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Abstract
Prediction of ultimate pile bearing capacity with the aid of field experimental results through artificial intelligence (AI) 
techniques is one of the most significant and complicated problem in pile analysis and design. The aim of this research is 
to develop a new AI predictive models for predicting pile bearing capacity. The first predictive model was developed based 
on the combination of adaptive neuro-fuzzy inference system (ANFIS) and group method of data handling (GMDH) struc-
ture optimized by particle swarm optimization (PSO) algorithm called as ANFIS–GMDH–PSO model; the second model 
introduced as fuzzy polynomial neural network type group method of data handling (FPNN–GMDH) model. A database 
consists of different piles property and soil characteristics, collected from literature including CPT and pile loading test 
results which applied for training and testing process of developed models. Also a common artificial neural network (ANN) 
model was applied as a reference model for comparing and verifying among hybrid developed models for prediction. The 
modelling results indicated that improved ANFIS–GMDH model achieved relatively higher performance compared to ANN 
and FPNN–GMDH models in terms of accuracy and reliability level based on standard statistical performance indices such 
as coefficient of correlation (R), mean square error, root mean square error and error standard deviation values.

Keywords  Ultimate pile bearing capacity · Deep foundation · ANFIS–GMDH–PSO model · PSO Algorithm · FPNN–
GMDH model · GMDH network

1  Introduction

Taking into consideration the complex behavior associated 
with the soil along with soil-structure interaction, measur-
ing the pile loading bearing capacity, is considered as one 
of the most challenging problems in geotechnics. Different 

researchers have proposed various methods for forecasting 
the piles bearing capacity [1–3]. In some of these meth-
ods such as pile static analysis, and pile empirical analysis 
relations due to the simplification is made, selection of a 
large safety factor is unavoidable which causes low accu-
racy and loss of resources [4]. In some other methods, like 
the pile loading test procedures despite the high percent-
age of reliability, application of these methods can make 
noneconomic, time-consuming, and cause high costs of 
setup [5, 6]. Cone penetration test (CPT) is one of the most 
common in situ field tests considered due to its simplicity, 
high speed, and relatively low cost. In addition, CPT could 
make an achievement a continuous output at soil depths; 
also since the similarity characteristics between penetrom-
eter cone tip related to pile tip and cone sleeve related to pile 
friction surface, estimating the piles bearing capacity is one 
of common CPT applications [7]. There are two approaches 
to the use of CPT results in designing piles [8]. The direct 
approach calculates piles bearing capacity using CPT results 
and indirect approach which calculates pile bearing capac-
ity using the soil specifications obtained from CPT results 
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[9, 10]. The use of computational intelligence in estimating 
the bearing capacity of piles based on the CPT results clas-
sified as direct approaches [11, 12]. Despite the significant 
progress of soil mechanics and geotechnical engineering in 
recent decades, determination of pile bearing capacity is 
considered as a difficult issue. Mechanical properties and 
the physical behavior of the soils and also piles diversity 
lead to interaction between the pile and surrounding soils 
[13, 14]. Soil specifications could be varied due to nonho-
mogeneous, anisotropy, the presence of water and complex 
stress–strain behavior; also, sometimes due to various region 
conditions, the pile properties can be changeable such as the 
type, material, shape, construction and setups methods [15, 
16]. With respect to the mentioned reasons, modeling such 
complex conditions including interaction among different 
parameters is not simply possible. Therefore, a large number 
of investigators [17, 18] have made incorporations over the 
past decades to provide theoretical or empirical relation-
ships for determining the bearing capacity of the piles [6, 
19]. However, each method using different input parameters 
associated with the laboratory conditions and the simplified 
assumptions may not be satisfactory for solving pile analysis 
and design in practice [20]. Therefore, the use of analytical 
and semi-experimental methods leads to an inaccurate deter-
mination of the bearing capacity of the piles [21]. Due to the 
high cost of laboratory and field tests of deep foundations 
as well as the need to optimally design pile structure, many 
researchers [22, 23] have been proposed to apply artificial 
intelligence (AI) techniques as complementary and alterna-
tive methods of the existing traditional methods for estimat-
ing the bearing capacity of piles [24–27].

Artificial neural networks (ANNs) and other AI algorithms 
inspired by the structure and function of the human brain 
which have been widely used in various field of science and 
engineering in recent years [28–63]. Many researchers have 
also used a wide range of these techniques for pile capacity 
prediction recently [64–67, 12, 68]. The results of this research 
reported the accuracy and reliability of AI and soft computing 
methods [9, 69] in predicting pile bearing capacity. Later on, 
another polynomial neural network [70] was developed known 
as group method of data handling (GMDH) which was used to 
predict axial pile bearing capacity in geotechnical engineer-
ing [71, 72]. Recently, the use of subset of the AI techniques 
such as the GMDH type neural network, genetic algorithm 
(GA) and the fuzzy logic theory and their parallel integra-
tion have led to the development of advanced hybrid comput-
ing algorithms [3, 73–76]. The hybrid synergies structure of 
these approaches had important significance for researchers 
[77–80]. Some degrees of success in the field of combining 
of these approaches have been reported to improve structure 
and tuning parameters of each specific algorithm during recent 
years [27, 50, 81]. The objective of this research is to achieve a 
novel hybrid neural network through combining GMDH type 

neural network by substituting structure of adaptive neuro-
fuzzy inference system (ANFIS) in each partial description 
and finally to improve new hybrid ANFIS–GMDH network 
using particle swarm optimization (PSO) method to develop 
ANFIS–GMDH–PSO model for evaluation and prediction of 
the ultimate pile bearing capacity. Along with the develop-
ment of ANFIS–GMDH–PSO, another model called as fuzzy 
polynomial neural network type GMDH (FPNN–GMDH) is 
extended for comparison purposes in terms of accuracy and 
overall performance against each developed model.

2 � Theoretical concepts

2.1 � Framework of group method of data handling 
(GMDH) type neural network structure

The idea associated with ANNs stimulation through modeling 
structure of the complex human brain, known as a non-lin-
ear, parallel performing approach [82]. GMDH type neural 
network structure is the self-organizing method by which 
a behavior system identified by assessment of their perfor-
mances over a provided set of multi-input single output dataset 
(xi, xj) , (i = 1, 2,… ,M) . The concept of the GMDH network 
is to make an analytic function within a feed-forward network 
determined by a polynomial transfer function in which coeffi-
cients attained applying the particular regression process [71]. 
By applying the GMDH algorithm, a model displayed as a set 
of neurons through which various sets in every single layer 
usually interconnected through a quadratic polynomial, creat-
ing new neurons inside the subsequent layer. These types of 
representation employed to map inputs space to outputs space. 
The basic description of the identification issue is to uncover 
a function (f̂ ) utilized as opposed to the desired function (f ) as 
a way to predict output result (ŷ) for any provided input vector 
X =

(
x1, x2, x3,… , xn

)
 as close as possible towards the target 

value (y). For that reason, provided M observations involving 
multivariable input–single variable output dataset:

It could be practical to train a GMDH type of ANN to esti-
mate predicted values (ŷi) considered to be for each provided 
input vector (X):

The main issue is to specify a GMDH type neural network 
to ensure the square of the differences between observed and 
expected output values minimized as follows:

An elaborate discrete type of the Volterra functional series, 
referred to as Kolmogorov-Gabor polynomial can present the 

(1)yi = f
(
xi1, xi2, xi3,… , xin

)
, (i = 1, 2, 3,…M).

(2)ŷi = f̂ (xi1, xi2, xi3,… , xin) (i = 1, 2, 3,… ,M).

(3)
M∑
i=1

[
f̂ (xi1, xi2, xi3,… , xin) − yi

]2
⇒ min.
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general relationship among input and output parameters space. 
As a result:

This specific full form of mathematically description typi-
cally exhibited using a solution of partial quadratic polynomi-
als made from simply two variables (neurons) by applying 
Eq. (5) as follow:

Using this approach, the description of a partial quadratic 
is recursively applied to interconnected neurons network to 
develop the standard mathematical relation concerning inputs 
and output provided in Eq. (4). The ai coefficients in Eq. (5), 
computed by applying the regression method to decrease 
the main difference between observed output values (y) and 
predicted the output ones (ŷ) for each pair input parameters 
(xi, xj) . Clearly, a tree of polynomials developed by utiliz-
ing the quadratic type provided in Eq. (5) whose coefficients 
achieved by the least squares method. The coefficients of each 
quadratic function Gi obtained for an optimum fitting for that 
output associated with the total pairs of input–output data sets 
based on minimizing Eq. (6) criteria:

For the standard form of GMDH type neural network for-
mula, all possibilities of two independent variables from the 
total n input variables are taken into account to construct the 
regression polynomial by the use of Eq. (5) that most closely 
fit the dependent observations (yi , i = 1, 2,… , M) based on 
the least squares perspective.

Therefore, 

(
n

2

)
=

n(n−2)

2
 neurons established within the 

first hidden layer from the feedforward network using the 
observations 

{
(yi, xip, xiq); (i = 1, 2, 3,… ,M)

}
 using 

p, q ∈ {1, 2, 3,… , n} in the form of Eq. (7):

From the quadratic sub-expression, using Eq. (5) per each 
row of M data triples, the below matrix formulation achieved 
through Eq. (8) to Eq. (11), respectively:

(4)

y = a0 +

n∑
i=1

aixi +

n∑
i=1

n∑
j=1

aijxixj +

n∑
i=1

n∑
j=1

n∑
k=1

aijkxixjxk +⋯ .

(5)
ŷ = G(xi, xj) = a0 + a1xi + a2xj + a3xixj + a4x

2
i
+ a5x

2
j
.

(6)E =

∑M

i=1
(yi − Gi(xi, xj))

2

M
⇒ min.

(7)

⎡⎢⎢⎢⎣

x1p x1q ⋮ y1
x2p x2q ⋮ y2
⋯ ⋯ ⋯ ⋯

xMp xMq ⋮ yM

⎤⎥⎥⎥⎦
.

(8)Aa = Y ,

(9)a =
{
a0, a1, a2, a3, a4, a5

}
,

The least squares technique from the multiple regression 
analysis leads to a solution of the characteristic equations, in 
the following form:

The solution determines the coefficients vector of Eq. (5) 
for all range of M dataset triples. It observed that this process 
repeated for every neuron of any succeeding hidden layer as 
outlined by the interconnection topology in this network.

2.2 � Framework of fuzzy polynomial neural network 
GMDH (FPNN–GMDH) structure

In FPNN–GMDH structure, partial descriptions are in the 
form of RBF networks. In each network, this partial descrip-
tion that each of which has two inputs introduced, and net-
work structure created as a hierarchy of these blocks. If M 
describes the number of partial descriptions in each layer 
and P is the number of layers of the network, output calcula-
tion procedure in the network as follows:

If Aki(xi) represents the membership function for the kth 
fuzzy rule in the domain of ith input variable, then its mem-
bership function calculated with Eq. (13):

In which L could adopt the values of 1 and 2. The infer-
ence part of fuzzy inference engine to conclude y value, 
presented by a coefficient such as wi coefficient. For mth 
partial description in pth layer, the output calculated as fol-
lows Eq. (14):

In which the membership function is chosen as Eq. (15):

In which Eq. (14) known as RBF network. In the end, 
FPNN–GMDH model output calculated as follow accord-
ing to Eq. (16):

(10)
Y =

{
y1, y2, y3,… , yM

}T
,

(11)A =

⎡
⎢⎢⎢⎢⎣

1 x1p x1q x1px1q x2
1p

x2
1q

1 x2p x2q x2px2q x2
2p

x2
2q

⋯ ⋯ ⋯ ⋯ ⋯ ⋯

1 xMp xMq xMpxMq x2
Mp

x2
Mq

⎤
⎥⎥⎥⎥⎦
.

(12)a = (ATA)−1 ATY .

(13)�
pm

k
=

L∏
i=1

A
pm

ki
(xi) .

(14)ypm =

K∑
i=1

�
pm

k
w
pm

k
.

(15)A
pm

ki
(xi) = exp

{
−
(x

pm

i
− a

pm

ki
)2

b
pm

ki

}
.
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Figure 1 represents a sample of this network that has three 
layers and, in each layer, has assigned three partial descrip-
tions. The researchers introduced different methods to train 
FPNN model. Most common methods are gradient descent 
method, structural learning with forgetting (SLF) [83], 
MSLF [84]. Also, other various intelligence optimization 
methods proposed by researchers in recent years including 
evolutionary algorithms [85], and meta-heuristics methods 
such as PSO [86, 87].

2.3 � Framework of adaptive network based‑fuzzy 
inference system (ANFIS) structure

In this article, an overview of Takagi–Sugeno type Adaptive 
Neuro-Fuzzy Inference System (ANFIS) network discussed. 
ANFIS structure takes advantage from two main fields of 
the fuzzy logic and neural network concepts [88]. If two 
approaches combined with each other, the better results will 
achieve the best performance regarding quality and quantity 
due to fuzzy wisdom and neural networks computational 
ability [89]. Like other types of fuzzy-neural systems, ANFIS 

(16)
y =

1

M

M∑
m=1

ypm.
framework consists of two parts. The primary section is an 
antecedent, and the subsequent section is a consequence part 
so that these two parts connected to each other by a set of rules. 
Five layers observed in ANFIS structure considered as a multi-
layer network. A sample of ANFIS structure is shown in Fig. 2. 
The 1st layer performs fuzzification, the 2nd layer completes 
fuzzy (AND/OR) operations and developing fuzzy rules; the 
3rd layer performed the membership functions normalization; 
the 4th layer carries out fuzzy rules inference, and at last, the 
5th layer calculates the output of the network (system predicted 
output).

Formulated equations regarding ANFIS network are listed 
as follows:

ANFIS network uses fuzzy membership functions, and 
most important membership functions are Bell-shaped func-
tions having minimum and maximum values of zero and one, 
respectively, as follows:

(17)wi = �Ai
(x1) × �Bi

(x2),

(18)w̄i =
wi

w1 + w2

, i = 1, 2,

(19)
f1 = q11x1 + q12x2 + q13

f2 = q21x1 + q22x2 + q23,

(20)f =
w1f1 + w2f2

w1 + w2

= w̄1f1 + w̄2f2.

(21)
𝜇Ai

(x) =
1

1 +

[(
x−x̄i

𝜎i

)2
]bi ,

(22)𝜇Ai
(x) = exp

⎧⎪⎨⎪⎩
−

��
x − x̄i

𝜎i

�2
�bi⎫⎪⎬⎪⎭

.Fig. 1   Structure of FPNN–GMDH with six input variables

Fig. 2   ANFIS architecture 
including two inputs, four rules, 
and one output
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In which 
{
xi, bi, �i

}
 , the parameters associated with a 

membership function shape.
Various methods have been proposed to train ANFIS net-

work. The most common approach among them is gradient 
descent method that can minimize the output error. Other 
hybrid methods were introduced for training this network as 
training consequence part by gradient descent method and 
training antecedent part by PSO [24]. Training of both the 
antecedent and consequence parts of ANFIS structure using 
evolutionary optimization techniques, for instance, GA or 
meta-heuristic optimization methods e.g., PSO and gravi-
tational search algorithm are among the other intelligence 
optimization methods [90–92].

2.4 � MLP–ANNs framework

Artificial neural networks (ANNs) which have developed by 
McCulloch and Pitts [93], are information processing pat-
terns made by mimicking the neural network of the human 
brain. ANN consists of input, hidden, and output layers. In 
each layer, there is a set of interconnected processor compo-
nents (neurons) whose output is the input layer of the next 
layer. The output signal from one layer will be connected to 
the next layer by means of weight factors through an inter-
mediate that amplifies or weakens the signals [94]. An active 
function such as the linear or sigmoid function will be used 
to calculate the outputs of neurons in the hidden and output 
layers. The number of neurons in the input and output layers 
is determined by the number of input and output variables. 
Given the number of neurons in the hidden layer, there is no 
specific way; however, the number of hidden layers is deter-
mined by the number of neurons according to the complexity 
of the problem and the trial and error method [95]. There are 
several neural networks with different training algorithms, 
but a review of the articles shows that forward training with 
back-propagation (BP) algorithm is commonly used in dif-
ferent areas such as mining and geotechnical engineering 
[96–100]. The ANN modeling process can be summarized 
in two main parts: (1) assigning network structure and (2) 
adjusting the weight of connections between neurons. In the 
BP algorithm, weights will be determined by minimizing 
the error between the outputs and the value predicted by the 
ANN and the error returns to the input layer. Finally, the 
network response will be obtained as the model output [95]. 
In the next step, if the response is different from the target 
value, the bias correction will start to reduce the error rate. 
Therefore, the BP algorithm was used in this study [101]. 
However, the feedforward back propagation suffers from 
convergence problems and is trapped in the local minimum. 
Figure 3 illustrates the architecture of common ANN used in 
this study as a benchmark model for comparative purposes 
with other models [101].

3 � Pile and soil information

A compiled dataset collected from published paper based 
on CPT results and PLT results to develop and running 
different predictor hybrid models related to pile capacity 
evaluation. Databank compiled from various sources: The 
most provided by those found in literature together with 
the experimental field test reported in past years in some 
southern area of Iran. An ongoing database consisted of soil 
characteristics, pile properties (pile embedded length, pile 
cross-section shape, pile material), CPT results including 
the resistance of cone tip and the sleeve friction of cone and 
ultimate pile capacity (Qt) derived from in situ pile loading 
tests (PLT). Two important types of parameters influence Qt; 
a group associated with the measured soil properties, and 
other groups relevant to pile characteristics. Typically, soil 
characteristics close to embedded piles could be assumed 
described by CPT output results including the resistance of 
cone tip (QC) and cone sleeve friction resistance (FS) in most 
cases. Therefore, CPT results utilized as the representation 
of soil parameters which influencing Qt values. Pile geom-
etry specifications (length and diameter) involving pile char-
acteristics which effecting on Qt. Additionally, unmodified 
CPT results were applied through modeling process since 
they are seldom included the pore pressure measurement 
using CPT due to the cone device limitation in the past; also 
pile load tests were performed by different researchers over 
72 piles collected in literature reviews used in this study 
shown in Table 1. Pile setup and establishment installed by 
hammer and jack driving tools; Some of which are concrete 
piles while remaining ones are steel piles [69]. Limited off-
set load adopted as the standard reference for piles bearing 
capacity calculations derived from PLT results [102].

In the following section, new AI hybrid models were 
developed to evaluate the ultimate pile bearing capacity 
using the collected database according to Table 1 for training 

Fig. 3   Traditional ANN structure



690	 Engineering with Computers (2021) 37:685–700

1 3

Table 1   The applied collected 
databases [69]

Case L (m) D (m) Qc (Mpa) Fs (Mpa) Qt (kN) Soil type Pile material/type/install

1 9.20 0.274 6.170 0.0225 490 Sand Steel/pipe/driven
2 11.0 0.321 4.030 0.1000 1000 Sand Concrete/square/driven
3 15.0 0.321 6.650 0.1200 1600 Sand Concrete/square/driven
4 25.8 0.626 15.96 0.1000 5785 Sand Concrete/octagonal/driven
5 34.2 0.609 7.630 0.0600 4330 Sand Steel/pipe/driven
6 34.2 0.609 7.490 0.0630 4460 Sand Steel/pipe/driven
7 9.50 0.350 4.290 0.1300 900 Silty sand Concrete/square/driven
8 37.8 0.900 2.350 0.0220 3960 Silty sand Concrete/round/driven
9 36.5 0.508 3.350 0.0200 2950 Silty sand Concrete/square/driven
10 37.5 0.401 3.110 0.0150 2800 Silty sand Steel/pipe/driven
11 30.5 0.370 3.720 0.0200 2160 Silty sand Concrete/triangle/driven
12 31.1 0.350 5.280 0.0200 1710 Silty sand Steel/pipe/driven
13 41.8 0.401 2.100 0.0220 1890 Silty sand Steel/pipe/driven
14 16.0 0.350 7.980 0.1600 1350 Sand Concrete/square/driven
15 11.0 0.564 7.070 0.0700 2070 Sand Concrete/square/driven
16 20.4 0.350 4.850 0.0800 1260 Silt Concrete/square/driven
17 24.1 0.800 13.02 0.2550 7830 Sand Concrete/round/bored
18 24.1 0.800 14.10 0.2850 5850 Sand Concrete/round/bored
19 10.0 0.290 4.140 0.0600 625 Silty sand Steel/pipe/driven
20 18.2 0.610 10.92 0.0500 3600 Sand Concrete/round/driven
21 18.2 0.660 10.92 0.0700 3650 Sand Steel/pipe/driven
22 36.3 0.134 18.24 0.1400 2130 Sand Steel/h-pile/driven
23 16.5 0.134 16.10 0.0800 2900 Sand Steel/h-pile/driven
24 16.2 0.134 14.80 0.0400 3600 Sand Steel/h-pile/driven
25 16.2 0.301 19.74 0.0800 1310 Sand Steel/pipe/driven
26 14.4 0.350 21.62 0.0800 1300 Sand Steel/pipe/driven
27 14.6 0.401 21.62 0.0800 1800 Sand Steel/pipe/driven
28 15.8 0.350 5.020 0.0500 900 Sand Concrete/round/bored
29 16.8 0.750 5.640 0.0900 4500 Sand Concrete/round/bored
30 14.0 0.490 15.00 0.0300 3500 Sand Steel/h-pile/driven
31 14.0 0.508 10.42 0.1000 3850 Limestone Concrete/square/driven
32 13.7 0.508 8.350 0.1200 4250 Limestone Concrete/square/driven
33 9.40 0.350 2.740 0.0600 645 Silty sand Concrete/round/bored
34 9.40 0.401 2.820 0.0600 725 Silty sand Concrete/round/bored
35 30.5 0.760 39.26 0.1000 10,600 Sand Steel/pipe/driven
36 38.7 0.760 50.30 0.2500 15,500 Sand Steel/pipe/driven
37 47.0 0.760 55.51 0.3000 22,700 Sand Steel/pipe/driven
38 23.2 0.324 10.80 0.0370 1200 Sand Steel/pipe/driven
39 8.20 0.800 28.83 0.0900 4700 Clay Steel/pipe/driven
40 8.20 0.800 29.54 0.0800 3690 Clay Steel/pipe/driven
41 29.0 0.508 1.390 0.0220 1935 Clay Concrete/square/driven
42 19.8 0.677 2.100 0.0300 2025 Sandy clay Concrete/square/driven
43 19.8 0.954 2.100 0.0300 2610 Sandy clay Concrete/square/driven
44 9.25 0.283 2.550 0.0500 700 Sandy clay Concrete/square/driven
45 14.0 0.242 3.790 0.0500 2125 clay Steel/h-pile/driven
46 13.0 0.274 4.180 0.0400 780 Sandy clay Steel/pipe/driven
47 13.0 0.274 4.180 0.0580 800 Sandy clay Steel/pipe/driven
48 12.5 0.350 6.760 0.0880 1100 Clay Concrete/round/bored
49 8.50 0.508 4.720 0.1800 1330 Clay Concrete/square/driven
50 6.70 0.396 5.100 0.2000 1470 Clay Concrete/square/driven
51 7.60 0.508 4.030 0.1400 1070 Clay Concrete/square/driven
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and testing stage of proposed AI models; finally, the perfor-
mance of developed models were compared to each other 
with the aid of applying conventional ANN as a reference 
model based on statistical indices criterion. The methodol-
ogy flowchart of this study is briefly described in Fig. 4 and 
in Sect. 4.

4 � Methods

In this section, the researchers intend to combine the struc-
ture of two soft computing approaches called as ANFIS 
algorithm and GMDH algorithm to develop new hybrid 
network model called as ANFIS–GMDH. Furthermore, to 
optimize the structure of developed ANFIS–GMDH net-
work model for pile bearing capacity prediction, first a brief 
description of particle swarm optimization algorithm was 
described; then, through applying PSO method over topol-
ogy of desired ANFIS–GMDH model, the membership 
function parameters and network structure was improved to 
achieve better performance model (ANFIS–GMDH–PSO) 
compared to another model (FPNN–GMDH). Finally, the 
prediction and regression results of applied two developed 
models compared to each other based on some common sta-
tistical criteria. The result was shown graphically by charts 
and tabulated by tables for each developed model to verify 
the precision and performance in training and testing stages 
for each predictor model in predicting pile bearing capacity.

4.1 � Development of hybrid ANFIS–GMDH structure

In this part, the new structure of GMDH type neural net-
work has discussed in which partial descriptions (PD’s) 
are ANFIS networks having two inputs in place of RBF 
structure. Each partial description is an ANFIS network 
with two inputs in which the number selection of member-
ship functions per each input is changeable. Accordingly, 
the output of each partial description (PD) defined as fol-
lows in Eq. (23) through Eq. (24):

In which m is partial description number in the pth layer, 
n is the selected number of membership functions intended 
for inputs and q coefficients are real numbers. In this case, 
the network output achieved based on Eq. (25):

The notation M refers to the number of partial descrip-
tions in the last layer.

(23)Fpm =

∑n

l

∑n

k
�Al

(x
pm

1
)�Bk

(x
pm

2
) f

pm

lk∑n

l

∑n

k
�Al

(x
pm

1
)�Bk

(x
pm

2
)

,

(24)f
pm

lk
= q1

lk
x1 + q2

lk
x2 + q3

lk
.

(25)y =
1

M

M∑
m=1

Fpm.

Table 1   (continued) Case L (m) D (m) Qc (Mpa) Fs (Mpa) Qt (kN) Soil type Pile material/type/install

52 5.50 0.396 6.820 0.2000 1050 Clay Concrete/square/driven
53 8.40 0.451 10.60 0.0670 1240 Clay Concrete/square/driven
54 10.3 0.508 4.970 0.0900 1250 Sandy clay Concrete/square/driven
55 10.4 0.508 3.110 0.1300 1070 Silty clay Concrete/square/driven
56 10.6 0.350 8.290 0.1800 1160 Clay Concrete/round/bored
57 8.90 0.350 7.890 0.2000 1170 Clay Steel/h-pile/driven
58 10.4 0.451 6.490 0.1000 1170 Clay Steel/h-pile/driven
59 8.50 0.350 5.380 0.1000 720 Clay Concrete/round/bored
60 19.2 0.451 1.050 0.0670 1780 Clay Concrete/square/driven
61 11.5 0.299 7.110 0.2000 1320 Clay Concrete/round/bored
62 9.00 0.113 15.70 0.2000 2100 Clay Steel/h-pile/driven
63 10.7 0.350 7.360 0.0800 1390 Clay Concrete/round/bored
64 7.40 0.451 3.530 0.0840 640 Clay Concrete/square/driven
65 14.5 0.101 5.180 0.0830 1240 Clay Steel/h-pile/driven
66 14.7 0.101 5.960 0.0830 1260 Clay Steel/h-pile/driven
67 14.7 0.101 6.110 0.0740 1201 Clay Steel/h-pile/driven
68 25.0 1.100 10.00 0.0500 8662 Silty caly Concrete/round/bored
69 25.0 1.100 5.200 0.0200 6789 Silty clay Concrete/round/bored
70 25.0 1.010 10.20 0.0110 7849 Sand Steel/pipe/driven
71 10.2 0.452 11.30 0.0800 1300 Sand Concrete/round/bored
72 10.7 0.572 7.350 0.1000 1500 Sand Concrete/round/bored
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4.2 � Description and development of PSO algorithm 
on ANFIS–GMDH topology

The ANFIS–GMDH network model has different compo-
nents which could be optimized by common meta-heuristic 
algorithms such as PSO method; the PSO algorithm has been 
employed for improving the structure of ANFIS–GMDH 
network model through optimizing the membership func-
tions and tuning associated parameters in PDs. The PSO 
algorithm was proposed by Kennedy and Ebertman which 
inspired by the social behavior of animals such as fish, 
insects, and birds [91]. Each member in a bunch acts like a 
particle that these particles make massive batches and each 
particle is like a potential solution for optimization problem; 
for instance, the ith particle with tth iteration has the Xt

i
 posi-

tion vector and Vt
i
 velocity vector, as follow in Eq. (26) and 

(27):

where D indicates solution space dimension.

(26)Xt
i
=
{
xt
i1
, xt

i2
, … , xt

iD

}

(27)Vt
i
=
{
vt
i1
, vt

i2
, … , vt

iD

}

The particle can move across the position vector and its 
position varies with its speed. The best position of a particle 
is called (pbest) and the best global position is (gbest) and the 
bunch experience them in its first iteration.

where r1 and r2 = two uniform random values sequences gen-
erated from interval [0 1], c1 and c2 = cognitive and social 
scaling parameters, respectively.

PSO is very sensitive to the inertial weight (w) param-
eter which has an inverse relationship with the number of 
iterations.

where wmax and wmin = maximum and minimum values of 
w, respectively, and tmax = limit numbers of optimization 
iteration.

We can combine the PSO algorithm with the 
ANFIS–GMDH model and get into the ANFIS–GMDH–PSO 

(28)Vt+1
i

= �t Vt
i
+ c1r1 (pbest

t
i
− Xt

i
) + c2r2(gbest

t − Xt
i
),

(29)Xt+1
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= Xt
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i
,
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⋅ t

Fig. 4   The flowchart of this 
study Start
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model that generates three PD in the first layer. The sec-
ond layer is created using the PD form of the first layer and 
finally, the ANFIS–GMDH–PSO model is optimized with 
three layers.

The particles, P, are initialized with random positions 
and velocities, then the population is evaluated. Initialize 
the pbestk

i
 with a copy of the position for each particle such 

as Xk
i
 . If the final condition is satisfactory, the flowchart 

reaches to gbestk
i
 and if not, the updating process of veloci-

ties and the positions will be performed; then evaluating 
the population again parallel to updating pbestk

i
 and gbestk

i
 . 

Eventually, k = k + 1 is gained; the flowchart of PSO algo-
rithm and the flowchart process of combining PSO topology 
on developed ANFIS–GMDH model were shown in Fig. 5a, 
b, respectively.

5 � Predictive AI models evaluation

In this research, to verify best-fitted models for predicting 
pile capacity, some statistical parameters such as coefficient 
of correlation (R), mean square error (MSE), root mean 
square error (RMSE) were calculated to evaluate the per-
formance prediction of the developed models as in following 
equations:

in which yi(Model) implies predicted value (model output) 
for each observation (i = 1,2,…, M), yi(Actual) is target value 
(measured value), M is the number of observations and E 

(31)
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(34)ErrorMean =
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(yi(Actual) − yi(Model)

M
,

(35)Error StD =
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(Ei(Model) − ĒModel)

M − 1
.

Set up P particles with random positions and 
velocities and population evaluation

Set up
k
ipbest by position copy for each particle
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Fig. 5   a Flowchart of the PSO algorithm. b Flowchart of ANFIS–GMDH model optimized by PSO algorithm
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indicate the error value between measured actual values and 
model outputs for each observation within the dataset.

For comparative purposes, the same training and test 
datasets were used for all estimator AI models, respectively, 
while above quantitative performance evaluation criteria 
were applied to evaluate different models’ performance. 
The degree of accuracy and reliability of predicted output 
values (Pile Capacity) determined using R, MSE and RMSE 
known as statistical indications. Theoretically, a predictive 
model could be perfect if R = 1, MSE/RMSE = 0 obtaining 
lower error mean parallel with minimum error standard 
deviation (error StD) in some cases depends on scatter-
ing and outlier nature of datasets. The results of the model 
performance indices for the best ANN, FPNN–GMDH and 
ANFIS–GMDH–PSO models for data training and testing 
stages presented in Table 2.

As illustrated in Figs. 9 and 11 respectively, it was deter-
mined that the ANFIS–GMDH–PSO model’ performance 
were relatively higher than the FPNN–GMDH model’ 

performance in train and test stages. The results of the inte-
grated FPNN–GMDH approach based on R values are 0.93 
and 0.92, respectively, shown Fig. 8 for train and test data-
sets, while hybrid ANFIS–GMDH–PSO model achieves 
the values of 0.94 and 0.96 for R values for train and test 
stages, respectively, according to Fig. 10. Moreover, RMSE 
values of 0.048 and 0.069 for training and testing stages of 
ANFIS–GMDH–PSO model show that the proposed hybrid 
model could be introduced in pile bearing capacity calcu-
lation as the more effective accurate model in comparison 
to other developed models according to Figs. 6, 7 and 8. 
It was observed from Table 1 that two developed hybrid 
AI models (FPNN–GMDH and ANFIS–GMDH–PSO) 
perform well during training and testing phase compared 
to traditional ANN’s; and also these methods shown better 
performance rather than ANN benchmark model utilized 
in this study for all mentioned statistical criteria. To esti-
mate the bearing capacity of the piles, in the training stage, 
the ANFIS–GMDH–PSO model achieved the best R, MSE, 
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RMSE, and Error StD of 0.94, 0.002, 0.048 and 0.048, 
respectively, based on Fig. 10; while according to Figs. 6 
and 8, it was shown that the FPNN–GMDH model obtained 
better results than ANN model. By analyzing the results dur-
ing the testing stage, it was determined that the optimized 
ANFIS–GMDH model performs better than all the other 
models overall based on Fig. 10. The relation between the 
best-fitted ANN, FPNN–GMDH, ANFIS–GMDH–PSO 

models and measured actual values in pile bearing capac-
ity prediction for train and test datasets are shown in 
Figs. 7, 9 and 11, respectively. Also there is a significant 
difference among the results of a new developed model 
(ANFIS–GMDH–PSO) and other developed models (ANN, 
FPNN–GMDH). This can be justified by the use of PSO 
algorithm to adjust the weights and bias of the hybrid net-
work structure during the learning process. As indicated in 
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Table 2   Results of performance statistical values for the developed AI models

Proposed AI models Performance statistical parameters

TR TS

R MSE RMSE Error mean Error StD R MSE RMSE Error mean Error StD

ANN benchmark model 0.83 0.014 0.118 − 0.059 0.103 0.79 0.012 0.109 − 0.038 0.105
FPNN–GMDH model 0.93 0.003 0.058 0 0.058 0.92 0.005 0.069 − 0.001 0.071
ANFIS–GMDH–PSO model 0.94 0.002 0.048 − 0.0004 0.048 0.96 0.005 0.069 − 0.021 0.067
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Fig. 9   Predicted vs. measured values plot for FPNN–GMDH model in train and test stages
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Table 2, the performance indices demonstrate that the results 
derived from ANFIS–GMDH–PSO model are much corre-
lated in pile bearing capacity forecast and have demonstrated 
that this model can estimate pile capacity with a high level 
of precision. In addition, the plots of predicted versus meas-
ured ultimate pile bearing capacity for ANFIS–GMDH–PSO 
model performance were shown through Fig. 11 for train 
and test phases. The RMSE estimates the residual between 
the observed and the predicted values. R evaluates the lin-
ear correlation between the observed and calculated values 
while E evaluates the model’s ability to predict mean val-
ues. According to the statistics presented in Table 2, it can 
be concluded that the best performance of all the methods 
of artificial intelligence developed in this paper differs in 
terms of different statistical criteria. It is noted that during 

the modelling procedure, there is no significant limitation on 
running developed hybrid algorithms, however, it should be 
taken into account that due to the limitation of the existing 
datasets (72 datasets) introduced to the optimum model it 
is not possible to further train the network to achieve best 
model performance over test dataset; therefore it is valu-
able to consider big datasets for AI network training stage 
if expects to get a better degree of accurate results from 
optimum models.

6 � Conclusions

In this study, one of the most significant problems related 
to predicting ultimate pile bearing capacity of deep founda-
tions has been solved with the aid of in situ field CPT and 
PLT results through utilizing new developed AI models. An 
experimental database was collected from existing literature 
review including cone penetration test (CPT) and pile load-
ing tests (PLT) results were applied for constructing and 
developing different AI models. Two new hybrid AI meth-
ods (FPNN–GMDH, ANFIS–GMDH–PSO) were developed 
simultaneously with applying ANN model for comparing 
and validating best-fitted predictive model among developed 
ones in terms of the degree of accuracy and performance 
indices based on standard statistical parameters. According 
to the derived modeling results for different mentioned AI 
models, the following conclusions would present:

•	 Based on results derived from two different hybrid neural 
models under consideration, it was concluded that model 
based on optimized ANFIS–GMDH–PSO network model 
shown better performance than FPNN–GMDH and also 
ANN models due to having lowest value of RMSE and 
highest value of R. It observed that two developed mod-
els could employ as a form of new hybrid soft computing 
tool which showing acceptable degree of precision in 
the field of geotechnical engineering problems. In this 
respect, the new alternative approaches possibly could 
substitute instead of using in situ field experimental tests 
and semi-empirical regression based-equations methods 
related to ultimate pile bearing capacity assessment 
that lead to high cost-time consuming, unreliability and 
uncertainty in case of complicated executive conditions.

•	 It can be concluded to extend furthermore improving 
the hybrid structure network while developing hybrid 
ANFIS–GMDH by applying other intelligent meta-heu-
ristics optimization technique such as GA, and imperial-
ism competitive algorithms for future investigation.

•	 For simplicity reason, in constructing of structure net-
work with lower complex structure, both ANFIS-GMD-
PSO and FPNN–GMDH topology have been created 
based on assumed setting parameters by the user that 
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leads to algorithm running time as faster as possible in 
MATLAB programming language.

•	 Statistical indices such as R, MSE, RMSE, and Error StD 
were used as model structure evaluation criterion asso-
ciated with the various models developed. During the 
modeling and testing process, it was found that the devel-
oped ANFIS–GMDH–PSO model had a relatively high 
level of accuracy and precision for estimating the bearing 
capacity of the piles compared to the other developed 
models so that the predicted values had a relatively high 
correlation with the measured values. Relative error esti-
mation shows relatively good performance in the hybrid 
models developed in the test process.
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