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Abstract
The nonlinear vibration behavior and dynamic instability of Euler–Bernoulli nanobeams under thermo-magneto-mechanical 
loads is the main objective of the present paper. Firstly, a short Euler–Bernoulli nanobeam is modeled and exposed to an 
external parametric excitation. Based on the nonlocal continuum theory and nonlinear von Karman beam theory, the nonlinear 
governing differential equation of motion is derived. Secondly, to transport the partial differential equation to the ordinary 
differential equation, Galerkin method is applied. Then, multiple scales method, as an analytical approach, is used to solve the 
equation. At the end, modulation equation of Euler–Bernoulli nanobeams is obtained. Then, to evaluate the dynamic instabil-
ity of the system, trivial and nontrivial steady-state solutions are discussed. Emphasizing the effect of parametric excitation, 
for considering the instability regions, bifurcation points are studied and investigated. As a result, it can be observed that the 
damping coefficient plays an effective role as well as parametric excitation in stability and frequency response of the system.

Keywords  Nonlinear vibration · Parametric excitation · Dynamic instability · Thermo-magneto-mechanical load · Euler–
Bernoulli nanobeam · Multiple scale

1  Introduction

It has been cleared that due to their attractive and distinctive 
electromechanical features, carbon nanostructures including 
carbon nanotube (CNT) and graphene sheet have attracted 
attention of many researchers and scholars who work and 
study in field of smart materials and engineering design. 
In fact, carbon nanotubes can be used in various kinds of 
electromechanical devices such as optical transparency [1, 
2], resonators [3–5], diagnosis of gas atoms [6], memory 
devices [7] and composite material [8].

On the other hand, although it has been proved that the 
small-scale effects in nanostructures play a significant role 
in their characteristics and properties, classical plate theory 
(CLPT) is unable to evaluate and analyze the size effect in 
nanostructures [9]. Therefore, the nonlocal elasticity theory 

developed by Eringen and Edelen [9, 10] has been widely 
accepted and applied to analyze the size effect of the nano-
structures. In connection with use of the nonlocal elasticity 
theory, many theoretical studies [11–17] were conducted and 
developed by researchers. The investigations were continued 
by Mouffoki et al. [18] in considering vibration behavior 
of nanobeams using shear deformation beam theory. Bedia 
et al. [19] found that considering nonlocal parameter can 
have a significant role in buckling of nanobeams. Based on 
nonlocal elasticity theory, buckling of single layer graphene 
sheet (SLGS) was studied by Mokhtar et al. [20]. Nonlinear 
and mechanical behavior of nanobeams was investigated 
by other researches [21–23]. Kadari et al. [24] reported 
buckling analysis of nanoplate embedded on an elastic 
foundation. Using nonlocal strain gradient, Karami et al. 
[25–29] illustrated effect of considering nonlocal theories in 
mechanical analysis of nanostructures. In addition, mechani-
cal behavior of functionally graded (FG) micro/nanobeams 
was considered by Ahouel et al. [30], Chaht et al. [31] and 
Tlidji et al. [32]. Furthermore, bending and vibration of 
composite plates were investigated by Abualnour et al. [33]. 
Using nonlocal elasticity theory, thermal buckling and vibra-
tion behavior of composite nanostructures including boron 
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nitride nanotubes (BNNT) was conducted by  Chikh et al. 
[34], Semmah [35] and Hamza-Cherif [36].

Currently, most researches on micro/nanobeam have 
focused on their nonlinear properties. It is worth mentioning 
that nonlinear or large amplitude vibration of beams, includ-
ing nano and micro, exposed to very large displacements 
has an important place in engineering problems among lit-
eratures and investigations. In couple of the considerable 
works, Simsek [37, 38] investigated the nonlinear vibration 
of nanobeams based on nonlocal elasticity and strain gradi-
ent theories. The results showed the effect of small scale 
on the nonlinear frequency response. Nazemnezhad and 
Hosseini-Hashemi [39] presented nonlinear vibration of 
functionally graded (FG) nanobeams for different boundary 
conditions. It was found that unlike the linear vibration, the 
nonlinear vibration depends on the gradient index. Based on 
von Karman theory to analyze the effect of nonlinearity, the 
nonlinear frequency response of microbeams was conducted 
by Nourbakhsh et al. [40]. Oskouie et al. [41] presented 
nonlinear frequency response of viscoelastic Euler–Ber-
noulli nanobeams. They reported the viscoelasticity effect 
on nonlinear vibration behavior. Using multiple time scales 
method, nonlinear forced vibration of nanobeams subjected 
to moving concentrated load embedded on a viscoelastic 
foundation was conducted by Ghadiri et al. [42].

The concept of functionally gradient materials (FGMs) 
was first proposed by several Japanese materials researchers. 
Thanks to recent advances in FGM, numerous investigators 
have analyzed and developed FG plates [43–59]. Thermal 
analysis and considering thermal effect on FG plates is the 
main objective of these works. Results showed that thermal 
decreases vibrations of structures as well. Applying nonlo-
cal shear deformation theory, Karami et al. [60], Besseghier 
et al. [61] and Bounouara et al. [62] demonstrated vibration 
and resonance characteristics of FG nanoplates. It was found 
that reinforcement patterns determine the resonance posi-
tion. Also, in Ref. [57], a new shear strain shape function 
was developed and the results showed a good accuracy with 
other available results.

In the following, attention was given to porous materi-
als. Using nonlocal theories including strain gradient theory, 
She et al. [63–66] analyzed mechanical behaviors includ-
ing nonlinear bending and vibration and buckling in porous 
nanotubes and nanobeams. The results indicated that the 
characteristics of porous curved nanobeams are affected 
by small-scale parameter as well as geometry. Moreover, 
boundary conditions play a significant role in buckling 
behavior. In another work, She et al. [67] investigated wave 
propagation of porous nanotubes. Their results show that 
the deflection of the tube increases as the porosity rises. The 
possible reason is that a higher value of porosity volume 
corresponds to lower stiffness for the tubes. Fourn et al. [68] 
considered wave propagation in FG plates. Also, effect of 

thickness stretching was analyzed by Bouhadra et al. [69] 
for composite plates.

Looking at previous researches, it can be observed that 
although there are many researches and studies in linear 
and nonlinear of micro and nano beams, nonlinear vibration 
and dynamic instability of beams and nanobeams has been 
untouched in many aspects [70, 71]. Recently, Huang et al. 
[72] studied dynamic instability of nanobeams exposed to 
parametric excitation. It was found that nonlocal parameter 
can affect the instability regions. In another work, paramet-
ric excitation of carbon nanotube was investigated by Wang 
et al. [73]. This study reported that external parametric exci-
tation makes a gap between positive and negative bifurcation 
points. In fact, they move away from each other. Moreover, 
to analyze the effect of nonlocal parameter and axial force on 
the linear frequency and instability of nanobeams, the per-
turbation method was employed by Li et al. [74]. Bakhadda 
et al. [75] modeled a composite plate reinforced with carbon 
nanotube to analyze dynamic and bending. Employing non-
local higher shear deformation theory, Bouadi et al. [76] pre-
sented an analysis for stability of single layer graphene sheet 
(SLGS). Besides, stability analysis of orthotropic SLGS was 
reported by Yazid et al. [77]. Considering surface effect, 
Youcef et al. [78] studied dynamic analysis of nanobeams. In 
another study, using first shear deformation theory, static and 
dynamic characteristics of sandwich plates were conducted 
by Draoui et al. [79].

More recently, because of the importance of parametric 
excitation on electromechanical systems and devices, the 
effect of parametric excitation on energy harvesting systems 
has been investigated [80–82]. In these researches, a Duffing 
oscillator has been used to model the behavior of energy 
harvesters. Besides, to study nonlinear vibration and stabil-
ity of tapered-composite plate, a parametric excitation was 
employed [83]. Also, the effect of the van der Walls inter-
action on instability of double-walled nanobeams under a 
parametric excitation was analyzed by Wang [84]. Using 
Mathieu and Hill’s equations, Krylov et al. [85] also pre-
sented pull-in instability of micro-devices under a paramet-
ric excitation. Lima and Sampaio [86] reported behavior of 
two parametric excited nonlinear systems. Hence, literature 
survey can indicate that the effects of both external para-
metric excitation and thermo-magneto-mechanical loads on 
nonlinear vibration and dynamic instability of nanobeams 
have not been studied in literatures.

This paper, for the first time, comprehensively studies 
the nonlinear frequency response and dynamic instability of 
nanobeams under thermo-magneto-mechanical loads, while 
it is subjected to an external parametric excitation. In the 
first step, a short nanobeam is modeled and an external axial 
force is applied to make the parametric excitation. Secondly, 
based on the nonlocal continuum theory and nonlinear von 
Karman beam theory, the nonlinear governing differential 
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equation of motion is derived. Then, Galerkin technique and 
multiple time scales approach are used to solve the equation. 
At the end, modulation equation and the dynamic instability 
of the nanobeam are derived. Finally, trivial and nontrivial 
steady-state solutions are discussed.

2 � Problem formulation

Figure 1 shows the schematic of nanobeam embedded on a 
viscoelastic foundation under an axial force with length L , 
which is along the x-axis, and diameter d . The axial force 
is a function with a harmonic excitation with frequency � . 
In addition, deformation of the nanobeam is denoted by w , 
along the z-axis.

2.1 � Constitutive relations

According to the nonlocal elasticity theory that was pre-
sented by Eringen [9, 10, 87, 88], the stress at a reference 
point X is considered to be a function of the strain field at 
every point X′ in the body. The nonlocal stress tensor � at 
point X can be defined as below:

where �′ is the classical stress tensor and K
(

|X�
− X|

)

 is the 
Kernel function represents the nonlocal modulus. Eringen 
[10, 88] demonstrated that it is possible to represent the inte-
gral constitutive relation in an equivalent differential form 
as:

where ∇2
=

�2

�x2
+

�2

�y2
 the Laplacian operator and 

(

e0a
)

 intro-
duces the nonlocal parameter. In which, e0 and a are a con-
stant which is convenient to each material and an internal 
characteristic length, respectively. The value of e0 needs to 
be determined from experiments or by matching the disper-
sion relation of plane waves with those of atomic lattice 
dynamics. Then, the nonlocal constitutive relation for the 
nanobeam is written as

(1)� = ∫V

K
(

|

|

X�
− X|

|

, �
)

��
(

X�
)

dX�,

(2)
(

1 −
(

e0a
)2
∇

2
)

� = ��,

In which, �xx, �xx are the axial normal stress and strain, 
respectively. Also,E indicates the Young’s modulus. Based 
on the Euler–Bernoulli beam model, the axial force and the 
resultant bending moment can be expressed as

where z is the transverse coordinate in the deflection direc-
tion and A the area of the cross section of the nanobeam. 
Based on classical beam theory, the displacements can be 
written as below:

In Eq. (5), u and w are the axial and transverse displacements 
of the nanobeam along x and z directions, respectively. Now, 
for the nonlinear von Karman strain, we can have:

where � is the strain vector, and �0 and � are the nonlinear 
strain vector and the variation of curvature vector, respec-
tively, and can be defined as below:

From Eqs. (3) to (7), the axial load and the bending moment 
can be obtained as following:

where I = ∫
A
z2dA is defined as the moment of inertia. Thus, 

the equation of motion can be written as [89, 90]:

It can be obtained that the axial normal force N is as below:

In Eq.  (10), Ñmag
x , Ñ th

x
, Ñmec

x
 denote a uniaxial magnetic 

field, thermal load caused by temperature change and in-
plane load caused by initial stress, respectively. The term of 
(

F cos 𝛺̄t
)

 is also the axial force that can cause a parametric 
excitation. We can define the parameters of the axial normal 
force as

(3)�xx −
(

e0a
)2 �

2�xx

�x2
= E�xx

(4){N,M} = ∫A

�x(1, z)dA,

(5)

u1(x, z, t̃) = u(x, t̃) − z
𝜕w

𝜕x
, u2 = 0, u3(x, z, t̃) = w(x, t̃)

(6)� = �0 + z�,

(7)�0 =
�u0

�x
+

1

2

(

�w

�x

)2

, � = −
�2w

�x2

(8)

(

1 −
(

e0a
)2
∇

2
)

N = EA�0
(

1 −
(

e0a
)2
∇

2
)

M = EI�,

(9)
EI

𝜕4w

𝜕x4
−

𝜕

𝜕x

(

N
𝜕w

𝜕x

)

+

(

e
0
a
)2 𝜕3

𝜕x3

(

N
𝜕w

𝜕x

)

+ 𝜌A
𝜕2

𝜕t̃2

[

w −

(

e
0
a
)2 𝜕2w

𝜕x2

]

= f −
(

e
0
a
)2 𝜕

2f

𝜕x2

(10)

N = Ñmag
x

+ Ñ th
x
+ Ñmec

x
+ F cos 𝛺̄t̃ −

[

EA

2L

]

∫
L

0

(

𝜕w

𝜕x

)2

dx

Fig. 1   The schematic of nanobeam embedded on a viscoelastic foun-
dation under an axial force
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where Hx, � are in-plane uniaxial magnetic field and the 
magnetic field permeability, respectively. In fact, Ñmag

x  
explains the Lorentz force along the x-axis [91]. In term of 
Ñ th
x

 , �,A and T demonstrate the coefficient of thermal expan-
sion, the cross sectional area and the difference between the 
temperature gradient and its initial reference temperature, 
respectively. In addition, � and �0 are the compression ratio 
and the initial stress, respectively. For the present study, it 
is assumed that � = 1 and initial stress is along the x-axis 
direction. And also, in Eq. (9), f  is defined as below:

where kw and cd denote linear coefficient of Winkler and 
damper modulus parameter, respectively. The Winkler-type 
foundation can be modeled from Ref. [92]. At the end, to 
derive the equation of motion, we substitute Eqs. (10), (11) 
and (12) into Eq. (9) as

To have a good comparison between results, indirect param-
eters can be expressed as follows:

Using these indirect parameters and substituting in the 
Eq  (13), the governing equation of nanobeam will be 
obtained as follows:

(11)Ñmag
x

= 𝜂H2
x

𝜕2w

𝜕x2
, Ñ th

x
= 𝛼EAT, Ñmec

x
= 𝜉𝜎0,

(12)f = kww + cd
𝜕w

𝜕t̃
,

(13)

−EI
𝜕4w

𝜕x4
−

⎧

⎪

⎨

⎪

⎩

Ñmag
x

+ Ñ th
x
+ Ñmec

x
+ F cos 𝛺̄t̃ −

�

EA

2L

�

L

∫
0

�

𝜕w

𝜕x

�2

dx

⎫

⎪

⎬

⎪

⎭

𝜕2w

𝜕x2
+ cd

𝜕w

𝜕t̃
+ kww

+

�

e0a
�2 𝜕4w

𝜕x4

⎧

⎪

⎨

⎪

⎩

Ñmag
x

+ Ñ th
x
+ Ñmec

x
+ F cos 𝛺̄t̃ −

�

EA

2L

�

L

∫
0

�

𝜕w

𝜕x

�2

dx

⎫

⎪

⎬

⎪

⎭

−

�

e0a
�2
kw

𝜕2w

𝜕x2
−

�

e0a
�2
cd

𝜕3w

𝜕t̃𝜕x2
= 𝜌A

�

𝜕2w

𝜕t̃2
−

�

e0a
�2 𝜕4w

𝜕t̃2𝜕x2

�

(14)
X =

x

L
, W =

w

L
, 𝛾 =

e0a

L
, Kw =

kwL
4

EI
, N th

x
=

Ñ th
x
L2

EI
, Nmag

x
=

Ñ
mag
x L2

EI
,

Nmec
x

=

Ñmec
x

L2

EI
, Cd = cd

√

L4

EI
, 𝛺 = 𝛺̄

√

𝜌AL4

EI
, t =

t̃

L2

√

EI

𝜌A
,

(15)

−
�4W

�X4
−

⎧

⎪

⎨

⎪

⎩

Nmag
x

+ N th
x
+ Nmec

x
+ F cos�t −

L

∫
0

�

�W

�X

�2

dX

⎫

⎪

⎬

⎪

⎭

�2W

�X2
+ Cd

�W

�t
+ KwW

+ �2
�4W

�X4

⎧

⎪

⎨

⎪

⎩

Nmag
x

+ N th
x
+ Nmec

x
+ F cos�t −

L

∫
0

�

�W

�X

�2

dX

⎫

⎪

⎬

⎪

⎭

− �2Kw

�2W

�X2

− �2Cd

�3W

�t�X2
=

�

�2W

�t2
− �2

�4W

�t2�X2

�

The corresponding boundary conditions for simply sup-
ported nanobeam are defined as below:

2.2 � Galerkin method

According to Galerkin method, to solve the governing 
equation of motion Eq. (15), an approximate solution, for 
simply supported boundary conditions, can be assumed as 
following,

Here, t is known as the time-dependent parameter and sin n�X

L
 

is the spatial basis function, respectively. By substituting 
Eq. (17) into the Eq. (15) and for fundamental frequency 
(n = 1) , the governing equation of motion yields:

(16)W = 0,
�2W

�X2
= 0, at X = 0, X = L

(17)
W(x, t) = �(t)

∞
∑

n=1

sin
n�x

L
.

(18)𝜓̈ + 𝜔2
0
𝜓 + 2𝜖𝜇𝜓̇ + 𝜖𝛽𝜓3

+ 𝜖𝛿 cos (𝛺t)𝜓 = 0,

where � is scaling and a very small parameter 𝜖(≪ 1) and 
other parameters are defined as below:

(19)

�2
0
=

1

2

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�

Kw −

�

Nmag
x

+ N th
x
+ Nmec

x

��

+
1

�

1 + �2
�

�

L

�2
�

�

�

L

�4

⎫

⎪

⎪

⎬

⎪

⎪

⎭

,

� =
1

4

�

�

L

�4

, � =

Cd

2
, � = −F

�

�

L

�2
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2.3 � Multiple time scales method

Multiple time scales as a practical method of perturbation 
procedures that, for the first time, was presented by Nayfeh 
and Mook [93] is applied to solve Eq. (18). To have the 
solutions for Eq. (18), at first, we assume � = 2�0 and then 
utilize a set of first-order approximations as:

Equation (20) is perturbation parameter which uses time 
scales 

(

T0, T1
)

 to determine the solution. Now, to determine 
the modulation of the amplitude and phase, it would be 
enough to use two time scales as follows:

Now, T0 and T1 define the fast and slow time scales, respec-
tively. It is noted that T1 is introduced as the nonlinear part 
of the set of approximation. According to Eq. (21), it can 
be defined as:

At first, Eq. (20) and Eqs. (22a) (22b) are substituted in 
Eq. (18). Then, the coefficients of �0 and �1 are equated with 
zero; thus, we have:

To solve Eq. (23a), a general solution may be introduced as:

Now, A is an unknown and CC is the complex conjugate 
of the other terms of the equation. Using the Eq. (24) and 
substituting in Eq. (23b), we can derive:

Here, Ā is the complex conjugate of A and CC denotes 
the complex conjugate of the other terms of the equation 
(including Ā ). Now, by definition (� = 2� + ��) that � 
is detuning parameter, we eliminate the secular terms in 
Eq. (25).

(20)�(t) = �0

(

T0, T1
)

+ ��1

(

T0, T1
)

(21)T0 = t, T1 = �t

(22a)
d

dT
=

d

dT0
+ �

d

dT1
+⋯ = D0 + D1 +⋯

(22b)
d2

dT2
=

d2

dT2
0

+ 2�
d

dT0

d

dT1
+⋯ = D2

0
+ 2�D0D1 +⋯

(23a)�0 ∶ D2
0
�0 + �2

0
�0 = 0

(23b)
�1 ∶ D2

0
�1 + �2

0
�1 = −2D0D1�0 − 2�D0�0 − ��3

0
− ��0 cos�T0

(24)�0 = A
(

T1
)

ei�0T0 + CC

(25)

D2

0
𝜓
1
+ 𝜔2

0
𝜓
1
= −2i𝜔

0
A�ei𝜔0

T
0 − 2i𝜇𝜔

0
Aei𝜔0

T
0

− 𝛽A3e3i𝜔0
T
0 − 3𝛽A2Āei𝜔0

T
0

−
1

2
𝛿A

(

ei𝛺T
0 + e−i𝛺T

0

)

ei𝜔0
T
0 + CC.

(26)2i𝜔0

(

A�
+ 𝜇A

)

+ 3𝛽A2Ā −
1

2
𝛿Āei𝜎T1 = 0.

We need to define a polar form for A as below:

In Eq. (27), the phase angle and the real part of the ampli-
tude are shown by � and a , respectively. Substituting the 
Eq. (27) into Eq. (26) and separating the real and imaginary 
parts, it can be derived as below:

To determine the steady-state response, we first transform 
Eq. (28), from a non-autonomous system to an autonomous 
one by defining � =

(

�T1 − 2�
)

 and �� =
(

� − 2��
)

 ; then, 
Eqs. (28a) and (28b) are explained as follows:

As a result, the steady-state response can be found by assum-
ing: a� = 0 and a�� = 0 ; thus, modulation equations for the 
principal parametric resonance are expressed as:

2.4 � Trivial steady‑state response

Now, we are supposed to consider stability of the system. 
Firstly, defining Cartesian form of the solution 
(

A =
1

2
(p − iq)ei�T1

)

 , substituting A in Eq. (26), we rewrite 
the process of the solution as below:

In Eq. (31), the parameters of p and q are the function of T1 . 
Now, at the same time, in order to make the equation autono-
mous, we need to have 

(

� =
�

2

)

 . In fact, for making the sys-
tem autonomous, we need to consider the phase angle based 
on detuning parameter. Substituting 

(

� =
�

2

)

 then, we can 
write:

(27)A =
1

2
aei� =

1

2
a(cos � + i sin �)

(28a)a� = −�a +
�

4�0

a sin
(

�T1 − 2�
)

(28b)a�� =
3

8�0

�a3 −
�

4�0

a cos
(

�T1 − 2�
)

(29a)a� = −�a +
�

4�0

a sin (�)

(29b)a�� = �a −
3

4�0

�a3 +
�

2�0

a cos (�)

(30a)−�a +
�

4�0

a sin (�) = 0

(30b)�a −
3

4�0

�a3 +
�

2�0

a cos (�) = 0

(31)
i�

0

(

p� − iq�
)

− �
0
�(p − iq) + i��

0
(p − iq)

+
3�

8

(

p2 − q2 − 2ipq
)

(p + iq) +
�

4
(p + iq) = 0
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Now, to analyze the stability of the system for trivial steady-
state response, we should assume and substitute (p = q = 0) . 
Thus, we form Jacobian matrix of the set of Eq. (32), as 
below:

Therefore, we can have determinant and trace of matrix A, 
as following:

Finally, assuming (𝜇 > 0) and 
(

k =
�

2�0

)

 , we are able to 
evaluate the stability of the system.

2.5 � Non‑trivial steady‑state response

For a non-trivial solution of the system, the determinant of 
the coefficient matrix must vanish. To consider non-trivial 
steady-state response of the system, we have (a ≠ 0) . Thus, 
we will have:

Applying trigonometric function 
(

sin2 � + cos2 � = 1
)

 in 
Eq. (35), we will have:

Finally, the amplitude a is obtained as:

It should be noted that the stability of the fixed points and 
the steady-state solution depends on the real part of the 
roots. If the real part of each root is positive, then the cor-
responding steady-state solution is unstable. And also, if 
the real part of each root is zero or negative, then the cor-
responding steady-state solution is stable.

(32)

{

p� = −
�

2
q − �p +

3�

8�0

q
(

p2 + q2
)

−
�

4�0

q

q� =
�

2
p − �q −

3�

8�0

p
(

p2 + q2
)

−
�

4�0

p

(33)A =

[

−� −
�

2
−

�

4�0
�

2
−

�

4�0

−�

]

(34)

{

Δ = �2
+

(

�2

4
−

�2

16�2
0

)

� = −2�

(35)

{

a� = 0 ⇒ −�a = −
�a

4�0

sin �

�� = 0 ⇒
1

2
�a =

3�

8�0

a3 +
�a

4�0

cos �

(36)�2
+

(

1

2
� −

3�

8�0

a2
)2

=
�2

16�2
0

(37)a =

[

4�0

3�

(

� ±

√

�2

4�2
0

− 4�2

)]
1

2

3 � Results and discussion

In this part, the results of the present work are discussed in 
details. However, before that, the accuracy of the numerical 
results has to be validated. Therefore, firstly, the numeri-
cal results are compared with other literatures in which 
their relations and results can be used to consider the accu-
racy of our numerical results. However, some effects such 
as thermo-magneto-mechanical exciting loads should be 
ignored.

3.1 � Validation of the study

Firstly, to verify the accuracy of the formulation, Table 1 
is presented. The numerical results of the present study 
reported in the table are compared with other available 
researches and literatures [39, 94, 95] so that, they are 
partly similar and close to our researches. Table 1 shows 
the nonlinear frequency ratio 

(

�NL∕�L

)

 for amplitude–radius 
(

wmax∕r
)

 ratio of isotropic beam with simply supported 
boundary conditions. The nonlinear frequency ratio is tabled 
for different amplitudes ratio [1–3]. Due to using a similar 
analytical approach, the results presented in Ref. [39] show 
more accuracy to the numerical results of the present work.

In Fig.  2, the relation between nonlinear frequency 
responses (�) with respect to amplitude response (a) of a 
simply supported Euler–Bernoulli nanobeam compared with 
the results reported by Nourbakhsh et al. [40] is demon-
strated. The nanobeam is subjected to an external excitation 
amplitude (� = 0.1) . The results show a good agreement and 
precision. In this case, the damping coefficient (�) and the 
nonlinear coefficient (�) are taken 0 and 100 , respectively.

3.2 � Numerical results and discussion

Now, numerical results, caused by applying both thermo-
magneto-mechanical load and an external parametric exci-
tation, are presented and discussed. In this section, empha-
sizing the effect of parametric excitation, for considering 
the instability regions, bifurcation points are studied and 
investigated. To clarify the concepts and make a better 

Table 1   The frequency ratio 
(

�NL∕�L

)

 at different maximum ampli-
tude–radius 

(

w
max

∕r
)

 ratios of isotropic beam with simply supported 
boundary conditions

Amplitude 
ratio

Ref. [39] Ref. [94] Ref. [95] Present work

1 1.0937 1.0892 1.0897 1.0938
2 1.3750 1.3178 1.3229 1.3750
3 1.8438 1.6257 1.6394 1.8438
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understanding, it is necessary to define some parameters in 
different regions of the graph.

The material properties of the system including nanobeam 
and elastic matrix are Young’s modulus E = 1100 Gpa , 
the mass density � = 1.3 g/cm3 , the Winkler coeffi-
cient kw = 0.5 Gpa and viscoelastic damping coefficient 
3 × 10−7 Pa s . Besides, the nanobeam diameter is d = 3 nm 
and small-scale parameter is considered smaller than 2 nm 
[73].

Figure 3 shows the effect of detuning parameter (�) with 
respect to the force amplitude of parametric excitation (k) , 
as mentioned 

(

k =
�

2�0

)

 , for linear (� = 0) and nonlinear 
(� = 2) states in different regions (I, II, III) . The region (I) is 
always stable. There are two solutions in the region (II) 
including one trivial solution that is unstable and another 
nontrivial solution that is stable. In the region (III) , there are 
three solutions including one trivial solution (stable) and two 
nontrivial solutions (stable and unstable). In Fig.  3, by 
changing the values of detuning parameter (�) and force 
amplitude (k) , we can observe different bifurcations.

The relation between the amplitude (a) , force amplitude 
of the parametric excitation (k) and detuning parameter (�) 
is presented in Fig. 4a, b. The point 

(

�1
)

 indicates a super-
critical pitchfork bifurcation and the point 

(

�2
)

 represent a 
subcritical pitchfork in the beginning of region (III) that is 
unstable. In fact, before the point 

(

�1
)

 , we have a trivial and 
stable solution and after that, in the region (II) , we have a 
nontrivial and stable solution. Therefore, the state of the 
system changes in the point 

(

�1
)

 and also, in the point 
(

�2
)

 . 
It should be noted that, to obtain these results, there are two 

conditions, so that the force amplitude and nonlinearity must 
be (k > 2𝜇) and (𝛽 > 0).

In fact, better to say, in Fig. 4a, detuning parameter (�) is 
increased while the force amplitude is held constant. This 
process is represented by the line through points �1 and �2 . 
Before �1 , only the trivial solution exists, and it is stable. 
Between points �1 and �2 , the trivial solution is unstable, 
and the only realizable solution is given by Eq. (37). Beyond 
point �2 , the trivial solution is again stable and is the larger 
solution given by Eq. (37). Therefore, two solutions are real-
izable. From Fig. 4a, it can be inferred that in region II , all 
initial disturbances produce the same steady-state response 
(i.e., a limit cycle exists).

The effect of detuning parameter (�) against the ampli-
tude of parametric excitation (a) for different values of the 
force amplitude (k) can be observed in Fig. 5. As the force 
amplitude of the parametric excitation increases, amplitude 
(a) grows. Once again, different pitchfork bifurcations can 
be seen for different values of (k) . Another point is that as 
the force amplitude increases, stable and unstable curves 
move far away from each other and make a gap between 
themselves.

The force amplitude of parametric excitation (k) versus 
the amplitude (a) for different values of the damping coeffi-
cient (�) is shown in Fig. 6. In this plot, subcritical pitchfork 
bifurcations are shown. Besides, it can be observed that as 
damping coefficient changes, the bifurcation point situation 
shifts from one point to another. Dash lines denote non-
trivial unstable solution in the region (III) . As mentioned, 
the force amplitude (k) should be (k > 2𝜇) . The damping 
coefficient depends on parameter 

(

Cd

)

 of the foundation. In 

Fig. 2   The relation between nonlinear frequency responses (�) with 
respect to amplitude response (a) of a simply supported Euler–Ber-
noulli nanobeam under an external excitation (� = 0.1) compared 
with the results reported by Nourbakhsh et al. [40] (� = 0, � = 100)

Fig. 3   The effect of detuning parameter (�) with respect to the force 
amplitude of parametric excitation (k) for linear (� = 0) and nonlinear 
(� = 2) state in different regions of stability (I, II, III)
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Fig. 6, can trace the history of amplitude response as k is 
slowly increased from zero and then decreased.

Figure 7 shows the relation between the force amplitude 
of parametric excitation (k) versus the amplitude of the para-
metric excitation (a) for different values of temperatures (T) 
in regions (I), (II) and (III) . As seen in Fig. 4, in negative 
detuning parameter (𝜎 < 0) and positive detuning parameter 
(𝜎 > 0) , we will have different states. For (� = −5) , there 
is a supercritical pitchfork bifurcation between (k = 5) and 
(k = 6) . However, as the detuning parameter becomes posi-
tive (� = 5) , bifurcation point transforms to a subcritical 
pitchfork bifurcation between regions (I) and (III) . As seen 
in Fig. 4a, it means that the detuning parameter significantly 

alters the stability of the system. Figures 8 and 9 can pre-
sent the similar consequences. However, for uniaxial mag-
netic field values (Fig. 8) and initial stress values (Fig. 9), 
the amplitude of the system becomes completely differ-
ent. Therefore, one of the results is that thermo-magneto-
mechanical loads can only affect the amplitude of the system 
and are less important to determine the bifurcation point.

It is well known that the mechanical characteristics 
of nanostructures are size dependent. Thus, it is neces-
sary to analyze the size effect on nonlinear vibration and 
dynamic instability of the system. The effect of nonlocal 
parameter 

(

�2
)

 is observed, while detuning parameter (�) 
(Fig. 10) and the force amplitude (k) (Fig. 11) are constant. 

(a) (b)

Fig. 4   a The effect of detuning parameter (�) with respect to the force amplitude (k) . b The effect of detuning parameter (�) with respect to the 
amplitude of parametric excitation (a) for (k = 6)

Fig. 5   The effect of detuning parameter (�) against the amplitude of 
parametric excitation (a) for different values of the force amplitude (k)

Fig. 6   The force amplitude of parametric excitation (k) versus the 
amplitude (a) for different values of the damping coefficient (�)
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In both figures,it can be inferred that as nonlocal param-
eter increases, the amplitude decays. In addition, nonlocal 
parameter is not effective on stability of the system and 
changes the bifurcation situation. Explanations made in 
Fig. 6 are valid and precise for Fig. 10. From Figs. 10 and 
11 can be resulted that change in nonlocal parameter cannot 
change the stability of the system. It can only influence the 
amplitude of the system. Another point is that, in Fig. 10, 
we have a saddle node bifurcation in region (I) . In Fig. 11, 
two pitchfork bifurcations including super and sub-critical 
bifurcations are seen.

Figure 12 indicates that unlike the other parameters such 
as nonlocal and thermo-magneto-mechanical loads, damp-
ing coefficient of the foundation plays an important role to 

change the regions of stability of the system. It is observed 
that as damping coefficient increases, the bifurcation point 
shifts to higher detuning parameters, while it has a little 
effect on the amplitude (a).

The force amplitude of parametric excitation (k) with 
respect to the amplitude (a) for nondimensional Winkler 
coefficient 

(

kw
)

 for detuning parameter (� = −3) is shown in 
Fig. 13. As Winkler coefficient 

(

kw
)

 increases, the amplitude 
grows. However, it has no effect on situation of bifurcation 
point. Figure 13 explains that by moving from the region (I) 
to the region (II) , a pitchfork bifurcation occurs; however, 
the system is still stable.

Figure 14 states that the relation between the force ampli-
tude of parametric excitation (k) , the amplitude of the para-
metric excitation (a) and nonlinearity coefficients (�) for 

Fig. 7   The force amplitude of parametric excitation (k) versus the 
amplitude of the parametric excitation (a) for different values of tem-
peratures (T) in regions (I), (II) and (III)

Fig. 8   The force amplitude of parametric excitation (k) versus the 
amplitude of the parametric excitation (a) for different values of uni-
axial magnetic field (Nmag

) in regions (I), (II) and (III)
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detuning parameters (� = −5, 5) . Again, it is clear that non-
linearity coefficient cannot change the stability of the system 
for both negative and positive detuning parameter. Moreover, 
it can strengthen the amplitude of the system. For (� = 5) , 
as seen, where the force amplitude of parametric excitation 
(k = 2) , we have saddle node bifurcation that means a stable 
point and an unstable one collide to each other.

The numerical results of the present study should be 
regarded from different aspects. Firstly, considering Figs. 10 
and 11, applying nonlocal elasticity theory can result in a 
more proper and accurate model. In addition, as can be 
observed in Figs. 7, 8 and 9, an increase or decrease in 
thermo-magneto-mechanical loads can result in instability 
of the system. For instance, in Fig. 7 (� = −5) , for various 

values of temperature, we have a distinct saddle point bifur-
cation which means a different stability region for the sys-
tem. Observations made in Fig. 7 (� = −5) are valid for 
Fig. 9 (𝜎 < 0).

Secondly, it is clear that external loads such as thermo-
magneto-mechanical loads will not be able to change the 
position of some special bifurcation points such as super and 
sub-critical pitchfork bifurcations. It means that the ampli-
tude of external excitation has a little role in instability of 
the system compared to damping coefficient.

Another considerable result is the effect of external loads 
on amplitude response of the system. As seen in Figs. 7, 
8 and 9, for both negative (𝜎 < 0) and positive (𝜎 > 0) 

Fig. 9   The force amplitude of parametric excitation (k) versus the 
amplitude (a) for different values of initial stress 

(

�
0

)

 in regions (I), 
(II) and (III)

Fig. 10   The force amplitude of parametric excitation (k) against the 
amplitude of the parametric excitation (a) for different values of non-
dimensional nonlocal parameter 

(

�2
)

 in regions (I, II) and (III)

Fig. 11   The effect of detuning parameter (�) with respect to ampli-
tude of the parametric excitation (a) for different values of nondimen-
sional nonlocal parameter 

(

�2
)

 for (k = 3) in regions (I, II) and (III)
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situations, an increase in external loads leads to an increase 
in amplitude response. Whereas, as the amplitude of the 
motion grows, the nonlinear effects come into play and limit 
the growth. Therefore, the role of thermo-magneto-mechan-
ical loads on dynamic instability of the system cannot be 
ignored. Another conclusion from results is that, for the 
linear as well as the nonlinear system, the phasing (includ-
ing regions I, II and III ) is such that the force actually does 
negative work and thus contributes to the decay.

4 � Conclusions

The nonlinear vibration behavior and dynamic instability of 
nanobeams under thermo-magneto-mechanical load is the 
objective of present paper. Firstly, a short nanobeam is mod-
eled such that it is embedded on a viscoelastic foundation 
and also subjected to an axial parametric force. Length of 
the nanobeam is L which is along the x-axis and diameter 
of the nanobeam is d . The axial force is a function with a 
harmonic excitation with frequency � and produces a para-
metric excitation. In addition, deformation of the nanobeam 
is denoted by w , along the z-axis. Based on the nonlocal 
elasticity theory and nonlinear von Karman deformation 
beam theory, the nonlinear governing equation of motion is 
derived. Secondly, to transport the partial differential equa-
tion to the ordinary differential equation, Galerkin technique 
is applied. Then, multiple time scales method, as an ana-
lytical approach, is used to solve the equation. At the end, 
modulation equation of nanobeams is obtained. Then, to 
evaluate the dynamic instability of the system, trivial and 
nontrivial steady-state solutions are discussed.

To evaluate the stability of the triple regions, emphasizing 
the effect of parametric excitation, bifurcation points includ-
ing saddle node, supercritical pitchfork and subcritical pitch-
fork are studied and discussed. Therefore, it can be observed 
that the damping coefficient plays an effective role as well as 
parametric excitation in stability and frequency response of 
the system. In addition, thermo-magneto-mechanical loads 
make the amplitude response (a) grow or decay. The other 
main results of the study can be listed as below:

•	 The damping coefficient can affect the stability of the 
system while, other factors such as nonlocal parameter, 
Winkler coefficient are less important.

•	 The parametric excitation caused by external axial force 
plays a significant role in stability of the system.

•	 The stability of the system is significantly depends on 
whether detuning parameter is positive or negative.

•	 Amplitude response appears as a function of the fre-
quency of the excitation.

•	 If the initial amplitude is very large, the response will 
decay until the steady-state solution is reached.

•	 As the force amplitude increases, stable and unstable 
curves move far away from each other and make a gap 
between themselves.

•	 Responses to all initial disturbances, regardless of how 
large the amplitude, decay in region I.

Besides, the results emphasize that considering nonlocal 
elasticity theory makes a proper and more accurate model 
to evaluate the effect of small scale and interaction between 
atoms. Also, numerical results can be utilized as benchmarks 

Fig. 12   The effect of detuning parameter (�) with respect to ampli-
tude of the parametric excitation (a) for different values of nondimen-
sional damping coefficient 

(

Cd

)

 for (k = 3)

Fig. 13   The force amplitude of parametric excitation (k) versus the 
amplitude (a) for nondimensional Winkler coefficient 

(

kw
)

 for detun-
ing parameter (� = −3)
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for next analyses of nanobeams which are considered as one 
of the fundamental elements in nano-electromechanical 
systems.
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