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Abstract

This paper proposes an improved version of a recently proposed modified simulated annealing algorithm (MSAA) named
as an improved MSAA (I-MSAA) to tackle the size optimization of truss structures with frequency constraint. This kind
of problem is problematic because its feasible region is non-convex while the boundaries are highly non-linear. The main
motivation is to improve the exploitative behavior of MSAA, taking concept from water wave optimization metaheuristic
(WWO). An interesting concept of WWO is its breaking operation. Thirty functions extracted from the CEC2014 test suite
and four benchmark truss optimization problems with frequency constraints are explored for the validity of the proposed
algorithm. Numerical results indicate that -MSAA is more reliable, stable and efficient than those found by other existing

metaheuristics in the literature.

Keywords Truss structures - Size optimization - Frequency constraints - Modified simulated annealing algorithm (MSAA) -

Water wave optimization (WWO) - Metaheuristics

1 Introduction

Most engineering structures are subjected to dynamic loads
(e.g., fatigue, seismic, and shock loads) which can produce
unwanted vibrations. The natural frequencies are essential
parameters that are useful to avoid resonance and improve
the dynamic behavior of a structure [1, 2]. In addition, engi-
neering structures should be as light as possible. However,
minimizing the weight of structures can be considered as a
difficult problem to solve because the reduction of weight
generates conflict with the frequency bounds. These con-
straints are highly non-linear, non-convex, and implied with
respect to the variables of design [3]. Therefore, this has
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led to difficulty in the use of gradient-based optimizers [2].
Under such circumstances, the metaheuristic algorithms can
serve as appropriate alternatives due to the ability to search
global minima in highly modal and multidimensional spaces.

The first works to address this problem employed classi-
cal techniques such as Gauss method [4], bi-factor algorithm
[5], optimality criteria [1, 6], and integrated force method
[7, 8]. Since then many researchers in the field of structural
optimization have introduced several metaheuristics for solv-
ing this kind of optimization problem. Table 1 presents the
most important works that involve metaheuristics methods
to solve this problem. Although several metaheuristics have
been introduced to solve this problem, most of them are pop-
ulation based, undergo many steps along with several param-
eters that make them difficult to understand and code. Also,
there are same procedures in recent metaheuristics which
make them similar. Because of this, the researchers usually
are confused to select a metaheuristic. According to the No
Free Lunch Theorem in the field of optimization, there is no
algorithm to solve all optimization problems. This indicates
that a new improved algorithm has potential to solve a group
of problems better than the existing algorithms.

Contrary to the previous works, this paper aims to
improve the performance of the recently proposed modified
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Table 1 Main works in optimization of truss structures with frequency constraints

References Metaheuristic

Lingyun et al. [9, 10]

Gomes [11]

Miguel and Fadel Miguel [12] Harmony search (HS)

Firefly algorithm (FA)
Kaveh and Zolghadr [13]
Kaveh and Zolghadr [14]
Kaveh and Zolghadr [15]
Kaveh and Mahdavi [16]
Khatibinia and Naseralevi [17]
Kaveh and Ilchi Ghazaan [18]

Farshchin and Camp [19]
Goncalves et al. [20]
Farshchin and Camp [21]
Kaveh and Zolghadr [22]
Kaveh and Ilchi Ghazaan [23]
Kaveh and Zolghadr [24]
Ho-Huu et al. [25]

Tejani et al. [26, 27]

Lieu et al. [28]

Niche hybrid parallel genetic algorithm (NHPGA)
Parallel genetic algorithm

Particle swarm optimization (PSO)

Hybridization of the charged system search and the big bang-big crunch algorithms (CSS-BBC)
Charged system search (CSS)

Democratic particle swarm optimization (DPSO)

Colliding bodies optimization (CBO)

Orthogonal multi-gravitational search algorithm (OMGSA)

Hybridization of the particle swarm optimization with an aging leader and challengers (ALC-
PSO and HALC-PSO)

School-based optimization (SBO)

Search group algorithm (SGA)

Multi-class teaching—learning-based optimization (MC-TLBO)
Cyclical parthenogenesis algorithm (CPA)

Vibrating particles system (VPS)

Tug of war optimization (TWO)

Differential evolution (ReDE)

Symbiotic organisms search (SOS)

Adaptive hybrid evolutionary firefly algorithm (AHEFA)

simulated annealing algorithm (MSAA) and adapt it better
for structure design problems. MSAA is a simple single-
solution algorithm based on the behavior of atomic arrange-
ments in liquid or solid materials during the annealing
process introduced by Millat et al. [29] for solving global
optimization problems and it has been applied in structural
optimization problems with success [30-32]. Regardless
of the successful application of MSAA, this algorithm
estimates the global optimum of a given problem in three
phases: preliminary exploration, search step, and probability
of accepting. First, a preliminary exploration is realized to
choose the starting point of search. Second, the transition
from the start point to the new point is done by a search step.
Third, the range of probability of accepting a worse solution
is reduced [29].

In the search step phase, the new solution for comparison is
not randomly generated. From the starting point determined in
the preliminary exploration phase, a search step is generated to
determine the neighboring state. This step depends on a radius
(R) of action that gradually decreases as the temperature of
the system decreases. The transition from starting point to the
new point (search step) is performed by the addition of random
numbers that are between [— R, R]. This phase leads solution to
jump into non-visited regions (exploration) and permits local
search of visited regions (exploitation). However, the exploita-
tion capability of this phase is considerably low as compared
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to the exploratory capability. This causes the algorithm to con-
sume a large number of unused function evaluations (FEs) at
low temperatures. To overcome this drawback, the aim of this
work is to investigate whether the basic concepts underlying
water wave optimization (WWO) can be exported to improve
the MSAA. This variation pretends to allow a good balance
between exploration and exploitation throughout the optimiza-
tion process. The validity of the improved MSAA (based on
WWO) is confirmed by testing for a diverse set of benchmark
problems and applied to size optimization problems of truss
structures with frequency constraints. Optimal results attained
by I-MSAA are compared with other metaheuristics in the
literature.

The remainder of this article is structured as follows. The
MSAA is briefly presented in Sect. 2. Section 3 describes
the improvement in the MSAA. In Sect. 4, the 30 benchmark
functions proposed in the CEC2014 special session on single
objective real-parameter numerical optimization [33] are used
to demonstrate the effectiveness of the proposed algorithm.
Section 5 describes the mathematical formulation of truss opti-
mization with frequency constraints. Section 6 presents four
most widely investigated benchmark numerical examples to
illustrate the efficiency of the -MSAA. Finally, in Sect. 7, our
final conclusions are presented.
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2 Modified simulated annealing algorithm

The MSAA [29] is a single-solution algorithm based on the
cooling process of molten metals through annealing process.
MSAA has three main stages that differentiate it from the
simulated annealing (SA) proposed by Kirkpatrick [34]:

1. The starting point is not randomly generated but is
selected by a preliminary exploration where the algo-
rithm performs a scan in the search space and is given
by the following equation:

Xpsy = Ipy Xy, + randp,y(Xy — X ), ()
where P is the number of points that are desired in the
search space; N the number of dimensions of the prob-
lem; I, the identity matrix of size P X N; X; the lower
limit of the problem; Xj; the upper limit of the problem,
and randp, is the matrix of random numbers (pure
randomness) between 0 and 1 of size P X N. To start the
optimization process with MSAA, all points generated
with (1) are evaluated in the objective function of the
problem and the smallest value (in the case of search-
ing the minimum value of the function) is chosen as the
starting point of the search.

2. The new solution for comparison is not randomly gen-
erated. From the starting point determined in the pre-
liminary exploration stage, a search step is generated
to determine the neighboring state. This step depends
on a radius (R) of action that gradually decreases as the
temperature of the system decreases. The transition from
the starting point to the new point is performed by the
addition of random numbers that are within the defined
radius. This enables the algorithm to execute a global
exploration at high temperatures and a local exploration
at low temperatures. The radius is updated as follows:

Ry =R Xa, 2)
where R; is the initial radius cycle and «a is the radius
reduction coefficient.

3. [If the cost function of the new solution is higher than the

best value, the acceptance of the new solution depends
on the following equation:

1
P= 1 + e&f/T)° )

where P is the probability of accepting the new solution;
Af the difference between the quality of the new solu-
tion and the quality of the current solution; 7 the tem-
perature of the system; and e is the Euler number. This
probability is in a range between 0 and 0.5, allowing the
algorithm to have a lower range of acceptance of worse
solutions. For more details, see [29]. The flowchart of
the MSAA is illustrated in Fig. 1.

3 Improvementin the MSAA

The capability to balance intensification and diversifica-
tion during a search determines the efficiency of a specific
metaheuristic algorithm. Diversification (exploration) ensures,
usually by randomization, that the algorithm explores the
search space efficiently. Intensification (exploitation) aims
to identify the best solution and select, during the process, a
succession of best solutions. In the search step phase of the
MSAA, the trial point is generated by the addition of ran-
dom numbers that are defined within a radius (Fig. 1). This
phase works mainly to improve exploitation capabilities of
the search process. Although the MSAA has demonstrated its
ability to find near global regions within a reasonable time, it
is comparatively inefficient in performing local searches [31].
This is because the radius must be tuned for each problem,
affecting the speed convergence of the algorithm. Thus, this
paper proposes the -MSAA as a new and superior MSAA
algorithm variant to improve MSAA algorithm local search
capabilities and balance-associated intensification and diver-
sification components. The proposed algorithm introduces a
concept drawn from water wave optimization (WWO) [35] to
replace the search step phase.

WWO was introduced by Zheng [35] and is inspired by
shallow water wave models. The WWO has three important
phases for finding optimal solutions. They are: propagation,
breaking, and refraction phase. In propagation phase, the wave
is propagated to a random position exactly once in an iteration.
If a wave attains a lower sea depth (for minimization), it breaks
into solitary waves which are formed in the breaking phase.
Thus, breaking is used for the intensive search (exploitation) in
search spaces by producing random solitary waves around the
current best position. While in the refraction phase, the algo-
rithm explores the search space for any other best solution and
avoids search inactiveness. As our interest is to improve the
exploitation of the MSAA, the breaking phase used in WWO
is implemented in the I-MSAA.

3.1 Breaking

According to Zheng [35], when a wave moves to a posi-
tion where the water depth is below a threshold value, the
wave crest velocity exceeds the wave celerity. Consequently,
the crest becomes steeper and steeper, and finally the wave
breaks into a train of solitary waves. In WWO, the breaking
operation performs a local search around the wave to simulate
wave breaking. In the problem-solving process, & is randomly
selected (where k is a random number between 1 and a prede-

fined number k), and at each dimension d generate a solitary
wave x as:
x'(d) = x(d) + N(0, 1) x BL(d), 4)
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Fig.1 The MSAA flowchart

where f is the breaking coefficient; N(O, 1) a Gaussian
random number with mean 0 and standard deviation 1,
and L(d) is the length of the dth dimension of the search
space. According to Zheng [35], it is recommended to set
p t0 0.001-0.01, and k,,,, to min(12, D/2), where D is the
dimension of the problem.

This concept is exported to MSAA. Thus, the search step
phase of the MSAA is replaced by breaking phase to improve
the convergence ability and set a good balance between explo-
ration and exploitation.

@ Springer

4 The 30 benchmark functions
of the CEC2014

The validity of the proposed I-MSAA is confirmed on 30
benchmark functions of the CEC2014 special session on
single objective real-parameter numerical optimization
[33]. The benchmark suite covers various types of func-
tion optimization problems, as summarized in Table 2.
The algorithm is coded in Matlab program and executed
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Table2 Summary of the CEC Type Function Optimum
2014 benchmark functions [33]
Unimodal fi: rotated high conditioned elliptic function 100
f>: rotated bent cigar function 200
f5: rotated discus function 300
Multimodal f4: shifted and rotated Rosenbrock function 400
fs: shifted and rotated Ackley’s function 500
fe: shifted and rotated Weierstrass function 600
f7: shifted and rotated Griewank’s function 700
fg: shifted Rastrigin’s function 800
Jo: Shifted and rotated Rastrigin’s function 900
fio: shifted Schwefel’s function 1000
fi1: shifted and rotated Schwefel’s function 1100
fio: shifted and rotated Katsuura function 1200
fi3: shifted and rotated HappyCat function 1300
f14: Shifted and rotated HGBat function 1400
fi5: shifted and rotated expanded Griewank’s plus Rosenbrock’s 1500
function
fie: shifted and rotated expanded Scaffe’s fg function 1600
Hybrid fi7: hybrid function 1 (fy, fy, f,) 1700
fis: hybrid function 2 (f,, f1,, fz) 1800
fio: hybrid function 3 (f5, fg, f4. f14) 1900
Joo: hybrid function 4 (f},, f3. fi3. f3) 2000
fo1: hybrid function 5 (14, fi2, 1 fo. /1) 2100
Joy: hybrid function 6 (g, f11, 13, fo. f5) 2200
Composition f23: composition function 1 (f}, f1, f5, f5. f1) 2300
f>4: composition function 2 (f}, fo, f14) 2400
f5: composition function 3 (f},, o, f}) 2500
J26: composition function 4 (f},, fi3, f1, fe: f7) 2600
f27: composition function 5 (f 4, fo, fi1, fe: f1) 2700
Jg: composition function 6 (f}s, fi3, fi15 fie: /1) 2800
J29: composition function 7 (f}7, fis, fo) 2900
f30: composition function 8 (f5y, f1, f>2) 3000

using an Intel Core 17-3630QM system 2.4 GHz with 8 GB
RAM. For result verification, the comparison is made
between several optimization algorithms (IWO, BBO,
GSA, HuS, BA, WWO, SOS, ISOS, MSAA, and I-MSAA).
In this study, 30D functions are used with search ranges
as [— 100, 100] and set the FEmax to 150,000. All results
are collected from 60 independent runs on each test func-
tion. For all examples, the population size (preliminary
exploration), initial temperature (7},;;,), final temperature
(Tna)> MPraxs > and k. are set as 200, 1, 1 x 1073, 300,
0.001, and min(12, D/2), respectively. Sensitivity analy-
ses on these parameters are investigated in [29, 31, 32,
35]. Statistical tests are essential to check significance
improvements by a proposed method over the existing
methods. Therefore, the Friedman rank test on the results
of -MSAA, MSAA, and other state-of-the-art algorithms
is used. The test is performed on the average and standard
deviation (SD) of functional values obtained.

Table 3 shows the comparative average of fitness value.
It can be seen that -MSAA gives best results for unimodal
functions, multimodal functions, and composition func-
tions. In hybrid functions, I-MSAA is only surpassed by the
WWO and IWO algorithms. Furthermore, -MSAA ranks
better compared to MSAA for all type functions. Finally,
I-MSAA ranks first for overall performance. Table 4 shows
the comparative SD of fitness value. The results indicate that
I-MSAA is second best among the considered algorithms.
These results confirm the merits of the proposed algorithm.

5 Problem definition

The goal of the problem is designing the member sizes of
the structure so that its weight is minimized while satisfy-
ing some constraints on the natural frequencies. Member
cross-sectional areas are considered as continuous design

@ Springer
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variables. Each variable should be chosen within a permis-
:E sible range. The mathematical formulation for this problem
ﬁ e can be expressed as follows:
— vy o0 o0 —
n
Minimize W(A) = Y p,A,L;
i=1
p »; < w; ; )
£ o _t Subject to 4 @y > w;
Aimin £A; < A;max
§ < =~ where W is the weight of the structure; » the total number of
=T e - o members of the structure; p;, A;, and L, stand for the material
density, the cross-sectional area, and the length of the ith
member, respectively; w; and w, the jth and kth natural fre-
" quencies of the structure, respectively; a)]* and w) the upper
3 S E . and lower bounds corresponding to o; and w,, respectively;
A, min and A; max are the lower and upper bounds of A,
respectively.
2.8,
6 Truss problems and discussions
To evaluate the feasibility and validity of the -MSAA, the
o - : . .y . .
2 o .5 o following classical truss sizing problems (Fig. 2) are opti-
mized and the results are compared with the previous results
obtained through various existing metaheuristics: (1) 10-bar
planar truss; (2) 72-bar space truss; (3) 120-bar dome truss,
< - and (4) 200-bar planar truss. The design considerations of
6138 a2~ the problems are given in Table 5.
In all design examples, the parameters used in the
I-MSAA are: (1) as it is demonstrated in the previous studies
[29, 31, 32], the population size (preliminary exploration),
2| o = initial temperature (7,;;,;), and final temperature (7%, are
o oo set as 200, 1, 1 X 1073, respectively; (2) according to [35],
and k. are set as 0.001 and min(12, D/2), respectively; (3)
according to [32], the maximum number of perturbations
(np,,.,) at the same temperature can be chosen in the range
Sles E S of 100-300. Evidence gathered from sensitivity analysis led
to set np,,,, as 200. These numbers of perturbations have
been obtained in this work by examining its effect to find a
° balance between accuracy and computational cost for each
= ° - of the problems.
R The iterative process is terminated when the algorithm
reaches the final temperature. The proposed [-MSAA algo-
Né “’|§ ERe rithm and finite element analysis are coded in Matlab pro-
3 <& g8 gram and executed using an Intel Core i7-3630QM system
E § E § § 2.4 GHz with 8 GB RAM. Statistical results, obtained for
g s 8§33 100 independent runs, are presented in terms of the best
i’ 5 g § E E weight, average weight, standard deviation (SD), the corre-
K ER R £ £ sponding iterations number (NI), and frequency responses.
SlElEESS It is important to note that all presented [-MSAA designs
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Fig.2 Benchmark trusses’
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results obtained by the proposed algorithm and other meth-
ods. The results indicate that -MSAA (529.75 kg) achieves
better optimal weight than DPSO, SBO, VPS, and MSAA
algorithms, but slight heavier design than ReDe, ISOS, and
AHEFA. However, the proposed algorithm requires less NI

are feasible. The results and discussions of the benchmark
problems are explained in the following sections.

6.1 10-Bar planar truss

The first design example is the 10-bar planar truss struc-
ture shown in Fig. 2. A lumped mass of 454 kg is added in
all free nodes. Table 6 presents a comparison of optimal

than ReDe (6200 NI for I-MSAA and 8300 NI for ReDe)
to reach final solution. It can be seen that the convergence
speed of the DPSO, ISOS, and AHEFA is faster than that of
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Table 5 Design considerations of the benchmark trusses

10-Bar planar truss

72-Bar space truss

120-Bar dome truss

200-Bar planar truss

Modulus of elasticity E (N/m?) 6.98x 1010 6.98x 1010 2.1x 10! 2.1x 10!
Material density p (kg/m>) 2770 2770 7971.81 7860
Cross-sectional area bounds (cm?) 0.645<A <50 0.645<A <30 1<A<129.3 0.1<A<30
Frequency constraints (Hz) =7 fi=4 f=9 f=5
f215 f2>6 f>11 £>10
f3220 f3>15
Table 6 Optimal design Variables (cm?) DPSO SBO  VPS  ReDe ISOS  AHEFA MSAA I-MSAA
parameters for the 10-bar planar
truss by different algorithms [15] [19] [23] [25] [27] (28]
A, 35.944  35.5994 35.1471 35.1565 35.2654 35.1714 329710 32.5584
A, 15.53 14.9956 14.6668 14.7605 14.6803 14.7203 15.5925 15.4787
As 35.285 354806 35.6889 35.1187 34.4273 35.1074 32.8514 32.7556
Ay 15.385 147646 15.0929 14.7275 149605 14.6986 15.5942 15.5750
As 0.648 0.6450  0.645 0.6450  0.6450 0.6451 0.6454  0.6454
Ag 4.583 4.6305 4.6221  4.5558  4.5927 45593  4.6552  4.6612
A, 23.61 24.3272  23.5552 23.7199 23.3417 23.7330 26.1179 26.1090
Ag 23.599  23.8528 24.468  23.6304 23.8236 23.6795 26.1350 26.2576
Ay 13.135  12.6797 12.7198 12.3827 12.8497 12.3987 11.9983 11.7470
A 12.357  12.6375 12.6845 12.4580 12.5321 12.4231 11.9339 11.8823
Best weight (kg) 53239  532.05 530.77 52445 52473 52445 532.04 529.75
fi Hz) 7.0000  7.0000  7.0000  7.0000 7.0001  7.0000  7.0000 7.0000
>, (Hz) 16.1870 16.1660 16.1599 16.1924 16.1703 16.1920 15.8458 15.8235
f3 (Hz) 20.0000 20.0000 20.0000 20.0000 20.0024 20.0000 20.0000 20.0000
Average weight (kg) 537.80 53345 535.64 52476  530.03 525.16 532.06 530.11
SD (kg) 4.02 2.20 2.55 1.11 3.48 1.92 0.01 0.11
NI 6000 10,000 30,000 8300 4000 5860 7130 6200
540 - to the SD, I-MSAA ranks second among the considered
538 metaheuristics, only being surpassed by MSAA (0.01 kg).
Natural frequencies optimal obtained by the -MSAA show
o 5361 that none of the frequency constraints are violated. Figure 3
§ s34 shows the convergence curve of the best design of -MSAA
§° for this problem.
532
530 6.2 72-Bar space truss
528 , ' , , i i , The 72-bar space truss shown in Fig. 2 is the second numeri-
0 5 10 15 20 25 30 35

Temperature cycles

Fig.3 Convergence curve of -MSAA for the 10-bar planar truss

the I-MSAA (6000 NI for DPSO, 4000 NI for ISOS, 5860
for AHEFA); however, the -MSAA is more stable than the
DPSO, ISOS, and AHEFA through the best value of SD
(0.11 kg for I-MSAA, 3.48 kg for ISOS, 1.92 kg for the
AHEFA, and 4.02 kg for the DPSO). Finally, with respect

@ Springer

cal example. The bars are categorized into 16 groups by
considering geometrical symmetry. A lumped mass of
2770 kg is attached at all top nodes (nodes 1-4). Optimal
results obtained by the -lMSAA and the other optimization
algorithms published in the literature are reported in Table 7.
It can be seen that the acquired result by the proposed algo-
rithm (324.43 kg) is better than the other methods (327.51 kg
for the CSS-BBBC, 327.65 kg for the DPSO, 327.55 kg for
the SBO, 327.65 kg for the VPS, 325.01 kg for the ISOS,
and 324.97 kg for the MSAA). Moreover, - MSAA requires



Temperature cycles

Fig.4 Convergence curve of -MSAA for the 72-bar space truss

fewer NI than the DPSO, SBO, VPS, ReDe, AHEFA, and
MSAA (6200 NI for I-MSAA, 20,000 NI for DPSO, 15,000
NI for SOB, 30,000 for VPS, 10,840 NI for ReDe, 8860
NI for AHEFA, and 7130 for MSAA). The average weight
benefit for -MSAA is 3.24, 3.16, 3.15, 4.95, and 0.61 kg as
compared to those obtained from DPSO, SBO, VPS, ISOS,
and MSAA, respectively. Finally, -MSAA obtains a low
SD (0.07 kg) that evidences the stability of the proposed
algorithm. Natural frequencies indicate the feasibility of the
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Table 7 Optimal design parameters for the 72-bar space truss by different algorithms
Variables (cm?) CSS-BBBC DPSO SBO VPS ReDe ISOS AHEFA MSAA I-MSAA
[13] [15] [19] [23] [25] [27] [28]
A-A, 2.854 3.5498 3.4917 3.5017 3.5327 3.3563 3.5612 3.4927 3.3524
As-A, 8.301 7.8356 7.9414 7.9340 7.8303 7.8726 7.8736 7.8573 7.7448
A3-A 0.645 0.6450 0.6450 0.6450 0.6453 0.6450 0.6450 0.6450 0.6450
A-Ag 0.645 0.6450 0.6450 0.6450 0.6459 0.6450 0.6451 0.6474 0.6450
Ag-Ay 8.202 8.1183 8.1154 8.0215 8.0029 8.5798 7.9710 7.8897 7.5541
Ay—Asg 7.043 8.1338 8.0533 7.9826 7.9135 7.6566 7.8928 8.0057 7.8746
Az Ay 0.645 0.6450 0.6450 0.6450 0.6451 0.7417 0.6450 0.6450 0.6450
Azs—Asg 0.645 0.6450 0.6450 0.6450 0.6451 0.6450 0.6451 0.6454 0.6450
Asz—Ay 16.328 12.6231 12.8569 12.8175 12.7626 13.0864 12.5404 12.6034 12.5877
Ay—Asg 8.299 8.0971 8.0425 8.1129 7.9657 8.0764 7.9639 7.9616 8.0790
Ay-As, 0.645 0.6450 0.6451 0.6450 0.6452 0.6450 0.6459 0.6451 0.6450
As3Asy 0.645 0.6450 0.6450 0.6450 0.6450 0.6937 0.6462 0.6450 0.6450
Ass—Asg 15.048 17.3908 17.2136 17.3362 16.9041 16.2517 17.1323 17.1604 17.8079
Asg—Ags 8.268 8.0634 8.0804 8.1010 8.0434 8.1703 8.0216 8.0368 8.0575
Agr—Aq 0.645 0.6450 0.6450 0.6450 0.6451 0.6450 0.6450 0.6450 0.6450
A;-Aq 0.645 0.6450 0.6450 0.6450 0.6473 0.6450 0.6451 0.6450 0.6486
Best weight (kg) 327.51 327.65 327.55 327.65 324.25 325.01 324.24 324.97 324.43
f1 (Hz) 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000
f3 (Hz) 6.0040 6.0000 6.0000 6.0000 6.0001 6.0008 6.0000 6.0000 6.0000
Average weight (kg) - 327.76 327.68 327.67 324.32 329.47 324.41 325.13 324.52
SD (kg) - 0.06 0.07 0.02 0.05 2.66 0.24 0.18 0.07
NI - 20,000 15,000 30,000 10,840 4000 8860 7130 6200
340 - obtained design by I-MSAA. The convergence curve of the
338 best design of I-MSAA for this problem is shown in Fig. 4.
336 1
5334 6.3 120-Bar dome truss
T332
f§° 330 + The third example is the 120-bar dome truss shown in Fig. 2.
% 35| A lumped mass is attached to all free nodes as follows:
326 1 3000 kg at node one, 500 kg at nodes 2 through 13 kg, and
324 1 100 kg at the rest of the nodes. The members of the struc-
322 o 5 1'0 1'5 2'0 2,5 3,0 3,5 ture are categorized into seven groups using symmetry about

the z axis. Table 8 compares the results of -MSAA with
other optimization methods. As observed, the -lMSAA pro-
vides the best result with 8707.01 kg while the others give
larger weights, namely CSS-BBBC (9046.34 kg), DPSO
(8890.48 kg), CBO (8889.13 kg), HALC-PSO (8889.96 kg),
VPS (8888.74 kg), ReDe (8707.32 kg), ISOS (8710.06 kg),
and MSAA (8707.39 kg). Moreover, -MSAA requires 6200
NI to converge the optimal solution, while the HALC-PSO
and VPS need 17,000 and 30,000 NI, respectively. From the
obtained average weight (8707.42 kg) and SD (0.08 kg) val-
ues of the proposed method, it can be seen that the -lMSAA
is stable. The SD obtained with [-MSAA ranks first among
the considered metaheuristics. The convergence curve of the
best design of I-MSAA for this problem is shown in Fig. 5.
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Table 8 Optimal design parameters for the 120-bar dome truss by different algorithms

Variables (cm?) CSS-BBBC DPSO CBO HALC-PSO VPS ReDe ISOS MSAA I-MSAA
[13] [15] [16] [18] [23] [25] [27]
A, 17.478 19.607 19.6917 19.8905 19.6836 19.5131 19.6662 20.0425 19.6068
A, 49.076 41.290 41.1421 40.4045 40.9581 40.3914 39.8539 39.4775 40.5483
A; 12.365 11.136 11.1550 11.2057 11.3325 10.6066 10.6127 13.6425 13.4167
Ay 21.979 21.025 21.3207 21.3768 21.5387 21.1415 21.2901 20.4928 20.2411
As 11.190 10.060 9.8330 9.8669 9.8867 9.8057 9.7911 9.0488 9.1521
Ag 12.590 12.758 12.8520 12.7200 12.7116 11.7781 11.7899 15.2658 15.8831
A 13.585 15.414 15.1602 15.2236 14.9330 14.8163 14.7437 12.9846 12.9856
Best weight (kg) 9046.34 8890.48 8889.13 8889.96 8888.74 8707.32 8710.06 8707.39 8707.01
fi (Hz) 9.000 9.0001 9.0000 9.0000 9.0000 9.0000 9.0001 9.0000 9.0000
f, (Hz) 11.007 11.0007 11.0000 11.0000 11.0000 11.0000 10.9998 11.0000 11.0000
Average weight (kg) - 8895.99 8891.25 8900.39 8896.04 8707.52 8728.56 8709.96 8707.42
SD (kg) - 4.26 1.79 6.38 6.65 0.15 14.23 3.43 0.08
NI - 6000 6000 17,000 30,000 5080 4000 3100 6200
10400 4 for HALC-PSO). The results also indicate that, -MSAA is
10200 1 more stable than SOS, ISOS, and MSAA with the smallest
10000 - SD (1.13 kg for I-MSAA, 83.59 kg for SOS, 43.48 kg for
B 9800 1 ISOS, and 2.96 for MSAA). Frequency values show that
% 9600 - all constraints of the 200-bar planar truss are satisfied by
§ 9400 A the -MSAA. Figure 6 shows the convergence curve of the
9200 7 best design of [-MSAA for this problem.
9000 1
8800 -
8600 , : ‘ ‘ ‘ : ‘
0 5 10 15 20 25 30 35

Temperature cycles

Fig.5 Convergence curve of I-MSAA for the 120-bar dome truss

6.4 200-Bar planar truss

The last design problem is the 200-bar planar truss
(Fig. 2). A lumped mass is attached at all top nodes (nodes
1-5). The bars are grouped into 29 by seeing symmetry
as reported in the previous studies. Table 9 provides a
comparison of optimal results obtained by the -MSAA
and different metaheuristics. It can be seen that the
best weight obtained by I-MSAA (2156.83 kg) is better
than those given by AHEFA (2160.74 kg), CSS-BBBC
(2298.61 kg), ISOS (2169.46 kg), SOS (2180.32 kg), and
MSAA (2157.28 kg). The I-MSSA design is slightly worse
than SBO (2156.51 kg) and HALC-PSO (2156.73 kg);
however, the convergence speed of the -MSAA is faster
than these algorithms (23,000 NI for SBO and 13,000 NI

@ Springer

7 Conclusions

This paper proposes how to improve the modified simu-
lated annealing algorithm by including breaking opera-
tor, a concept borrowed from water wave optimization.
The breaking operator is implemented to improve exploi-
tation ability of MSAA in the search process. The new
algorithm is called I-MSAA. Thirty benchmark functions
of the CEC2014 and four classical truss sizing problems
with frequency constraints are tested to verify the effec-
tiveness and robustness of the proposed algorithm. In the
benchmark functions, I-MSAA is better or competitive
for obtaining results based on the mean and SD of func-
tional values obtained over the stated runs as compared
to MSAA and other metaheuristics. In the truss optimiza-
tion, -MSAA always achieve a better design than MSAA.
Additionally, the numerical results show the ability of
this algorithm to produce competitive results compared
to those of the other metaheuristic algorithms presented in



Engineering with Computers (2021) 37:763-777 775
Table 9 Optimal design parameters for the 200-bar planar truss by different algorithms
Variables (cm?) CSS-BBBC HALC-PSO SBO SOS ISOS AHEFA MSAA I-MSAA
[13] [18] [19] [26] [27] [28]
A, 0.2934 0.3072 0.3040 0.4781 0.3072 0.2993 0.3034 0.3181
A, 0.5561 0.4545 0.4478 0.4481 0.5075 0.4508 0.5177 0.4603
A 0.2952 0.1000 0.1000 0.1049 0.1001 0.1001 0.1000 0.1000
Ay 0.1970 0.1000 0.1000 0.1045 0.1000 0.1000 0.1000 0.1000
As 0.8340 0.5080 0.5075 0.4875 0.5893 0.5123 0.5699 0.5271
Ag 0.6455 0.8276 0.8219 0.9353 0.8328 0.8205 0.8187 0.8066
A, 0.1770 0.1023 0.1003 0.1200 0.1431 0.1011 0.1000 0.1009
Ag 1.4796 1.4357 1.4240 1.3236 1.3600 1.4156 1.4361 1.5387
Ay 0.4497 0.1007 0.1001 0.1015 0.1039 0.1000 0.1000 0.1001
A 1.4556 1.5528 1.5929 1.4827 1.5114 1.5742 1.4599 1.6293
Ay 1.2238 1.1529 1.1597 1.1384 1.3568 1.1597 1.1381 1.1467
A, 0.2739 0.1522 0.1275 0.1020 0.1024 0.1338 0.1205 0.1318
A 1.9174 2.9564 2.9765 2.9943 2.9024 2.9672 2.9032 2.8387
Ay 0.1170 0.1003 0.1001 0.1562 0.1000 0.1000 0.1006 0.1000
Ais 3.5535 3.2242 3.2456 3.4330 3.4120 3.2722 3.7168 2.7781
A 1.3360 1.5839 1.5818 1.6816 1.4819 1.5762 1.5246 1.5820
A 0.6289 0.2818 0.2566 0.1026 0.2587 0.2562 0.2056 0.1409
Ag 4.8335 5.0696 5.1118 5.0739 4.8291 5.0956 5.1494 5.7784
A 0.6062 0.1033 0.1001 0.1068 0.1499 0.1001 0.1021 0.1015
Ay 5.4393 5.4657 5.4337 6.0176 5.5090 5.4546 5.3291 4.8444
Ay 1.8435 2.0975 2.1016 2.0340 22221 2.0933 1.9882 2.0156
Ay 0.8955 0.6598 0.6794 0.6595 0.6113 0.6737 0.6782 0.4538
Ay 8.1759 7.6585 7.6581 6.9003 7.3398 7.6498 7.9359 6.4039
Ay, 0.3209 0.1444 0.1006 0.2020 0.1559 0.1178 0.3222 0.6062
Ays 10.9800 8.0520 7.9468 6.8356 8.6301 8.0682 8.9235 9.2760
Ay 2.9489 2.7889 2.7835 2.6644 2.8245 2.8025 2.5618 2.8030
Ay 10.5243 10.4770 10.5277 12.1430 10.8563 10.5040 10.4026 11.6835
Ay 20.4271 21.3257 21.3027 22.2484 20.9142 21.2935 21.3538 21.2372
Ay 19.0983 10.5111 10.6207 8.9378 10.5305 10.7410 10.6476 9.7778
Best weight (kg) 2298.61 2156.73 2156.51 2180.32 2169.46 2160.74 2157.28 2156.83
fi (Hz) 5.010 5.000 5.000 5.0001 5.0000 5.0000 5.0000 5.0000
£, (Hz) 12911 12.254 12.2141 13.4306 12.4477 12.1821 12.3405 12.3482
f; (Hz) 15.416 15.044 15.0192 15.2645 15.2332 15.0160 15.0001 15.0028
Average weight (kg) - 2157.14 2156.79 2303.30 2244.64 2161.04 2161.74 2157.94
SD (kg) - 0.24 0.21 83.59 43.48 0.18 2.96 1.13
NI - 13,000 23,000 10,000 10,000 11,300 6200 6200

the literature in terms of best weight, SD, and NI required
by the optimization process. The presented data on aver-
age weight and SD of optimized weight obtained from
100 independent runs prove the robustness of [-MSAA.

The I-MSAA is simple to implement and it can be easy
to extend for various engineering optimization problems
such as: simultaneous shape and topology optimization of
truss structures, frame optimization, and reliability-based
design optimization problems.
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