as well to optimize SVR model.

Fig. 3   Actual vs. predicted Qm values using model 3 of linear regres-
sion models

Fig. 4   Actual vs. predicted Qm values using model 1 of SVR models

Fig. 5   Actual vs. predicted Qm values using model 1 of GA-SVR 
models
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