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Abstract
Fly-rock caused by blasting is one of the dangerous side effects that need to be accurately predicted in open-pit mines. 
This study proposed a new technique to predict the distance of fly-rock based on an ensemble of support vector regression 
models (SVRs) and Lasso and elastic-net regularized generalized linear model (GLMNET), called SVRs–GLMNET. It 
was developed based on a combination of six SVR models and a GLMNET model. Accordingly, the dataset including 210 
experimental data was divided into three parts, i.e., training, validating, and testing. Of the whole dataset, 70% was used 
for the development of the six SVR models first as the sub-models. Subsequently, 20% of the entire dataset (the validating 
dataset) was used to predict fly-rock based on the six developed SVR models. The predicted results from the six developed 
SVR models were used as the input variables to establish the GLMNET model (i.e., SVRs–GLMNET model). Finally, the 
remaining 10% of the dataset was used for testing the performance of the proposed SVRs–GLMNET model. A comparison 
and evaluation of the six developed SVR models and the proposed SVRs–GLMNET model were implemented based on 
five statistical criteria, such as mean absolute error (MAE), mean absolute percentage error (MAPE), root-mean-square 
error (RMSE), variance account for (VAF), and determination of correlation (R2). The results indicated that the proposed 
SVRs–GLMNET model provided the most dominant performance in predicting the distance of fly-rock caused by bench 
blasting in this study with an RMSE of 3.737, R2 of 0.993, MAE of 3.214, MAPE of 0.018, and VAF of 99.207. Whereas, 
the other models yielded poorer accuracy with RMSE of 7.058–12.779, R2 of 0.920–0.972, MAE of 3.438–7.848, MAPE 
of 0.021–0.055, and VAF of 90.538–97.003.
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1 Introduction

Mine blasting is an indispensable activity on opencast mines, 
especially quarries. In this regard, the energy of explosives 
has been used as a useful tool to fragmentation/movement/
displacement of rock mass. However, undesirable phenom-
ena occur during blasting (i.e., rock fly, misfire, ground 
vibration, premature blast, air over-pressure, to name a few) 
are of particular concern for engineers, mining businesses, 
and neighboring residents. Of the undesirable phenomena, 
fly-rock (Fig. 1) is considered as the most dangerous phe-
nomenon [1]. It is considered to be the leading cause of 
human injuries and loss of properties in open-pit mining [2]. 
The primary factors answerable for fly-rock are incorrect 
loading and dispose of blast-hole, inadequate burden, aber-
rancy in the rock mass and geology structures, tenuous firing 
delay, and incomplete stemming. Moreover, damages since 
the lack of security in the blast area, such as deficiency to 
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use proper blasting cubbyhole, bad connections, and insuf-
ficient sentry of the blast area, were also the concerns of 
engineers and managers [3].

According to previous studies, more than 85% of the total 
energy is wasted due to improper use of explosive energy 
[4–8]. It is the cause of undesirable incidents, especially fly-
rock [9–11]. Therefore, proper use of explosive energy and 
accurate prediction of fly-rock distance are the challenges 
of blasting engineers. According to previous researchers, 
controllable factors (i.e., burden, delay timing, stemming, 
drilling parameters, and powder factor) and uncontrolla-
ble factors (i.e., geotechnical and geological conditions) 
should be used in predicting fly-rock since their effects on 
the occurrence of fly-rock, as well as its intensity [12, 13]. 
However, due to the difficulties of geotechnical and geologi-
cal conditions, uncontrollable factors are rarely used in pre-
dicting blast-induced issues (e.g., fly-rock, ground vibration, 
air over-pressure) [14–16]. Thus, controllable parameters 
are often investigated and used in estimating the distance 
of fly-rock.

2  Related works

To predict fly-rock induced by blasting in open-pit mines, 
empirical and artificial intelligence (AI) are the most popu-
lar techniques used during the past three decades [17–32]. 
Of those, AI techniques were highly recommended due 
to its advantages and high accuracy. Many AI techniques 
developed were used to predict the distance of fly-rock in 
bench blasting. Rezaei et al. [33] developed a fuzzy sys-
tem to predict the fly-rock phenomenon in an iron mine of 
Iran with a promising result. Amini et al. [14] developed 
another AI technique using an SVM model for estimating 
the fly-rock phenomenon with positive results. ANN was 
also introduced by Monjezi et al. [34] as an alternative AI 

technique to predict fly-rock with high accuracy. Marto et al. 
[35] proposed a novel approach based on ICA and ANN 
algorithms, for estimating fly-rock, called ICA–ANN model. 
A comparative study of ANN and ANFIS in predicting the 
phenomenon of fly-rock was also implemented by Trivedi 
et al. [36]. They found that the ANFIS model in their study 
was the most superior technique that should be used to esti-
mate the distance of fly-rock. A new combination of ANN 
and optimization algorithm of ant colony (ACO) was also 
proposed by Saghatforoush et al. [37], for estimating fly-
rock. In another study, Hasanipanah et al. [38] applied the 
PSO algorithm for predicting the fly-rock distance with high 
accuracy. Another survey on prediction and minimization 
of fly-rock distance was also implemented by Faradonbeh 
et al. [39] with a promising result. The firefly algorithm was 
used to optimize the gene expression programming model in 
their study for prediction of fly-rock purpose. A new com-
putational intelligence model, namely RFNN-GA model 
(recurrent fuzzy neural network-genetic algorithm), was 
also introduced by Rad et al. [40] for fly-rock prediction in 
mine blasting with high reliability. Using another optimiza-
tion algorithm (i.e., whale optimization algorithm—WOA) 
and deep learning (i.e., deep neural network—DNN), Guo 
et al. [41] built a novel intelligent technique WOA–DNN to 
predict the distance of fly-rock with a promising accuracy 
(i.e., R2 = 0.983, RMSE = 8.269). Asl et al. [42] also success-
fully developed the FFA–ANN model for estimating fly-rock 
based on a combination of an ANN and firefly algorithm 
(FFA). The simulations of fly-rock using the Monte Carlo 
technique were also conducted by Zhou et al. [43]. Based on 
the advantages of AI techniques, Zhou et al. [44] reduced 
the distance of fly-rock using the PSO-ANN model. From 
a geological point of view, Mohamad et al. [45] predicted 
the distance of fly-rock and minimized it during blasting 
operations through geological structures. Another study 
implemented by Hudaverdi and Akyildiz [46] aims to pre-
dict fly-rock based on a new classification approach, namely 
multiple discriminant analysis. Positive results were reported 
in their study. The other studies on the prediction of fly-rock 
in open-pit mines can be found in refs. [1, 13, 47–54].

According to the best review of the authors, many AI 
techniques were developed and proposed for estimating 
fly-rock distance. However, their effectiveness is different. 
Furthermore, depending on the blast design parameters, geo-
logical conditions, as well as the location of each mine, the 
distance of the fly-rock and its effects are different. In this 
study, a new technique to predict fly-rock in bench blast-
ing was proposed based on an ensemble of support vector 
regression (SVR) and the Lasso and elastic-net generalized 
linear model (GLMNET), called SVRs–GLMNET model.

Fig. 1  Fly-rocks induced by blasting. Source: https ://www.lakec ountr 
ycale ndar.com

https://www.lakecountrycalendar.com
https://www.lakecountrycalendar.com
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3  Principle of the artificial intelligence 
techniques used

3.1  Support vector regression (SVR)

SVM was introduced by [55] with the capability to widely 
apply as a benchmark machine learning technique for 
forecasting problems. It includes two primary branches, 
including support vector regression (SVR) and support 
vector classification (SVC). In which, SVR was used as 
the most common form of SVM in the field of engineering 
[56]. The essence of SVR is based on target values that 
find a �(x) function to map data to flat space such that as 
flat as possible. It is capable of solving complex problems 
with two forms of linear and non-linear regression.

Linear and optimized regression problems by SVR for 
the linear regression problems can be implemented by a 
convex calculation optimization with solutions and con-
straints, as shown in Fig. 2.

In SVR, non-linear regression and optimization problems 
can be implemented by a convex optimization calculation 
with functions’ kernel to transform the dataset into a high-
dimensional feature space. Two forms of the kernel func-
tion, which is the most commonly used (i.e., polynomial and 
radial basis functions), are also introduced in Fig. 3.

3.2  Lasso and elastic‑net regularized generalized 
linear model (GLMNET)

The Lasso and elastic-net generalized linear model (GLM-
NET) is one of the machine learning algorithms in the 
artificial intelligence system introduced by Friedman et al. 
[57]. In GLMNET, each parameter is optimized by the mini-
mization of the objective function; whereas, the remaining 
parameters are fixed. On other words, GLMNET imple-
ments optimization for each parameter of the model and 
the optimization process is continuously performed. It uses 
cyclical coordinate descent and executes consistently until 

Fig. 2  Linear SVR
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convergence [58]. For predicting blast-induced fly-rock, the 
GLMNET can be described as follows.

Let yfr be the value to forecast, i.e., fly-rock distance; xi 
is a matrix consisting of input variables such as B, S, ST, 
W, and PF; xfr = (xfr1, xfr2,… , xfrj,… , xfrk)

T with k denotes 
the number of descriptors. A linear model for each predicted 
fly-rock result is assumed as follows:

where � is a coefficient, � = (�1, �2,… , �j,… , �k)
T ; �fr is 

the error between the actual and the predicted fly-rock val-
ues. The factors � are determined that �fr is minimized. The 
residual sum of squares is reduced as follows:

The minimizing coefficients are defined by the ordinary 
least squares method [59] as follows:

where X = (xT
1
, xT

2
,… , xT

i
,… , xT

n
) and y = (y1, y2,… , yi,

… , yn)
T.

It should be noted that this equation cannot be solved in 
the case of k > n because XTX becomes singular. There-
fore, the regularized regression technique can be employed 
instead. The loss function for a type of regularized regres-
sion, i.e., Elastic-Net, is defined as follows:

(1)yfr = xT
fr
� + �fr,

(2)E(�) =

n∑

fr=1

(yfr − xT
fr
�)2.

(3)𝛽 = (XTX)−1XTy,

(4)E(�)

n∑

i=1

(yi − xT
i
�)2 + �

k∑

i=1

(1 − �)�2
j
+ �

|||
�j
|||
.

By minimizing the loss function of Elastic-Net in Eq. (4), 
the coefficients � can be estimated. The factors that do not 
affect the predictive model can be eliminated. Herein, � and � 
can be used to adjust the accuracy of the model (0 < 𝛼 < 1) . 
If � = 0 , this model corresponds to ridge regression [60]. In 
the case of � = 1 , this model corresponds to LASSO regres-
sion [61]. For each value of � , the � and � parameters are 
defined so that the loss function E(�) is minimized. The val-
ues � are determined by the leave-one-out cross-validation 
method (LOOCV) [62].

By continuously optimizing the objective function on 
each parameter while other parameters are fixed, GLMNET 
has the high-speed computing power and sparse resolution in 
the input matrix xfr [58] for predicting blast-induced fly-rock.

3.3  Ensemble of SVR and GLMNET (SVRs–GLMNET)

The ultimate goal of this study is to propose a new tech-
nique for estimating the distance of fly-rock caused by bench 
blasting using an ensemble of SVR models and GLMNET 
model, namely SVRs–LMNET model. Accordingly, the fly-
rock database was divided into three parts, including train-
ing (70%), validating (20%), and testing datasets (10%). 
These data sizes were recommended by Güera et al. [63] 
and Knox [64] to ensure the reliability of the dataset during 
data analysis.

In the first step, the training dataset, including 150 blast-
ing events, was used to develop six SVR models as the 
sub-models. Subsequently, 40 experimental blasts (of the 
validating dataset) were applied to validate the performance 

Fig. 3  Non-linear SVR
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of the six designed SVR models, as the second step. The 
outcome predictions of these six sub-models then were used 
as the six input variables of the new training datasets for the 
development of the GLMNET model as the third step. In 
other words, the new training dataset includes 40 observa-
tions with six input variables and one output variable (i.e., 
fly-rock distance). The developed GLMNET model based on 
the predictions of the six SVR models is called SVRs–GLM-
NET model. Finally, 20 blasting events of the testing dataset 
were applied to check the accuracy/quality of the developed 
SVRs–GLMNET model. They were also used to verify the 
accuracy of the six developed SVR models to have a com-
plete comparison with the proposed SVRs-GLMNET model. 
Figure 4 presents the ensemble of SVR models and GLM-
NET model for predicting fly-rock distance in the present 
study.

4  Case study

After AI techniques were assigned to predict the fly-
rock distance for ongoing research, a quarry in central 
Vietnam was selected as a case study. It is located in 
the latitudes 11°55′45″N–11°55′30″N and longitudes 
109°05′55″E–109°06′13″E (Fig. 5).

Mine blasting is the primary method used to break rock 
at this mine. ANFO (ammonium nitrate/fuel oil) and emul-
sion explosives are used to break up dry rock and hydrated 
rock, respectively (Fig. 7b). Blast holds with the diameter 
of 75 mm and the time delay of 17 ms and 42 ms were 
used for all types of rock at the study site (Fig. 6). Herein, 
the residential areas were considered as a dangerous area 

with a distance of 450–500 m (Fig. 7a), and the distance 
from the explosion sites to the office of the mine is about 
250–300 m. Whereas, the maximum range of fly-rock 
was recorded as 290.1 m. It can be seen that fly-rock is 
a dangerous threat to the neighborhood and workers on 
the mine.

To carry out this study, 210 blasting events were inves-
tigated based on 210 blasting designs and the distance of 
fly-rock values. The blasting parameters such as burden 
(B), spacing (S), stemming (ST), the capacity of the explo-
sive charge (W), and powder factor (PF) were collected 
from the blast patterns. To determine the distance of fly-
rock, the iGeoTrans app—a product of Hanoi University 
of Mining and Geology, Hanoi, Vietnam—was utilized, as 
shown in Fig. 7c. This app can determine the positions of 
blast sites and fly-rock through global positioning system 
(GPS), assisted GPS, GLONASS, Wi-Fi, and cellular net-
work for positioning [65]. Finally, a database includes 210 
observation was established with five input variables (i.e., 
B, S, ST, W, PF), and one output (i.e., fly-rock—FR). The 
characteristics, as well as the range of the dataset used in 
this study, are shown in Fig. 8.

5  Development of the models

As a necessary AI printing procedure, the original data-
set was divided into three parts, as described above (i.e., 
70/20/10). In which, 70% (~ 150 observations) of the 
whole original dataset was selected randomly to build the 
predictive models. Note that, all the predictive models 
developed in this work are used the same training dataset. 

Fig. 4  Ensemble of SVR models and GLMNET model for predicting the fly-rock distance
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To avoid over-fitting or under-fitting of the models, the 
data were normalized by the Box-Cox transformation tech-
nique [66].

5.1  GLMNET model

As stated above, GLMNET is one of the AI techniques, 
which is used in this study for predicting the fly-rock dis-
tance of the mine. It is a technique that represents linear 

regression methods. For the GLMNET model, regulariza-
tion parameter ( � ) and mixing percentage ( � ) were used as 
the key parameters to tune the accuracy of the GLMNET 
model. One hundred GLMNET models were established 
based on a “trial and error” procedure of the hyper-param-
eters (Fig. 9). A resampling technique of tenfold cross-val-
idation was utilized to increase the accuracy of the models. 
Ultimately, an optimal GLMNET model was defined with 
the following parameters, i.e., � = 0.433 and � = 0.003.

Fig. 5  Location of the study site in this work

Fig. 6  Scheme of blast network used in the mine
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5.2  SVR models

Similar to the GLMNET model, one hundred SVR mod-
els have been established to estimate fly-rock distance in 
the present work. However, SVR models in this section 
represent non-linear regression techniques. Also, the main 

purpose of this study is to develop a new hybrid model 
based on an ensemble of six SVR models and GLMNET 
model (i.e., SVRs-GLMNET model). Therefore, the six best 
SVR models have been selected among one hundred SVR 
models that have been developed. Note that, all the similar 
techniques were also used for the development of the SVR 

Fig. 7  a Blast site and residen-
tial area, b explosive used in the 
mine, and c iGeoTrans app for 
measuring the fly-rock distance

Fig. 8  Box and whisker plots of the fly-rock database used
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models as those used for the development of the GLMNET 
model. Review of literature showed that there are many types 
of kernel functions that can be applied for the SVR develop-
ment [67]. However, the radial basis kernel function (RBF) 

is the most common kernel function which was used for the 
SVR development [5]. Therefore, the RBF was applied for 
the development of the SVR models. Accordingly, sigma 
( � ) and cost (C) were used as the key hyper-parameters for 

Fig. 9  Performance of 100 GLMNET models with a “trial and error” procedure

Fig. 10  Performance of one hundred SVR models with a “trial and error” procedure
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the SVR models. Eventually, one hundred SVR models with 
their performance were developed, as shown in Fig. 10. Sub-
sequently, the six best SVR models were selected as listed 
in Table 1.

5.3  SVRs–GLMNET model

To develop the SVRs–GLMNET model for estimating the 
distance of fly-rock in this mine, the framework in Fig. 4 was 
applied. Accordingly, six SVR models were developed based 
on 70% of the whole original dataset, as described above. 
Then, 20% of the dataset (~ 40 observations) was used to vali-
date the performance of the constructed SVR models. The out-
come predictions of the six developed SVR models were used 
as the new input variables for the new dataset. Their results 
and accuracy level are shown in Fig. 11. Finally, a combination 
of the predictions of the six developed SVR models and the 
output of the validating dataset was implemented for generat-
ing a new dataset with 40 observations, six input variables, and 
one output variable. The properties of the created new dataset 
are shown in Fig. 12.

After developing six SVR models and a new dataset has 
been created, a GLMNET model has been prepared based 
on the new dataset, called SVRs–GLMNET. The process 

Table 1  The six selected SVR models with their hyper-parameters 
and performances

Model Hyper-parameters Performance

� C RMSE R2 MAE

SVR 1 0.011 11.889 5.417 0.973 3.316
SVR 2 0.012 53.792 5.563 0.973 3.462
SVR 3 0.014 2.831 5.575 0.973 3.449
SVR 4 0.019 3.901 5.719 0.972 3.557
SVR 5 0.032 5.517 5.964 0.971 3.703
SVR 6 0.013 383.617 5.997 0.972 3.776

Fig. 11  The outcome predictions of the six developed SVR models and their accuracy level
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of developing SVRs–GLMNET model is like the process of 
developing the GLMNET model with the same techniques. 
Eventually, an optimal SVRs–GLMNET was found with the 
lowest RMSE (i.e., RMSE = 3.695) (Fig. 13). The parameters 
of the developed SVRs–GLMNET models are defined as the 

following: �1 = 0.011 ; C1= 11.889; �2 = 0.012 ; C2= 53.792; 
�3 = 0.014 ; C3= 2.831; �4 = 0.019 ; C4= 3.901; �5 = 0.032 ; 
C5= 5.517; �6 = 0.013 ; C6= 383.617; � = 0.259 , and 
� = 0.007.

Fig. 12  Properties of the new dataset with 40 observations (i.e., six inputs and one output)

Fig. 13  Performance of the proposed SVRs-GLMNET model based on the new dataset
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6  Results and discussion

In this section, the effectiveness and accuracy of the models 
are evaluated, primarily the ensemble of the proposed SVRs-
GLMNET model. As mentioned above, the remaining 10% 
of the original dataset (~ 20 observations) was used to con-
firm the accuracy of the developed models (i.e., GLMNET, 
SVR1, SVR2, SVR3, SVR4, SVR5, SVR6, SVRs–GLM-
NET). Note that these 20 blasting events have never been 
used before to build models, as well as participate in the 
ensembling process. A variety of model quality evaluation 
criteria have been applied, including RMSE, R2, MAE, 
MAPE, and VAF, which were calculated as

where m denotes the number of samples; yfr , ŷfr , and y 
are actual, forecasted, and average of the actual values, 
respectively.

Also, a ranking method was used to classification the 
developed models. The performance of the models, as well 

(5)RMSE =

√
1

m

∑m

fr=1
(yfr − ŷfr)

2

(6)R2 = 1 −

∑
fr=1 (yfr − ŷfr)

2

∑
fr (yfr − ȳ)2

(7)MAE =
1

n

m∑

fr=1

|
|yfr − ŷfr

|
|

(8)MAPE =
100%

n

n∑

fr=1

||
||

yfr − ŷfr

yfr

||
||

(9)VAF =

(

1 −
var (yfr − ŷfr)

var (yfr)

)

× 100,

as their ranking on the testing dataset, are computed and 
listed in Table 2.

From the results reported in Table 2, it can be commented 
that the GLMNET model is the worst model for the current 
problem. The results in Table 2 seem to confirm that the lin-
ear regression technique (i.e., GLMNET) is not suitable for 
the issue of fly-rock in this study. Meanwhile, the SVR mod-
els have worked very well with quite stable performance on 
both validating and testing datasets. Therefore, the outcome 
predictions from the six developed SVR models were entire 
of high reliability. Based on the outcome predictions of the 
six designed SVR models, a new GLMNET model was 
developed (i.e., SVRs–GLMNET). The outcome from the 
proposed SVRs–GLMNET model provided the most domi-
nant accuracy with the lowest RMSE, MAE, and MAPE, 
and the highest R2 and VAF in Table 2. Based on the results 
in Table 2, it can be confirmed that the ensemble of six 
developed SVR models and GLMNET model is a powerful 
technique to predict fly-rock in this case with a total ranking 
of 40 and the sort order of 1. Figure 14 shows the accuracy 
of the regarded models in the predictions of the fly-rock 
distance on the testing dataset.

As demonstrated above, the accuracy level of the pro-
posed SVRs–GLMNET model has been significantly 
improved; however, it is necessary to determine the degree 
of influence of the independent variables on the performance 
of the model in an aim to explain the relationship between 
the independent variables and the dependent variables. Thus, 
the Sobol sensitivity analysis technique [68] was applied to 
implement this task. The results of the sensitivity analysis 
of input variables are illustrated in Fig. 15.

As a visually report, Fig. 15 shows that ST, W, and PF 
are the main independent variables, which has a significant 
effect on the dependent variable (i.e., fly-rock). The other 
variables (i.e., B and S) have a tiny impact on the accuracy 
of the model.

Table 2  Confirmation of the accuracy of developed models for estimating fly-rock distance in this study

Bold type represents the most optimal model in the present study

Model RMSE R2 MAE MAPE VAF Rank 
for 
RMSE

Rank for R2 Rank 
for 
MAE

Rank for 
MAPE

Rank 
for 
VAF

Total ranking Sort order

GLMNET 12.779 0.920 7.848 0.055 90.538 1 1 1 1 1 5 8
SVR 1 7.058 0.971 3.446 0.021 97.033 7 5 6 6 7 31 2
SVR 2 7.132 0.971 3.438 0.021 96.984 6 5 7 6 6 30 3
SVR 3 7.305 0.969 3.719 0.023 96.821 3 3 4 3 3 16 6
SVR 4 7.427 0.968 3.639 0.022 96.722 2 2 5 5 2 16 6
SVR 5 7.235 0.969 3.805 0.023 96.896 5 3 3 3 4 18 5
SVR 6 7.239 0.972 3.926 0.025 96.911 4 7 2 2 5 20 4
SVRs-GLMNET 3.737 0.993 3.214 0.018 99.207 8 8 8 8 8 40 1
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Fig. 14  Accuracy of individual models on the testing dataset
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7  Conclusion

Fly-rock is one of the most dangerous phenomena for human 
and equipment in open-pit mines, as well as neighboring 
residential areas. Accurately predicting the distance of fly-
ing rocks is a great achievement to minimize the risks posed 
by fly-rock in bench blasting. This study developed and 
proposed a novel AI model based on an ensemble of SVR 
models and GLMNET model, which is the SVRs–GLMNET 
model. It was considered as a new technique with high reli-
ability in predicting the distance of fly-rock (i.e., MAE of 
3.214, RMSE of 3.737, MAPE of 0.018, VAF of 99.207, 
and R2 of 0.993). Although linear regression techniques do 
not provide a satisfactory level of accuracy in the predic-
tion of fly-rock due to the non-linear relationship of the 
variable inputs; however, a combination of multiple non-
linear regression models with a linear regression model is 
an innovative idea to improve the accuracy of the predictive 
model. It should be surveyed and developed for many other 
AI models in the future works for estimating and controlling 
the distance of fly-rock.
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