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Abstract
Stability of the soil slopes is one of the most challenging issues in civil engineering projects. Due to the complexity and 
non-linearity of this threat, utilizing simple predictive models does not satisfy the required accuracy in analysing the stabil-
ity of the slopes. Hence, the main objective of this study is to introduce a novel metaheuristic optimization namely Harris 
hawks’ optimization (HHO) for enhancing the accuracy of the conventional multilayer perceptron technique in predicting 
the factor of safety in the presence of rigid foundations. In this way, four slope stability conditioning factors, namely slope 
angle, the position of the rigid foundation, the strength of the soil, and applied surcharge are considered. Remarkably, the 
main contribution of this algorithm to the problem of slope stability lies in adjusting the computational weights of these 
conditioning factors. The results showed that using the HHO increases the prediction accuracy of the ANN for analysing 
slopes with unseen conditions. In this regard, it led to reducing the root mean square error and mean absolute error criteria by 
20.47% and 26.97%, respectively. Moreover, the correlation between the actual values of the safety factor and the outputs of 
the HHO–ANN (R2 = 0.9253) was more significant than the ANN (R2 = 0.8220). Finally, an HHO-based predictive formula 
is also presented to be used for similar applications.

Keywords Metaheuristic algorithms · Harris hawks’ optimization · Artificial intelligence · Stability performance

1 Introduction

Local slopes can highly affect adjacent engineering studies. 
In most civil engineering projects, the stability of the local 
slopes has been considered as a significant problem. Also, 
slope failures can cause various psychological damages, 
including property loss as well as human life in our world. 

For instance, Iranian Landslide Working Party (2007) 
reported that 187 people were killed due to the destruc-
tive effects of slope failure [1]. The impregnation level, 
along with different intrinsic characteristics of the soil, can 
impact the slope failure likelihood [2, 3]. Various studies 
have been conducted to propose impressive modelling for 
slope stability issue. Traditional methods have many short-
comings, such as the requirement of utilizing laboratory 
equipment and also high complexity barricade them from 
being an appropriate solution [4]. Nevertheless, because 
of their constraint in studying a particular slope state, for 
example, soil properties, height, slope angle, groundwater 
level, etc., these solutions have not commonly been consid-
ered as a general solution. Various sorts of numerical solu-
tions, finite element model (FEM), and limit equilibrium 
methods (LEMs) are extensively chosen for the slope sta-
bility issue [5–7]. For providing a trustworthy method for 
slope stability study, scholars have focused on the expan-
sion of design charts [8]. However, this method also has 
some defects. Producing an impressive design chart needs a 
lot of time and cost. Also, indicating the accurate mechani-
cal factors is a problematic duty [9, 10]. Hence, because of 
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efficiency, design charts commonly accompanied high pre-
cision, therefore the usage of artificial intelligence methods 
is more bolded [11, 12]. These methods can specify the 
non-linear relationship between the target factors as well 
as its key parameters, and this is an outstanding advan-
tage of these approaches. Artificial neural network (ANN) 
commonly uses any determined number of hidden nodes 
[13, 14]. In geotechnical studies, different scholars stated 
that machine learning approaches such as support vector 
machine (SVM) and ANNs have proper efficiency [15–19]. 
The intricacy of the slope stability issue is obvious. What 
makes the problem even more complex and critical is cre-
ating different buildings in the presence of slopes that are 
showing a considerable value of loads used on a rigid foot-
ing. It is known that the interval of the slope’s crest along 
with the value of surcharge is considered as two factors that 
can affect the stability of the target slope [20]. Because of 
this fact, scholars have motivated to show a relationship to 
compute the factor of safety of pure slopes and sometimes 
the slopes taking a static load [21–25]. Chakraborty and 
Goswami [26] predicted the factor of safety for around 200 
slopes to distinct geometric and shear strength factors by 
taking into account the multiple linear regression (MLR) 
along with ANN algorithms. In their work, a comparison 
study has been conducted to compare calculated results to 
a FEM model. They have obtained a proper rate of preci-
sion obtained for both practical models. In addition, they 
found that ANN had better performance compared to MLR. 
Lie et al. [27] utilized the random forest (RF) along with 
regression tree in functional soil–landscape simulations 
to regionalize the depth of the failure level and density 
of soil bulk. Although looking for more reliable analysis 
of the stability of the slopes various hybrid evolutionary 
algorithms has been successfully employed in plenty of 
studies [28–31], this study presents a novel optimization 
technique named Harris hawks’ optimization (HHO) incor-
porated with ANN to give a reliable approximation of the 
stability of soil slopes. Notably, the HHO is a recently 
proposed natural inspired metaheuristic algorithm, and 
the authors did not come across any previous study which 
applied this algorithm to the mentioned subject.

2  Methodology

2.1  Artificial neural network

The artificial neural network (ANN) is based on the inter-
action among the neurons in the biological neural appa-
ratus. McCulloch and Pitts [32] proposed ANN for the 
first one. The algorithm of ANNs is generally utilized as 
approximators in a non-linear survey of input–output data 
[33–38]. These methods are commonly used for different 

engineering issues because of their specific mathematical 
solution in optimization tasks [22, 39–47]. Basically, the 
ANN algorithm includes a group of computational relation-
ships that are commonly worked with each other. Multilayer 
perceptron (MLP) is known as one of the most appropriate 
methods between different algorithms of ANNs that used 
for classification as well as regression issues. The whole 
structure of the MLP algorithm is presented in Fig. 1. As can 
be observed, this model consists of three different types of 
layers. In this method, the number of hidden layers usually 
changes; however, it just can have input and output layers. 
Scholars determined that MLPs possess one hidden layer in 
terms of efficiency [48].

The MLP is basically employed for detecting the math-
ematical relations among different factors with the taking 
into account of one and even more activation function(s). 
We consider W1 and W2 as the weight matrices layers in 
the hidden and output sections, respectively. After that, the 
mentioned method is adjusted as below:

where fA stands for the activation function. b1 and b2 stand 
for the bias matrices related to the neurons located in the 
hidden and output layers, respectively.

2.2  Harris hawks’ optimization algorithm

The algorithm of Harris hawks’ optimization (HHO) is 
inspired using the cooperative treatment along with the chas-
ing manner of Harris’ hawks that is first expanded by Hei-
dari et al. [49]. This algorithm has been successfully used 
for various scientific applications [50, 51]. Hawks attempt-
ing to surprise their prey and from different paths swooped 
on them, cooperatively. In addition, Harris hawks have the 
ability to choose chase type according to the distinct patterns 
of prey flight. It has three base stages in HHO, including 

(1)f (X) = b2 +W2 ×
(
fA
(
b1 +W1 × X

))
,

Fig. 1  The structure of an MLP neural network with one hidden layer
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amaze pounce, tracking the prey, and other different sorts 
of attacking strategies. Different phases of Harris hawks’ 
optimization (HHO) are shown in Fig. 2. The pseudo-code 
of HHO algorithm is also illustrated in Table 1. In a glance, 
the first stage is named “Exploration” and is modelled to 
mathematically wait, search, and discover the desired hunt. 
The second stage of this algorithm is transforming from 
exploration to exploitation, based on the external energy of 
a rabbit. Finally, in the third phase which is called “Exploi-
tation”, considering the residual energy of the prey, hawks 
commonly take a soft and sometimes hard surround for hunt-
ing the rabbit from different directions.

2.2.1  Exploration

In each step, Harris’ hawks have been considered the best 
solutions. The iter + 1 (the Harris hawks’ position) is math-
ematically modelled by the following relation:

where iter means the present iteration, Xrand stands selected 
for hawk at the available population, ri , i = 1, 2, 3, 4…, q are 
random numbers that are between 0 and 1, Xrabit stands for 

(2)X(iter + 1) =

{
Xrand(iter) − r1

||Xrand(iter) − 2r2X(iter) if q ⩾ 0.5(
Xrabit(iter) − Xm(iter)

)
− r3

(
LB + r4(UB − LB)

)
if q < 0.5

,

the rabbit position, and Xm is the mean position for hawks 
and that is computed as follows:

where Xi shows the every hawk place and N stands for the 
hawks size.

2.2.2  Transition from exploration to exploitation

The rabbit energy may be calculated by the below relation:

where E is the external energy from rabbit and T stands for 
the maximum size about the iterations. In this relation, E 
stands for the energy of the rabbit, and E0 ∈ (−1.1) shows 
the inlet energy for each step. HHO may determine the rabbit 
state based on the variation trend of E0.

2.2.3  Exploitation

In this stage, for successful escape of the prey: if r < 0.5 . 
If |E| ≥ 0.5 HHO takes soft surround and if |E| < 0.5 the 

(3)Xm(iter) =
1

N

N∑
i=1

Xi(iter),

(4)E = 2E0

(
1 −

iter

T

)
,

Fig. 2  Different phases of Harris hawks’ optimization (HHO) (after 
Heidari et al. [49])

Table 1  Pseudo-code of the HHO algorithm (after Heidari et al. [49])
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HHO takes hard surround. To model the attacking stage, 
the algorithm of HHO used four distinct methods based 
on the escaping approaches of the prey as well as pursuing 
approaches of the Harris’ hawks: hard and soft surrounds, 
advanced rapid dives while soft surround, progressive rapid 
dives while hard surround. Particularly, |E| ≥ 0.5 means 
that the prey has enough energy for running out from the 
surround. Therefore, whether the rabbit runs out from the 
surround or not is based on two values of r and E.

A—soft surround: r ≥ 1

2
and|E| ≥ 1

2
.

We can use the following relation:

where ΔX stands for deference among the position vector of 
the prey, J = 2(1-rs ) stands for jump severity of the prey in 
the stage of escaping and rs ∈ (01) shows a random number.

B—hard surround: r ≥ 1

2
and|E| < 1

2
.

We can use the following formula for showing the present 
positions:

C—advanced rapid dives while soft surround: 
r <

1

2
and |E| ≥ 1

2
.

As stated for soft surround, previously, hawks find the next 
purpose using the below relation:

The hawks can dive as the below relation:

where D stands for the issue dimension and S1×D shows a 
random vector along with the levy flight. We can calculate 
LF as follows:

where � and � stand for random amounts among in the range 
of 0–1. Hence, for updating the hawks’ locations, the final 
approach can be shown as follows:

D—advanced rapid dives while hard surround.

In the present paper, the hawks were considered being near 
the rabbit. The behaviour of them can be modelled as follows:

(5)X(iter + 1) = ΔX(iter) − E||JXrabit(iter) − X(iter)| ,

(6)ΔX(iter) = Xrabit(iter) − X(iter),

(7)X(iter + 1) = Xrabit(iter) − E|ΔX(iter)| .

(8)Y = Xrabit(iter) − E||JXrabit(iter) − X(iter)| .

(9)Z = Y + S × LF(D),

(10)

LF(D) = 0.01 ×
� × �

��� 1

�

.� =

⎛
⎜⎜⎜⎝

� (1 + �) × sin
�

��

2

�

�

�
1+�

2

�
× � × 2

�
�−1

2

�

⎞
⎟⎟⎟⎠
⋅ � = 1.5,

(11)X(iter + 1) =

{
Y if F(Y) < F(X(iter))

Z if F(Z) < F(X(iter))

r <
1

2
and |E| < 1

2
.

Y and Z should be calculated as follows:

in which Xm(iter)shows
1

N

∑N

i=1
Xi(iter) [52].

3  Data collection and methodology

We can use a single-layer slope to obtain a reliable database. 
In this method, we should assume a purely cohesive soil, 
having only undrained cohesive strength (Cu), creates the 
body of this slope. The basic parameters that can have some 
influences on the strength of the slope versus the failure 
(i.e., the factor of safety) are the magnitude of the surcharge 
on the footing enchased onto the slope (w), setback dis-
tance ratio (b/B), and slope angle (β). Figure 3a shows these 
parameters. In this study, the Optum  G2 software was used 
for computing the factor of safety. In most cases, the safety 
factor is a typical method to show the geotechnical stabil-
ity as well as deformation in slopes [53] (see Fig. 3b). In 
this regard, various geometries of the slope angle (β) along 
with different rigid foundation (b/B) (i.e., around 630 pos-
sible cases) are drawn and then evaluated in Optum G2 for 
calculating the factor of safety. Other parameters were also 
considered into simulation including cohesive strength of 
the soil (Cu) and applied surcharge (w). The mechanical fac-
tors, including the ratio of Poisson, internal friction angle, 
and soil unit weight, were specified 0.35, 0°, and 18 kN/m3, 
respectively. Moreover, modulus of Young (E) differed for 
every amount of Cu. It is adjusted to be 1000, 2000, 3500, 
5000, 9000, 15,000 and 30,000 kPa for amount of Cu 25, 50, 
75, 100, 200, 300 and 400 kPa, respectively.

An example of the utilized dataset is shown in Table 2. 
In this table, we illustrated the examples of the relation 
between the slope safety factor and its effective param-
eters. As can be observed, when Cu has high value, the 
slope ensures more stability. The factors of β (5°, 30°, 45°, 
60°, and 75°), as well as w (50, 100, and 150 KN/m2), have 
been considered as adversely proportionate for the FOS. 
By increasing the values of β and w, the slope is more 
likely to be failing. The factor of safety cannot illustrate 
any considerable sensibility to the b/B ratio variations (0, 
1, 2, 3, 4, and 5). Also, Table 2 shows that the safety fac-
tor does not specify any considerable sensitivity for the 
b/B ratio variations of 0, 1, 2, 3, 4, and 5.

(12)X(iter + 1) =

{
Y if F(Y) < F(X(iter))

Z if F(Z) < F(X(iter))

(13)Y = Xrabit(iter) − E||JXrabit(iter) − X(iter)| ,

(14)Y = Xrabit(iter) − E||JXrabit(iter) − X(iter)| ,

(15)Z = Y + S × LF(D),
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We have randomly divided the dataset into training and 
testing sub-classes that have the respective amounts of 0.8 
(504 instances) and 0.2 (126 instances). It is important to 
note that the training instances are utilized for training the 
ANN and HHO–ANN models. The performance of these 
methods has been verified using the testing database. Also, 
k-fold cross-validation procedure is utilized to mitigate the 
bias caused by the random selection of the data [54–56] 
(see Fig. 4).

4  Results and discussion

4.1  Implementation and optimization

As stated previously, the main objective of this research is to 
present a new optimization of the artificial neural network, 
namely Harris hawks’ optimization, for the stability analysis of 
soil slopes by predicting the FOS. To this end, four slope sta-
bility conditioning factors, namely slope angle, the position of 
the rigid foundation, the strength of the soil, and the magnitude 
of the surcharge are considered to create the required data-
set. After dividing the data into the training and testing parts, 

utilizing the programming language of MATLAB v.2014, the 
proposed ANN and HHO–ANN models were designed. Based 
on the authors’ experience, as well as a trial and error process, 
an MLP neural network with six hidden computational units 
in the middle layer was developed. In this sense, lots of theo-
retical attempts have revealed the efficiency of the MLP tool 
with one hidden layer [57, 58]. Notably, the activation func-
tion of “Tansig” was used to activate the calculations of these 
neurons. This function is expressed as follows:

After determining the optimal structure of the ANN, the 
HHO algorithm was coupled with it. It is worth noting that 
the main aim of such optimization algorithms in incorpora-
tion with intelligent tools (e.g., ANFIS and ANN) is to find 
the most appropriate values for their computational param-
eters. In the case of MLP we used in this study, the HHO 
performs to find the solution for a mathematically defined 
problem which contains the weights and biases of the neu-
rons. Ten different structures of HHO–ANN networks were 
tested based on the population size. In this sense, the popu-
lation size was considered to vary from 50 to 500 with 50 

(16)Tan sig(x) =
2

1 + e−2x
− 1.

Fig. 3  A graphical view of 
the designed slope in (a) the 
schematic view and (b) results 
of the horizontal strain diagram 
obtained from the Optum 
G2 (for b/B = 3, Cu = 75 kPa, 
β = 30°, and w = 50 KN/m2)
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intervals. Each model performed within 1000 repetitions 
when meaning square error was defined as the objective 
function (Table 3). Figure 5 shows the obtained convergence 

curves. According to this chart, the HHO–ANN having pop-
ulation size = 90 outperformed other tested models. It finally 
achieved the MSE = 2.469635486 in 4129 s. Remarkably, 
the majority of the reduction of the MSE occurred in the 
first 100 iterations. 

4.2  Performance assessment

The outputs (i.e., the predicted FOS) of the ANN and 
HHO–ANN models were extracted and compared with the 
actual values to evaluate their prediction capability. Two 
error criteria of root mean square error (RMSE) and mean 
absolute error (MAE) are used to measure the prediction 
error. Moreover, the correlation between the observed and 
predicted FOSs is measured by the coefficient of determina-
tion  (R2). These indices are expressed as follows:

(17)R2 = 1 −

N∑
i=1

�
Yipredicted − Yiobserved

�2

N∑
i=1

�
Yiobserved − Yiobserved

�2

Table 2  Example of the input and output datasets used for training and validating the applied models

No. Cu β b/B w FOS No. Cu β b/B w FOS No. Cu β b/B w FOS

1 50 15 0 100 2.35 26 50 60 0 100 1.485 51 200 45 2 150 6.579
2 50 15 0 150 1.587 27 50 60 0 150 1.022 52 200 45 3 50 10.6
3 50 15 1 50 3.611 28 50 60 1 50 2.391 53 200 45 3 100 8.455
4 50 15 1 100 2.616 29 50 60 1 100 1.829 54 200 45 3 150 6.773
5 50 15 1 150 1.756 30 50 60 1 150 1.355 55 200 45 4 50 10.73
6 50 15 2 50 3.575 31 50 60 2 50 2.361 56 200 45 4 100 8.678
7 50 15 2 100 2.669 32 50 60 2 100 1.841 57 200 45 4 150 7.021
8 50 15 2 150 1.793 33 50 60 2 150 1.469 58 200 45 5 50 10.65
9 50 15 3 50 3.555 34 50 60 3 50 2.39 59 200 45 5 100 8.995
10 50 15 3 100 2.678 35 50 60 3 100 1.893 60 200 45 5 150 7.066
11 50 15 3 150 1.794 36 50 60 3 150 1.528 61 200 60 0 50 9.775
12 50 15 4 50 3.556 37 50 60 4 50 2.443 62 200 60 0 100 5.858
13 50 15 4 100 2.683 38 50 60 4 100 1.975 63 200 60 0 150 4.035
14 50 15 4 150 1.797 39 50 60 4 150 1.592 64 200 60 1 50 9.442
15 50 15 5 50 3.57 40 50 60 5 50 2.535 65 200 60 1 100 7.238
16 50 15 5 100 2.686 41 50 60 5 100 2.053 66 200 60 1 150 5.337
17 50 15 5 150 1.79 42 50 60 5 150 1.661 67 200 60 2 50 9.302
18 50 30 0 50 3.107 43 50 75 0 50 2.139 68 200 60 2 100 7.289
19 50 30 0 100 2.034 44 50 75 0 100 1.221 69 200 60 2 150 5.783
20 50 30 0 150 1.391 45 50 75 0 150 0.8478 70 200 60 3 50 9.397
21 50 30 1 50 3.094 46 50 75 1 50 2.086 71 200 60 3 100 7.471
22 50 30 1 100 2.425 47 50 75 1 100 1.595 72 200 60 3 150 6.018
23 50 30 1 150 1.656 48 50 75 1 150 1.177 73 200 60 4 50 9.631
24 50 30 2 50 3.065 49 50 75 2 50 2.055 74 200 60 4 100 7.788
25 50 30 2 100 2.435 50 50 75 2 100 1.604 75 200 60 4 150 6.268

Fig. 4  The k-fold cross-validation process, taking training and testing 
samples
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where Yipredicted and Yiobserved stand for the predicted and 
actual FOSs, respectively. The term N symbolizes the num-
ber of samples and Yobserved denotes the average value of the 
observed FOS.

Figure  6 illustrates the results of the ANN and 
HHO–ANN models. In these figures, the error (i.e., the dif-
ference between the actual and predicted) and histogram of 
the errors are also presented. Based on the results, applying 
the HHO algorithm has helped the ANN to have a better 
analysis of the relationship between the FOS and its con-
ditioning factors. In this sense, the training RMSE was 

(18)MAE =
1

N

N∑
I=1

|||Yi observed − Y
i predicted

|||,

(19)RMSE =

√√√√ 1

N

N∑
i=1

[(
Y
i observed

− Y
i predicted

)]2
,

decreased by 26.52% (from 2.1388 to 1.5715). As for the 
MAE, the HHO reduced this error criterion by 32.31% (from 
1.7151 to 1.1610). Furthermore, the obtained values of R2 
(0.8778 vs. 0.9339) show more consistency for the outputs of 
the HHO–ANN. About the testing phase, it can be deduced 
that using the HHO increases the generalization power (i.e., 
predicting the unseen samples) of the ANN. More clearly, 
the testing RMSE and MAE fell by 20.47% (from 2.0806 to 
1.6546) and 26.97% (from 1.6883 to 1.2330), respectively. 
Besides, the correlation analysis between the testing outputs 
of the ANN and HHO–ANN show that the R2 increases from 
0.8220 to 0.9253.

4.3  Presenting the HHO‑based predictive formula

Overall, it was found that the weights and biases which were 
suggested by the HHO algorithm can predict the FOS more 
efficiently than those found in the non-optimized ANN. 
Hence, in this part of the study, it was aimed to extract 
the FOS predictive formula from the HHO–ANN model. 
Notably, the calculated accuracy criteria indicate that it can 
estimate the FOS accurately, by taking into consideration 
four slope stability influential factors, namely slope angle, 
the position of the rigid foundation, strength of the soil, and 
applied surcharge. Equation 20 denotes the HHO–ANN 
formula:

where Z1, Z2, …, Z6 are calculated as shown in Table 3.

(20)

FOSHHO−ANN = −0.7312 × Z1 − 0.9610 × Z2 − 0.7498 × Z3

−0.5534 × Z4 − 0.1017 × Z5

+0.0691 × Z6 + 0.9808,

Fig. 5  The convergence curves 
of tested HHO–ANN networks
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Table 3  Optimized weight and biases of the ANN model

Neuron (i) Zi = Tansig (Wi1 × Cu + Wi2 × β + Wi3 × b/B + Wi4 × w + bi)

Wi1 Wi2 Wi3 Wi4 bi

1 0.4783 1.1539 1.0187 1.4842 − 2.1911
2 0.9375 − 1.3227 0.8848 1.1788 − 1.3147
3 1.6702 − 0.6027 − 1.1291 − 0.6109 − 0.4382
4 0.9165 − 1.8969 − 0.5821 − 0.1542 0.4382
5 1.7448 0.9500 0.3645 0.8494 1.3147
6 1.5837 1.4772 − 0.1290 0.3066 2.1911
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Fig. 6  The prediction results of the (a and b) ANN and (c and d) HHO–ANN models, respectively, for the training and testing samples
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Fig. 6  (continued)
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5  Conclusion

The complexity of environmental threats has driven scholars 
to employ evolutionary evaluative methods for dealing with 
them. The stability of the soil slopes is a crucial civil engi-
neering issue which needs nonlinear analysis. In this paper, 
Harris hawks’ optimization was used as a novel hybrid 
metaheuristic technique for optimizing the performance of 
the artificial neural network in predicting FOS of the soil 
slope. In other words, the HHO was used to overcome the 
computational drawbacks of the ANN, through finding the 
best-fitted structure. Based on the results of the sensitivity 
analysis, the HHO–ANN with population size = 90 outper-
forms others. Moreover, the findings showed that synthe-
sizing the HHO algorithm can effectively help the ANN to 
have more consistent learning and predicting of the slope 
failure pattern. Lastly, conducting comparative studies for 
comparing the potential of the used HHO algorithm with 
other well-known optimization techniques is a good idea for 
future works to determine the most appropriate technique for 
solving the mentioned problem.
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