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Abstract
This paper proposes an improved version of a recently proposed modified simulated annealing algorithm (MSAA) named 
as an improved MSAA (I-MSAA) to tackle the size optimization of truss structures with frequency constraint. This kind 
of problem is problematic because its feasible region is non-convex while the boundaries are highly non-linear. The main 
motivation is to improve the exploitative behavior of MSAA, taking concept from water wave optimization metaheuristic 
(WWO). An interesting concept of WWO is its breaking operation. Thirty functions extracted from the CEC2014 test suite 
and four benchmark truss optimization problems with frequency constraints are explored for the validity of the proposed 
algorithm. Numerical results indicate that I-MSAA is more reliable, stable and efficient than those found by other existing 
metaheuristics in the literature.

Keywords Truss structures · Size optimization · Frequency constraints · Modified simulated annealing algorithm (MSAA) · 
Water wave optimization (WWO) · Metaheuristics

1 Introduction

Most engineering structures are subjected to dynamic loads 
(e.g., fatigue, seismic, and shock loads) which can produce 
unwanted vibrations. The natural frequencies are essential 
parameters that are useful to avoid resonance and improve 
the dynamic behavior of a structure [1, 2]. In addition, engi-
neering structures should be as light as possible. However, 
minimizing the weight of structures can be considered as a 
difficult problem to solve because the reduction of weight 
generates conflict with the frequency bounds. These con-
straints are highly non-linear, non-convex, and implied with 
respect to the variables of design [3]. Therefore, this has 

led to difficulty in the use of gradient-based optimizers [2]. 
Under such circumstances, the metaheuristic algorithms can 
serve as appropriate alternatives due to the ability to search 
global minima in highly modal and multidimensional spaces.

The first works to address this problem employed classi-
cal techniques such as Gauss method [4], bi-factor algorithm 
[5], optimality criteria [1, 6], and integrated force method 
[7, 8]. Since then many researchers in the field of structural 
optimization have introduced several metaheuristics for solv-
ing this kind of optimization problem. Table 1 presents the 
most important works that involve metaheuristics methods 
to solve this problem. Although several metaheuristics have 
been introduced to solve this problem, most of them are pop-
ulation based, undergo many steps along with several param-
eters that make them difficult to understand and code. Also, 
there are same procedures in recent metaheuristics which 
make them similar. Because of this, the researchers usually 
are confused to select a metaheuristic. According to the No 
Free Lunch Theorem in the field of optimization, there is no 
algorithm to solve all optimization problems. This indicates 
that a new improved algorithm has potential to solve a group 
of problems better than the existing algorithms.

Contrary to the previous works, this paper aims to 
improve the performance of the recently proposed modified 
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simulated annealing algorithm (MSAA) and adapt it better 
for structure design problems. MSAA is a simple single-
solution algorithm based on the behavior of atomic arrange-
ments in liquid or solid materials during the annealing 
process introduced by Millat et al. [29] for solving global 
optimization problems and it has been applied in structural 
optimization problems with success [30–32]. Regardless 
of the successful application of MSAA, this algorithm 
estimates the global optimum of a given problem in three 
phases: preliminary exploration, search step, and probability 
of accepting. First, a preliminary exploration is realized to 
choose the starting point of search. Second, the transition 
from the start point to the new point is done by a search step. 
Third, the range of probability of accepting a worse solution 
is reduced [29].

In the search step phase, the new solution for comparison is 
not randomly generated. From the starting point determined in 
the preliminary exploration phase, a search step is generated to 
determine the neighboring state. This step depends on a radius 
(R) of action that gradually decreases as the temperature of 
the system decreases. The transition from starting point to the 
new point (search step) is performed by the addition of random 
numbers that are between [− R, R]. This phase leads solution to 
jump into non-visited regions (exploration) and permits local 
search of visited regions (exploitation). However, the exploita-
tion capability of this phase is considerably low as compared 

to the exploratory capability. This causes the algorithm to con-
sume a large number of unused function evaluations (FEs) at 
low temperatures. To overcome this drawback, the aim of this 
work is to investigate whether the basic concepts underlying 
water wave optimization (WWO) can be exported to improve 
the MSAA. This variation pretends to allow a good balance 
between exploration and exploitation throughout the optimiza-
tion process. The validity of the improved MSAA (based on 
WWO) is confirmed by testing for a diverse set of benchmark 
problems and applied to size optimization problems of truss 
structures with frequency constraints. Optimal results attained 
by I-MSAA are compared with other metaheuristics in the 
literature.

The remainder of this article is structured as follows. The 
MSAA is briefly presented in Sect. 2. Section 3 describes 
the improvement in the MSAA. In Sect. 4, the 30 benchmark 
functions proposed in the CEC2014 special session on single 
objective real-parameter numerical optimization [33] are used 
to demonstrate the effectiveness of the proposed algorithm. 
Section 5 describes the mathematical formulation of truss opti-
mization with frequency constraints. Section 6 presents four 
most widely investigated benchmark numerical examples to 
illustrate the efficiency of the I-MSAA. Finally, in Sect. 7, our 
final conclusions are presented.

Table 1  Main works in optimization of truss structures with frequency constraints

References Metaheuristic

Lingyun et al. [9, 10] Niche hybrid parallel genetic algorithm (NHPGA)
Parallel genetic algorithm

Gomes [11] Particle swarm optimization (PSO)
Miguel and Fadel Miguel [12] Harmony search (HS)

Firefly algorithm (FA)
Kaveh and Zolghadr [13] Hybridization of the charged system search and the big bang-big crunch algorithms (CSS-BBC)
Kaveh and Zolghadr [14] Charged system search (CSS)
Kaveh and Zolghadr [15] Democratic particle swarm optimization (DPSO)
Kaveh and Mahdavi [16] Colliding bodies optimization (CBO)
Khatibinia and Naseralevi [17] Orthogonal multi-gravitational search algorithm (OMGSA)
Kaveh and Ilchi Ghazaan [18] Hybridization of the particle swarm optimization with an aging leader and challengers (ALC-

PSO and HALC-PSO)
Farshchin and Camp [19] School-based optimization (SBO)
Goncalves et al. [20] Search group algorithm (SGA)
Farshchin and Camp [21] Multi-class teaching–learning-based optimization (MC-TLBO)
Kaveh and Zolghadr [22] Cyclical parthenogenesis algorithm (CPA)
Kaveh and Ilchi Ghazaan [23] Vibrating particles system (VPS)
Kaveh and Zolghadr [24] Tug of war optimization (TWO)
Ho-Huu et al. [25] Differential evolution (ReDE)
Tejani et al. [26, 27] Symbiotic organisms search (SOS)
Lieu et al. [28] Adaptive hybrid evolutionary firefly algorithm (AHEFA)
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2  Modified simulated annealing algorithm

The MSAA [29] is a single-solution algorithm based on the 
cooling process of molten metals through annealing process. 
MSAA has three main stages that differentiate it from the 
simulated annealing (SA) proposed by Kirkpatrick [34]:

1. The starting point is not randomly generated but is 
selected by a preliminary exploration where the algo-
rithm performs a scan in the search space and is given 
by the following equation:

where P is the number of points that are desired in the 
search space; N the number of dimensions of the prob-
lem; �P×N the identity matrix of size P × N; XL the lower 
limit of the problem; XU the upper limit of the problem, 
and ����P×N is the matrix of random numbers (pure 
randomness) between 0 and 1 of size P × N. To start the 
optimization process with MSAA, all points generated 
with (1) are evaluated in the objective function of the 
problem and the smallest value (in the case of search-
ing the minimum value of the function) is chosen as the 
starting point of the search.

2. The new solution for comparison is not randomly gen-
erated. From the starting point determined in the pre-
liminary exploration stage, a search step is generated 
to determine the neighboring state. This step depends 
on a radius (R) of action that gradually decreases as the 
temperature of the system decreases. The transition from 
the starting point to the new point is performed by the 
addition of random numbers that are within the defined 
radius. This enables the algorithm to execute a global 
exploration at high temperatures and a local exploration 
at low temperatures. The radius is updated as follows:

where Ri is the initial radius cycle and � is the radius 
reduction coefficient.

3. If the cost function of the new solution is higher than the 
best value, the acceptance of the new solution depends 
on the following equation:

where P is the probability of accepting the new solution; 
Δf  the difference between the quality of the new solu-
tion and the quality of the current solution; T the tem-
perature of the system; and e is the Euler number. This 
probability is in a range between 0 and 0.5, allowing the 
algorithm to have a lower range of acceptance of worse 
solutions. For more details, see [29]. The flowchart of 
the MSAA is illustrated in Fig. 1.

(1)�P×N = �P×NXL + ����P×N(XU − XL),

(2)Ri+1 = Ri × �,

(3)P =
1

1 + e(Δf∕T)
,

3  Improvement in the MSAA

The capability to balance intensification and diversifica-
tion during a search determines the efficiency of a specific 
metaheuristic algorithm. Diversification (exploration) ensures, 
usually by randomization, that the algorithm explores the 
search space efficiently. Intensification (exploitation) aims 
to identify the best solution and select, during the process, a 
succession of best solutions. In the search step phase of the 
MSAA, the trial point is generated by the addition of ran-
dom numbers that are defined within a radius (Fig. 1). This 
phase works mainly to improve exploitation capabilities of 
the search process. Although the MSAA has demonstrated its 
ability to find near global regions within a reasonable time, it 
is comparatively inefficient in performing local searches [31]. 
This is because the radius must be tuned for each problem, 
affecting the speed convergence of the algorithm. Thus, this 
paper proposes the I-MSAA as a new and superior MSAA 
algorithm variant to improve MSAA algorithm local search 
capabilities and balance-associated intensification and diver-
sification components. The proposed algorithm introduces a 
concept drawn from water wave optimization (WWO) [35] to 
replace the search step phase.

WWO was introduced by Zheng [35] and is inspired by 
shallow water wave models. The WWO has three important 
phases for finding optimal solutions. They are: propagation, 
breaking, and refraction phase. In propagation phase, the wave 
is propagated to a random position exactly once in an iteration. 
If a wave attains a lower sea depth (for minimization), it breaks 
into solitary waves which are formed in the breaking phase. 
Thus, breaking is used for the intensive search (exploitation) in 
search spaces by producing random solitary waves around the 
current best position. While in the refraction phase, the algo-
rithm explores the search space for any other best solution and 
avoids search inactiveness. As our interest is to improve the 
exploitation of the MSAA, the breaking phase used in WWO 
is implemented in the I-MSAA.

3.1  Breaking

According to Zheng [35], when a wave moves to a posi-
tion where the water depth is below a threshold value, the 
wave crest velocity exceeds the wave celerity. Consequently, 
the crest becomes steeper and steeper, and finally the wave 
breaks into a train of solitary waves. In WWO, the breaking 
operation performs a local search around the wave to simulate 
wave breaking. In the problem-solving process, k is randomly 
selected (where k is a random number between 1 and a prede-
fined number kmax), and at each dimension d generate a solitary 
wave x as:

(4)x�(d) = x(d) + N(0, 1) × �L(d),
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where β is the breaking coefficient; N(0, 1) a Gaussian 
random number with mean 0 and standard deviation 1, 
and L(d) is the length of the dth dimension of the search 
space. According to Zheng [35], it is recommended to set 
β to 0.001–0.01, and kmax to min(12, D/2), where D is the 
dimension of the problem.

This concept is exported to MSAA. Thus, the search step 
phase of the MSAA is replaced by breaking phase to improve 
the convergence ability and set a good balance between explo-
ration and exploitation.

4  The 30 benchmark functions 
of the CEC2014

The validity of the proposed I-MSAA is confirmed on 30 
benchmark functions of the CEC2014 special session on 
single objective real-parameter numerical optimization 
[33]. The benchmark suite covers various types of func-
tion optimization problems, as summarized in Table 2. 
The algorithm is coded in Matlab program and executed 

Begin

The MSAA parameters as set

Generate initial solution x chosen by Eq. (1)

Generate new solution y by Eq. (2)

y is better than x?

P =
1

1+e ∆f T⁄
Eq. (3)

Generate r in [0, 1) randomly

NoYes

x = y

r < P

Stop condition of inner loop is met?

No

Yes

Decrease the temperature T

Stop condition of inner loop is met?

Output the solution x

End

No

Yes

Yes

No

Preliminary Exploration Eq. (1)

X2

X1

Ri

Ri+1

Search Step Eq. (2)

Fig. 1  The MSAA flowchart
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using an Intel Core i7-3630QM system 2.4 GHz with 8 GB 
RAM. For result verification, the comparison is made 
between several optimization algorithms (IWO, BBO, 
GSA, HuS, BA, WWO, SOS, ISOS, MSAA, and I-MSAA). 
In this study, 30D functions are used with search ranges 
as [− 100, 100] and set the FEmax to 150,000. All results 
are collected from 60 independent runs on each test func-
tion. For all examples, the population size (preliminary 
exploration), initial temperature (Tinitial), final temperature 
(Tfinal),  npmax, β, and kmax are set as 200, 1, 1 × 10−3, 300, 
0.001, and min(12, D/2), respectively. Sensitivity analy-
ses on these parameters are investigated in [29, 31, 32, 
35]. Statistical tests are essential to check significance 
improvements by a proposed method over the existing 
methods. Therefore, the Friedman rank test on the results 
of I-MSAA, MSAA, and other state-of-the-art algorithms 
is used. The test is performed on the average and standard 
deviation (SD) of functional values obtained.

Table 3 shows the comparative average of fitness value. 
It can be seen that I-MSAA gives best results for unimodal 
functions, multimodal functions, and composition func-
tions. In hybrid functions, I-MSAA is only surpassed by the 
WWO and IWO algorithms. Furthermore, I-MSAA ranks 
better compared to MSAA for all type functions. Finally, 
I-MSAA ranks first for overall performance. Table 4 shows 
the comparative SD of fitness value. The results indicate that 
I-MSAA is second best among the considered algorithms. 
These results confirm the merits of the proposed algorithm.

5  Problem definition

The goal of the problem is designing the member sizes of 
the structure so that its weight is minimized while satisfy-
ing some constraints on the natural frequencies. Member 
cross-sectional areas are considered as continuous design 

Table 2  Summary of the CEC 
2014 benchmark functions [33]

Type Function Optimum

Unimodal f1: rotated high conditioned elliptic function 100
f2: rotated bent cigar function 200
f3: rotated discus function 300

Multimodal f4: shifted and rotated Rosenbrock function 400
f5: shifted and rotated Ackley’s function 500
f6: shifted and rotated Weierstrass function 600
f7: shifted and rotated Griewank’s function 700
f8: shifted Rastrigin’s function 800
f9: Shifted and rotated Rastrigin’s function 900
f10: shifted Schwefel’s function 1000
f11: shifted and rotated Schwefel’s function 1100
f12: shifted and rotated Katsuura function 1200
f13: shifted and rotated HappyCat function 1300
f14: Shifted and rotated HGBat function 1400
f15: shifted and rotated expanded Griewank’s plus Rosenbrock’s 

function
1500

f16: shifted and rotated expanded Scaffe’s f6 function 1600
Hybrid f17: hybrid function 1 (f9, f8, f1) 1700

f18: hybrid function 2 (f2, f12, f8) 1800
f19: hybrid function 3 (f7, f6, f4, f14) 1900
f20: hybrid function 4 (f12, f3, f13, f8) 2000
f21: hybrid function 5 (f14, f12, f4, f9, f1) 2100
f22: hybrid function 6 (f10, f11, f13, f9, f5) 2200

Composition f23: composition function 1 (f4, f1, f2, f3, f1) 2300
f24: composition function 2 (f10, f9, f14) 2400
f25: composition function 3 (f11, f9, f1) 2500
f26: composition function 4 (f11, f13, f1, f6, f7) 2600
f27: composition function 5 (f14, f9, f11, f6, f1) 2700
f28: composition function 6 (f15, f13, f11, f16, f1) 2800
f29: composition function 7 (f17, f18, f9) 2900
f30: composition function 8 (f20, f21, f22) 3000
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variables. Each variable should be chosen within a permis-
sible range. The mathematical formulation for this problem 
can be expressed as follows:

where W is the weight of the structure; n the total number of 
members of the structure; �i , Ai , and Li stand for the material 
density, the cross-sectional area, and the length of the ith 
member, respectively; �j and �k the jth and kth natural fre-
quencies of the structure, respectively; �∗

j
 and �∗

k
 the upper 

and lower bounds corresponding to �j and �k , respectively; 
A
i,min and Ai,max are the lower and upper bounds of Ai , 

respectively.

6  Truss problems and discussions

To evaluate the feasibility and validity of the I-MSAA, the 
following classical truss sizing problems (Fig. 2) are opti-
mized and the results are compared with the previous results 
obtained through various existing metaheuristics: (1) 10-bar 
planar truss; (2) 72-bar space truss; (3) 120-bar dome truss, 
and (4) 200-bar planar truss. The design considerations of 
the problems are given in Table 5.

In all design examples, the parameters used in the 
I-MSAA are: (1) as it is demonstrated in the previous studies 
[29, 31, 32], the population size (preliminary exploration), 
initial temperature (Tinitial), and final temperature (Tfinal) are 
set as 200, 1, 1 × 10−3, respectively; (2) according to [35], β 
and kmax are set as 0.001 and min(12, D/2), respectively; (3) 
according to [32], the maximum number of perturbations 
 (npmax) at the same temperature can be chosen in the range 
of 100–300. Evidence gathered from sensitivity analysis led 
to set  npmax as 200. These numbers of perturbations have 
been obtained in this work by examining its effect to find a 
balance between accuracy and computational cost for each 
of the problems.

The iterative process is terminated when the algorithm 
reaches the final temperature. The proposed I-MSAA algo-
rithm and finite element analysis are coded in Matlab pro-
gram and executed using an Intel Core i7-3630QM system 
2.4 GHz with 8 GB RAM. Statistical results, obtained for 
100 independent runs, are presented in terms of the best 
weight, average weight, standard deviation (SD), the corre-
sponding iterations number (NI), and frequency responses. 
It is important to note that all presented I-MSAA designs 

(4)

Minimize W(A) =
n∑
i=1

�iAiLi

Subject to

⎧
⎪⎨⎪⎩

�j ≤ �∗
j

�k ≥ �∗
k

A
i,min ≤ Ai ≤ Ai,max

,
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are feasible. The results and discussions of the benchmark 
problems are explained in the following sections.

6.1  10‑Bar planar truss

The first design example is the 10-bar planar truss struc-
ture shown in Fig. 2. A lumped mass of 454 kg is added in 
all free nodes. Table 6 presents a comparison of optimal 

results obtained by the proposed algorithm and other meth-
ods. The results indicate that I-MSAA (529.75 kg) achieves 
better optimal weight than DPSO, SBO, VPS, and MSAA 
algorithms, but slight heavier design than ReDe, ISOS, and 
AHEFA. However, the proposed algorithm requires less NI 
than ReDe (6200 NI for I-MSAA and 8300 NI for ReDe) 
to reach final solution. It can be seen that the convergence 
speed of the DPSO, ISOS, and AHEFA is faster than that of 

Fig. 2  Benchmark trusses’ 
problems
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the I-MSAA (6000 NI for DPSO, 4000 NI for ISOS, 5860 
for AHEFA); however, the I-MSAA is more stable than the 
DPSO, ISOS, and AHEFA through the best value of SD 
(0.11 kg for I-MSAA, 3.48 kg for ISOS, 1.92 kg for the 
AHEFA, and 4.02 kg for the DPSO). Finally, with respect 

to the SD, I-MSAA ranks second among the considered 
metaheuristics, only being surpassed by MSAA (0.01 kg). 
Natural frequencies optimal obtained by the I-MSAA show 
that none of the frequency constraints are violated. Figure 3 
shows the convergence curve of the best design of I-MSAA 
for this problem.

6.2  72‑Bar space truss

The 72-bar space truss shown in Fig. 2 is the second numeri-
cal example. The bars are categorized into 16 groups by 
considering geometrical symmetry. A lumped mass of 
2770 kg is attached at all top nodes (nodes 1–4). Optimal 
results obtained by the I-MSAA and the other optimization 
algorithms published in the literature are reported in Table 7. 
It can be seen that the acquired result by the proposed algo-
rithm (324.43 kg) is better than the other methods (327.51 kg 
for the CSS-BBBC, 327.65 kg for the DPSO, 327.55 kg for 
the SBO, 327.65 kg for the VPS, 325.01 kg for the ISOS, 
and 324.97 kg for the MSAA). Moreover, I-MSAA requires 

Table 5  Design considerations of the benchmark trusses

10-Bar planar truss 72-Bar space truss 120-Bar dome truss 200-Bar planar truss

Modulus of elasticity E (N/m2) 6.98 × 1010 6.98 × 1010 2.1 × 1011 2.1 × 1011

Material density ρ (kg/m3) 2770 2770 7971.81 7860
Cross-sectional area bounds  (cm2) 0.645 ≤ A ≤ 50 0.645 ≤ A ≤ 30 1 ≤ A ≤ 129.3 0.1 ≤ A ≤ 30
Frequency constraints (Hz) f1 ≥ 7

f2 ≥ 15
f3 ≥ 20

f1 = 4
f3 ≥ 6

f1 ≥ 9
f2 ≥ 11

f1 ≥ 5
f2 ≥ 10
f3 ≥ 15

Table 6  Optimal design 
parameters for the 10-bar planar 
truss by different algorithms

Variables  (cm2) DPSO SBO VPS ReDe ISOS AHEFA MSAA I-MSAA
[15] [19] [23] [25] [27] [28]

A1 35.944 35.5994 35.1471 35.1565 35.2654 35.1714 32.9710 32.5584
A2 15.53 14.9956 14.6668 14.7605 14.6803 14.7203 15.5925 15.4787
A3 35.285 35.4806 35.6889 35.1187 34.4273 35.1074 32.8514 32.7556
A4 15.385 14.7646 15.0929 14.7275 14.9605 14.6986 15.5942 15.5750
A5 0.648 0.6450 0.645 0.6450 0.6450 0.6451 0.6454 0.6454
A6 4.583 4.6305 4.6221 4.5558 4.5927 4.5593 4.6552 4.6612
A7 23.61 24.3272 23.5552 23.7199 23.3417 23.7330 26.1179 26.1090
A8 23.599 23.8528 24.468 23.6304 23.8236 23.6795 26.1350 26.2576
A9 13.135 12.6797 12.7198 12.3827 12.8497 12.3987 11.9983 11.7470
A10 12.357 12.6375 12.6845 12.4580 12.5321 12.4231 11.9339 11.8823
Best weight (kg) 532.39 532.05 530.77 524.45 524.73 524.45 532.04 529.75
f1 (Hz) 7.0000 7.0000 7.0000 7.0000 7.0001 7.0000 7.0000 7.0000
f2 (Hz) 16.1870 16.1660 16.1599 16.1924 16.1703 16.1920 15.8458 15.8235
f3 (Hz) 20.0000 20.0000 20.0000 20.0000 20.0024 20.0000 20.0000 20.0000
Average weight (kg) 537.80 533.45 535.64 524.76 530.03 525.16 532.06 530.11
SD (kg) 4.02 2.20 2.55 1.11 3.48 1.92 0.01 0.11
NI 6000 10,000 30,000 8300 4000 5860 7130 6200
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Fig. 3  Convergence curve of I-MSAA for the 10-bar planar truss
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fewer NI than the DPSO, SBO, VPS, ReDe, AHEFA, and 
MSAA (6200 NI for I-MSAA, 20,000 NI for DPSO, 15,000 
NI for SOB, 30,000 for VPS, 10,840 NI for ReDe, 8860 
NI for AHEFA, and 7130 for MSAA). The average weight 
benefit for I-MSAA is 3.24, 3.16, 3.15, 4.95, and 0.61 kg as 
compared to those obtained from DPSO, SBO, VPS, ISOS, 
and MSAA, respectively. Finally, I-MSAA obtains a low 
SD (0.07 kg) that evidences the stability of the proposed 
algorithm. Natural frequencies indicate the feasibility of the 

obtained design by I-MSAA. The convergence curve of the 
best design of I-MSAA for this problem is shown in Fig. 4.

6.3  120‑Bar dome truss

The third example is the 120-bar dome truss shown in Fig. 2. 
A lumped mass is attached to all free nodes as follows: 
3000 kg at node one, 500 kg at nodes 2 through 13 kg, and 
100 kg at the rest of the nodes. The members of the struc-
ture are categorized into seven groups using symmetry about 
the z axis. Table 8 compares the results of I-MSAA with 
other optimization methods. As observed, the I-MSAA pro-
vides the best result with 8707.01 kg while the others give 
larger weights, namely CSS-BBBC (9046.34 kg), DPSO 
(8890.48 kg), CBO (8889.13 kg), HALC-PSO (8889.96 kg), 
VPS (8888.74 kg), ReDe (8707.32 kg), ISOS (8710.06 kg), 
and MSAA (8707.39 kg). Moreover, I-MSAA requires 6200 
NI to converge the optimal solution, while the HALC-PSO 
and VPS need 17,000 and 30,000 NI, respectively. From the 
obtained average weight (8707.42 kg) and SD (0.08 kg) val-
ues of the proposed method, it can be seen that the I-MSAA 
is stable. The SD obtained with I-MSAA ranks first among 
the considered metaheuristics. The convergence curve of the 
best design of I-MSAA for this problem is shown in Fig. 5.

Table 7  Optimal design parameters for the 72-bar space truss by different algorithms

Variables  (cm2) CSS-BBBC DPSO SBO VPS ReDe ISOS AHEFA MSAA I-MSAA
[13] [15] [19] [23] [25] [27] [28]

A1–A4 2.854 3.5498 3.4917 3.5017 3.5327 3.3563 3.5612 3.4927 3.3524
A5–A12 8.301 7.8356 7.9414 7.9340 7.8303 7.8726 7.8736 7.8573 7.7448
A13–A16 0.645 0.6450 0.6450 0.6450 0.6453 0.6450 0.6450 0.6450 0.6450
A17–A18 0.645 0.6450 0.6450 0.6450 0.6459 0.6450 0.6451 0.6474 0.6450
A19–A22 8.202 8.1183 8.1154 8.0215 8.0029 8.5798 7.9710 7.8897 7.5541
A23–A30 7.043 8.1338 8.0533 7.9826 7.9135 7.6566 7.8928 8.0057 7.8746
A31–A34 0.645 0.6450 0.6450 0.6450 0.6451 0.7417 0.6450 0.6450 0.6450
A35–A36 0.645 0.6450 0.6450 0.6450 0.6451 0.6450 0.6451 0.6454 0.6450
A37–A40 16.328 12.6231 12.8569 12.8175 12.7626 13.0864 12.5404 12.6034 12.5877
A41–A48 8.299 8.0971 8.0425 8.1129 7.9657 8.0764 7.9639 7.9616 8.0790
A49–A52 0.645 0.6450 0.6451 0.6450 0.6452 0.6450 0.6459 0.6451 0.6450
A53–A54 0.645 0.6450 0.6450 0.6450 0.6450 0.6937 0.6462 0.6450 0.6450
A55–A58 15.048 17.3908 17.2136 17.3362 16.9041 16.2517 17.1323 17.1604 17.8079
A59–A66 8.268 8.0634 8.0804 8.1010 8.0434 8.1703 8.0216 8.0368 8.0575
A67–A70 0.645 0.6450 0.6450 0.6450 0.6451 0.6450 0.6450 0.6450 0.6450
A71–A72 0.645 0.6450 0.6450 0.6450 0.6473 0.6450 0.6451 0.6450 0.6486
Best weight (kg) 327.51 327.65 327.55 327.65 324.25 325.01 324.24 324.97 324.43
f1 (Hz) 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000
f3 (Hz) 6.0040 6.0000 6.0000 6.0000 6.0001 6.0008 6.0000 6.0000 6.0000
Average weight (kg) – 327.76 327.68 327.67 324.32 329.47 324.41 325.13 324.52
SD (kg) – 0.06 0.07 0.02 0.05 2.66 0.24 0.18 0.07
NI – 20,000 15,000 30,000 10,840 4000 8860 7130 6200
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6.4  200‑Bar planar truss

The last design problem is the 200-bar planar truss 
(Fig. 2). A lumped mass is attached at all top nodes (nodes 
1–5). The bars are grouped into 29 by seeing symmetry 
as reported in the previous studies. Table 9 provides a 
comparison of optimal results obtained by the I-MSAA 
and different metaheuristics. It can be seen that the 
best weight obtained by I-MSAA (2156.83 kg) is better 
than those given by AHEFA (2160.74 kg), CSS-BBBC 
(2298.61 kg), ISOS (2169.46 kg), SOS (2180.32 kg), and 
MSAA (2157.28 kg). The I-MSSA design is slightly worse 
than SBO (2156.51 kg) and HALC-PSO (2156.73 kg); 
however, the convergence speed of the I-MSAA is faster 
than these algorithms (23,000 NI for SBO and 13,000 NI 

for HALC-PSO). The results also indicate that, I-MSAA is 
more stable than SOS, ISOS, and MSAA with the smallest 
SD (1.13 kg for I-MSAA, 83.59 kg for SOS, 43.48 kg for 
ISOS, and 2.96 for MSAA). Frequency values show that 
all constraints of the 200-bar planar truss are satisfied by 
the I-MSAA. Figure 6 shows the convergence curve of the 
best design of I-MSAA for this problem.

7  Conclusions

This paper proposes how to improve the modified simu-
lated annealing algorithm by including breaking opera-
tor, a concept borrowed from water wave optimization. 
The breaking operator is implemented to improve exploi-
tation ability of MSAA in the search process. The new 
algorithm is called I-MSAA. Thirty benchmark functions 
of the CEC2014 and four classical truss sizing problems 
with frequency constraints are tested to verify the effec-
tiveness and robustness of the proposed algorithm. In the 
benchmark functions, I-MSAA is better or competitive 
for obtaining results based on the mean and SD of func-
tional values obtained over the stated runs as compared 
to MSAA and other metaheuristics. In the truss optimiza-
tion, I-MSAA always achieve a better design than MSAA. 
Additionally, the numerical results show the ability of 
this algorithm to produce competitive results compared 
to those of the other metaheuristic algorithms presented in 

Table 8  Optimal design parameters for the 120-bar dome truss by different algorithms

Variables  (cm2) CSS-BBBC DPSO CBO HALC-PSO VPS ReDe ISOS MSAA I-MSAA
[13] [15] [16] [18] [23] [25] [27]

A1 17.478 19.607 19.6917 19.8905 19.6836 19.5131 19.6662 20.0425 19.6068
A2 49.076 41.290 41.1421 40.4045 40.9581 40.3914 39.8539 39.4775 40.5483
A3 12.365 11.136 11.1550 11.2057 11.3325 10.6066 10.6127 13.6425 13.4167
A4 21.979 21.025 21.3207 21.3768 21.5387 21.1415 21.2901 20.4928 20.2411
A5 11.190 10.060 9.8330 9.8669 9.8867 9.8057 9.7911 9.0488 9.1521
A6 12.590 12.758 12.8520 12.7200 12.7116 11.7781 11.7899 15.2658 15.8831
A7 13.585 15.414 15.1602 15.2236 14.9330 14.8163 14.7437 12.9846 12.9856
Best weight (kg) 9046.34 8890.48 8889.13 8889.96 8888.74 8707.32 8710.06 8707.39 8707.01
f1 (Hz) 9.000 9.0001 9.0000 9.0000 9.0000 9.0000 9.0001 9.0000 9.0000
f2 (Hz) 11.007 11.0007 11.0000 11.0000 11.0000 11.0000 10.9998 11.0000 11.0000
Average weight (kg) – 8895.99 8891.25 8900.39 8896.04 8707.52 8728.56 8709.96 8707.42
SD (kg) – 4.26 1.79 6.38 6.65 0.15 14.23 3.43 0.08
NI – 6000 6000 17,000 30,000 5080 4000 3100 6200
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the literature in terms of best weight, SD, and NI required 
by the optimization process. The presented data on aver-
age weight and SD of optimized weight obtained from 
100 independent runs prove the robustness of I-MSAA. 

The I-MSAA is simple to implement and it can be easy 
to extend for various engineering optimization problems 
such as: simultaneous shape and topology optimization of 
truss structures, frame optimization, and reliability-based 
design optimization problems.

Table 9  Optimal design parameters for the 200-bar planar truss by different algorithms

Variables  (cm2) CSS-BBBC HALC-PSO SBO SOS ISOS AHEFA MSAA I-MSAA
[13] [18] [19] [26] [27] [28]

A1 0.2934 0.3072 0.3040 0.4781 0.3072 0.2993 0.3034 0.3181
A2 0.5561 0.4545 0.4478 0.4481 0.5075 0.4508 0.5177 0.4603
A3 0.2952 0.1000 0.1000 0.1049 0.1001 0.1001 0.1000 0.1000
A4 0.1970 0.1000 0.1000 0.1045 0.1000 0.1000 0.1000 0.1000
A5 0.8340 0.5080 0.5075 0.4875 0.5893 0.5123 0.5699 0.5271
A6 0.6455 0.8276 0.8219 0.9353 0.8328 0.8205 0.8187 0.8066
A7 0.1770 0.1023 0.1003 0.1200 0.1431 0.1011 0.1000 0.1009
A8 1.4796 1.4357 1.4240 1.3236 1.3600 1.4156 1.4361 1.5387
A9 0.4497 0.1007 0.1001 0.1015 0.1039 0.1000 0.1000 0.1001
A10 1.4556 1.5528 1.5929 1.4827 1.5114 1.5742 1.4599 1.6293
A11 1.2238 1.1529 1.1597 1.1384 1.3568 1.1597 1.1381 1.1467
A12 0.2739 0.1522 0.1275 0.1020 0.1024 0.1338 0.1205 0.1318
A13 1.9174 2.9564 2.9765 2.9943 2.9024 2.9672 2.9032 2.8387
A14 0.1170 0.1003 0.1001 0.1562 0.1000 0.1000 0.1006 0.1000
A15 3.5535 3.2242 3.2456 3.4330 3.4120 3.2722 3.7168 2.7781
A16 1.3360 1.5839 1.5818 1.6816 1.4819 1.5762 1.5246 1.5820
A17 0.6289 0.2818 0.2566 0.1026 0.2587 0.2562 0.2056 0.1409
A18 4.8335 5.0696 5.1118 5.0739 4.8291 5.0956 5.1494 5.7784
A19 0.6062 0.1033 0.1001 0.1068 0.1499 0.1001 0.1021 0.1015
A20 5.4393 5.4657 5.4337 6.0176 5.5090 5.4546 5.3291 4.8444
A21 1.8435 2.0975 2.1016 2.0340 2.2221 2.0933 1.9882 2.0156
A22 0.8955 0.6598 0.6794 0.6595 0.6113 0.6737 0.6782 0.4538
A23 8.1759 7.6585 7.6581 6.9003 7.3398 7.6498 7.9359 6.4039
A24 0.3209 0.1444 0.1006 0.2020 0.1559 0.1178 0.3222 0.6062
A25 10.9800 8.0520 7.9468 6.8356 8.6301 8.0682 8.9235 9.2760
A26 2.9489 2.7889 2.7835 2.6644 2.8245 2.8025 2.5618 2.8030
A27 10.5243 10.4770 10.5277 12.1430 10.8563 10.5040 10.4026 11.6835
A28 20.4271 21.3257 21.3027 22.2484 20.9142 21.2935 21.3538 21.2372
A29 19.0983 10.5111 10.6207 8.9378 10.5305 10.7410 10.6476 9.7778
Best weight (kg) 2298.61 2156.73 2156.51 2180.32 2169.46 2160.74 2157.28 2156.83
f1 (Hz) 5.010 5.000 5.000 5.0001 5.0000 5.0000 5.0000 5.0000
f2 (Hz) 12.911 12.254 12.2141 13.4306 12.4477 12.1821 12.3405 12.3482
f3 (Hz) 15.416 15.044 15.0192 15.2645 15.2332 15.0160 15.0001 15.0028
Average weight (kg) – 2157.14 2156.79 2303.30 2244.64 2161.04 2161.74 2157.94
SD (kg) – 0.24 0.21 83.59 43.48 0.18 2.96 1.13
NI – 13,000 23,000 10,000 10,000 11,300 6200 6200
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