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Abstract
In this paper, a hybrid bio-inspired metaheuristic optimization approach namely emperor penguin and salp swarm algorithm 
(ESA) is proposed. This algorithm imitates the huddling and swarm behaviors of emperor penguin optimizer and salp swarm 
algorithm, respectively. The efficiency of the proposed ESA is evaluated using scalability analysis, convergence analysis, 
sensitivity analysis, and ANOVA test analysis on 53 benchmark test functions including classical and IEEE CEC-2017. The 
effectiveness of ESA is compared with well-known metaheuristics in terms of the optimal solution. The proposed ESA is 
also applied on six constrained and one unconstrained engineering problems to evaluate its robustness. The results reveal 
that ESA offers optimal solutions as compared to the other competitor algorithms.

Keywords Metaheuristics · Optimization · Emperor penguin optimizer · Salp swarm algorithm · Engineering problems

1 Introduction

During the last few decades, various algorithms have been 
proposed to solve a variety of engineering optimization prob-
lems [1–21]. These optimization problems are very complex 
in nature because they have more than one local optimum 
solution. These problems are categorized into various catego-
ries whether they are constrained or unconstrained, discrete 
or continuous, static or dynamic, single or multi-objective.

In order to increase the efficiency and accuracy of these 
problems [22–26], researchers have encouraged to rely on 
metaheuristic algorithms [27–29]. Metaheuristics become 
more popular in various field because they do not require 
gradient information and bypass the local optima problem.

Metaheuristics are classified into two main categories: 
single-solution and multiple-solution. In single-solution-
based algorithms, the searching process starts with one 
candidate solution, whereas in multiple-solution-based algo-
rithm, the optimization performs using a set of solutions 

(i.e., population). Multiple-solution or population-based 
metaheuristics have advantages over single-solution-based 
metaheuristics. These are as follows:

• The searching process starts with random generated 
population, i.e, a set of multiple solutions.

• The multiple solutions can share the information between 
each other around the search space and avoid local opti-
mal solutions.

• The exploration capability of multiple-solution or pop-
ulation-based metaheuristics is better than the single-
solution-based metaheuristics.

The key phases of metaheuristic algorithms are exploration 
and exploitation. The exploration phase ensures that algo-
rithm investigates the different promising regions in a given 
search space, whereas exploitation ensures the searching of 
optimal solutions around the promising regions. However, 
it is difficult to balance between these phases due to its sto-
chastic nature. Therefore, the fine-tuning of these two phases 
is required to achieve the near-optimal solutions.

In recent years, a large number of metaheuristic algo-
rithms have been developed. However, there is no single 
algorithm present which can solve all types of optimization 
problems. Some algorithms provide better optimal results 
as compared to the others. Therefore, developing a new 
metaheuristic algorithm is an open problem. This is the one 
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fact which can motivates us to develop a novel metaheuristic 
algorithm for solving optimization problems.

This paper presents a hybrid bio-inspired metaheuris-
tic algorithm named as emperor penguin and salp swarm 
algorithm (ESA). It is inspired by the huddling and swarm 
behavior of emperor penguin optimizer (EPO) [30] and salp 
swarm algorithm (SSA) [31], respectively. The main contri-
butions of this work are as follows:

• A hybrid bio-inspired swarm algorithm (ESA) is pro-
posed.

• The proposed ESA is implemented and tested on 53 
benchmark test functions (i.e., classical and CEC-2017).

• The performance of ESA is compared with well-known 
metaheuristics using sensitivity analysis, convergence 
analysis, and ANOVA test analysis.

• The robustness of proposed ESA and other metaheuris-
tics are examined for solving engineering problems.

The rest of this paper is structured as follows: Sect. 2 pre-
sents the background and related works of optimization 
problems. The proposed ESA algorithm is discussed in 
Sect. 3. The experimental results and discussion is presented 
in Sect. 4. Section 5 focuses on the applications of ESA 
in engineering problems. Finally, the conclusion and some 
future research directions are given in Sect. 6.

2  Background and related works

This section firstly describes the recently developed EPO 
and SSA algorithms followed by related works in the field 
of optimization.

2.1  Emperor penguin optimizer (EPO)

Emperor penguins are social animals that perform vari-
ous activities for living like hunting, foraging in groups. 
Emperor penguins perform huddling during extreme win-
ters in the Antarctic to survive. Each penguin contributes 
equally while huddling depicting the sense of collectiveness 
and unity in their social behavior [32]. The huddling behav-
ior can be summarized as below [30]:

• Create and discover huddling boundary.
• Compute the temperature around the huddle.
• Calculate the distance between each penguin.
• Effective mover is relocated.

2.1.1  Mathematical modeling

The main objective of modeling is to identify effective 
mover. L-shape polygon plane is considered as the shape 

of the huddle. After the effective mover is identified, the 
boundary of the huddle is again computed.

2.1.1.1 Generate and  determine the  huddle boundary To 
map the huddling behavior of emperor penguins, the first 
thing we need to consider is their polygon-shaped grid 
boundary. Every penguin is surrounded by at least two pen-
guins while huddling. The huddling boundary is decided by 
the direction and speed of wind flow. Wind flow is generally 
faster as compared to penguins movement. Mathematically 
huddling boundary can be formulated as: let � represents the 
velocity of wind and � represents the gradient of �:

Vector � is integrated with � to obtain complex potential:

where i represents the imaginary constant and G defines the 
polygon plane function.

2.1.1.2 Temperature profile around  the  huddle Emperor 
penguins perform huddling to conserve their energy and 
maximize huddle temperature T = 0 if X > 0.5 and T = 1 
if X < 0.5 , where X is the polygon radius. This temperature 
measure helps to perform exploration and exploitation task 
among emperor penguins. The temperature is computed as:

where y represents the current iteration, defines the current 
iteration, Maxitr represents the maximum count of iterations, 
X is the radius, and T is the time require to identify best 
optimal solution.

2.1.1.3 Distance between  emperor penguins After the 
huddling boundary is computed, distance between the 
emperor penguin is calculated. The current optimal solution 
is the solution with higher fitness value than previous opti-
mum solution. The search agents update their positions cor-
responding to current optimal solution. The position upda-
tion can be mathematically represented as:

where M⃗ep denotes the distance between the emperor pen-
guin and best fittest search agent (i.e., with less fitness 
value), x represents the ongoing iteration. X⃗ and A⃗ help to 
avoid collision among penguin. Q⃗ represents the best optimal 
solution (i.e., fittest emperor penguin), Q⃗ep represents the 
position vector of emperor penguin. N() denotes the social 

(1)� = ∇�.

(2)G = � + i�,

(3)
T � =

(
T −

Maxitr

y −Maxitr

)

T =

{
0, if X > 0.5

1, if X < 0.5,

(4)M⃗ep = Abs
(
N(A⃗) ⋅ ⃗Q(x) − A⃗ ⋅

⃗Qep(x)
)
,
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forces that helps to identify best optimal solution. The vec-
tors X⃗ and A⃗ are calculated as follows:

where M is the movement parameter that maintains a gap 
between search agents for collision avoidance. The value of 
parameter M is set to 2. T ′ is the temperature profile around 
the huddle, Pgrid(Accuracy) defines the polygon grid accu-
racy by comparing the difference between emperor penguins, 
and Rand() is a random function lies in the range of [0, 1].

The function S() is calculated as follows:

where e defines the expression function. f and l are control 
parameters for better exploration and exploitation. The val-
ues of f and l lie in the range of [2, 3] and [1.5, 2], respec-
tively. Note that it has been observed that EPO algorithm 
provides better results between these ranges.

2.1.1.4 Relocate the  mover The best obtained optimal 
solution (mover) is used to update the position of emperor 
penguins. The selected moves lead to the movement of other 
search agents in a search space. To find next position of a 
emperor penguin, following equations are used:

where Q⃗ep(x + 1) denotes the updated position of emperor 
penguin.

2.2  Salp swarm algorithm (SSA)

Salp swarm algorithm is a metaheuristic bio-inspired opti-
mization algorithm developed by Mirjalili et al. [31]. This 
algorithm is based on the swarming behavior of salps when 
navigating and foraging in the deep sea. This swarming 
behavior is mathematically modeled named as salp chain. 
This chain is divided into two groups: leader and follow-
ers. The leader leads the whole chain from the front while 
the followers follow each other. The updated position of the 
leader in a n-dimensional search environment is described 
as follows:

(5)X⃗ = (M × (T � + Rgrid(Accuracy)) × Rand()) − T �

(6)Rgrid(Accuracy) = Abs(Q⃗ − Q⃗ep)

(7)C⃗ = Rand(),

(8)N(A⃗) =

�√
f ⋅ e−x∕l − e−x

�2

,

(9)Q⃗ep(x + 1) = ⃗Q(x) − X⃗ ⋅ M⃗ep,

where x1
i
 represents the first position of salp, i.e., leader in 

the ith dimension, Fi is the position of food source, ubi and 
lbi are the lower bound and upper bound of ith dimension, 
respectively. However, c1, c2, and c3 are random numbers.

The coefficient c1 is responsible for better exploration and 
exploitation which is defined as follows:

where l represents the current iteration and L is the maxi-
mum number of iterations; whereas, the parameters c2 and 
c3 are random numbers in range [0, 1].

To update the position of followers, the following equa-
tions are defined as follows:

where xj
i
 shows the position of follower, T represents the 

time and V0 represents the initial speed. The parameter A is 
calculated as follows:

Considering V0 = 0 , the following equation can be expressed 
as:

The SSA algorithm is able to solve high-dimensional prob-
lems using low computational efforts.

2.3  Related works

Multiple-solution-based metaheuristic algorithms are further 
classified into three categories such as evolutionary-based, 
physics-based, and swarm-based algorithms (see Fig. 1). The 
former one is generic population-based metaheuristic which 
is inspired from biological evolution, i.e., mutation, recom-
bination, and selection. These do not make any assumptions 
about fitness landscape. The most popular evolutionary 
algorithm is genetic algorithm (GA) [33]. The evolution 
starts with randomly generated individuals from the given 
population. The fitness of each individual is computed in 

(10)x1
i
=

{
Fi + c1((ubi − lbi)c2 + lbi), c3 ≥ 1

Fi − c1((ubi − lbi)c2 + lbi), c3 < 1,

(11)
c1 = 2e

−

(
4l

L

)2

,

(12)x
j

i
=

1

2
AT2 + V0T , j ≥ 2,

(13)
A =

Vfinal

V0

V =
x − x0

T
.

(14)x
j

i
=

1

2
(x

j

i
+ x

j−1

i
).
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each generation. The crossover and mutation operators are 
applied on individual to create a new population. The best 
individuals can generate a new population during the course 
of iterations. However, compared to other stochastic meth-
ods, genetic algorithm has advantage that it can be paral-
lelized with little effort and not necessarily remain trapped 
in a sub-optimal local maximum or minimum of the tar-
get function. GA may provides local minima of a function 
that can steer the search in the wrong direction for some 
of the optimization problems. differential evolution (DE) 
[34] is another evolutionary-based metaheuristic algorithm 
that optimizes a problem by maintaining a candidate solu-
tions and creates new candidate solutions by combining the 
existing ones. It can keep the candidate solution which has 
best fitness value for optimization problem. It has an ability 
to handle non-differentiable and non-linear cost functions. 
There are only few parameters to steer the minimization 
problem. The parameter tuning is a main challenge in DE 
because same parameters may not guarantee the global opti-
mum solution. Apart from these, some of the other popular 
evolutionary-based algorithms are genetic programming 
(GP) [35], evolution strategy (ES) [36], and biogeography-
based optimizer (BBO) [37]. 

The second category is physics-based algorithms in 
which each search agent can move throughout the search 
space according to physics rules such as gravitational force, 
electromagnetic force, inertia force, and many more. The 
well-known physics-based metaheuristic algorithms are 

simulated annealing (SA) [38] and gravitational search 
algorithm (GSA) [39]. Simulated annealing is inspired from 
annealing in metallurgy that involves heating and controlled 
cooling attributes of a material. These attributes depend on 
its thermodynamic free energy. SA is advantageous in terms 
to deal with non-linear models and noisy data. The main 
advantage of SA over other search methods is its ability to 
search the global optimal solution. However, it suffers from 
high computational time especially if the fitness function is 
very complex and non-linear in nature. Gravitational search 
algorithm is based on the law of gravity and mass interac-
tions. The population solutions are interact with each other 
through the gravity force and their performance is meas-
ured by its mass. GSA requires only two input parameters 
to adjust, i.e., mass and velocity. It is easy to implement. 
The ability to find near the global optimum solution makes 
GSA differ from the other optimization algorithms. How-
ever, it suffers from computational time and convergence 
problem if the initial population is not generated well. Some 
of the other popular algorithms are: big-bang big-crunch 
(BBBC) [40], charged system search (CSS) [41], black hole 
(BH) [42] algorithm, central force optimization (CFO) [43], 
small-world optimization algorithm (SWOA) [44], artificial 
chemical reaction optimization algorithm (ACROA) [45], 
ray optimization (RO) algorithm [46], galaxy-based search 
algorithm (GbSA) [47], and curved space optimization 
(CSO) [48].

Fig. 1  Classification of population-based metaheuristic algorithms
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The third category is swarm-based algorithms which are 
inspired by the collective behavior of social creatures. This 
collective intelligence is based on the interaction of swarm 
with each other. These are easier to implement than the evo-
lutionary-based algorithms due to number of operators (i.e., 
selection, crossover, and mutation).

The most popular algorithm is particle swarm optimiza-
tion (PSO) which was proposed by Kennedy and Eberhart 
[49]. In PSO, particles move around the search space using 
the combination of best solutions [50]. The whole process 
is repeated until the termination criterion is satisfied. The 
main advantage of PSO is that it has no overlapping and 
mutation computation. During simulation, the most optimist 
particle can transmit information among the other particles. 
However, it suffers from the stagnation problem.

Ant colony optimization (ACO) is another popular swarm 
intelligence algorithm which was proposed by Dorigo [51]. 
The main inspiration behind this algorithm is the social 
behavior of ants in ant colony. The social intelligence of 
ants is to find the shortest path between the source food and 
nest. ACO is able to solve the travelling salesman and simi-
lar problems in an efficient way that can be advantageous of 
ACO over the other approaches. The theoretical analysis of 
a problem is very difficult using ACO because the compu-
tational cost is high during convergence.

Bat-inspired algorithm (BA) [52] is inspired by the echo-
location behavior of bats. Another well-known swarm-based 
metaheuristic is artificial bee colony (ABC) algorithm [53] 
which is inspired by the collective behavior of bees to find 
the food sources. Spotted hyena optimizer (SHO) [16] is a 
bio-inspired metaheuristic algorithm that mimics the search-
ing, hunting, and attacking behaviors of spotted hyenas in 
nature. The main concept behind this technique is the social 
relationship and collective behavior of spotted hyenas for 
hunting strategy. Cuckoo search (CS) [54] is inspired by 
the obligate brood parasitism of cuckoo species. These spe-
cies lay their eggs in the nest of other species. Each egg 
and a cuckoo egg represent a solution and a new solution, 
respectively.

Emperor penguin optimizer (EPO) [30] is a recently 
developed bio-inspired metaheuristic algorithm that mim-
ics the huddling behaviors of emperor penguins. The main 
steps of EPO are to generate huddle boundary, compute tem-
perature around the huddle, calculate the distance, and find 
the effective mover.

Grey wolf optimizer (GWO) [55] is a very popular bio-
inspired based algorithm for solving real-life constrained 
problems. Grey wolf optimizer (GWO) is inspired by the 
behaviors of grey wolves. It mimics the leadership, hierar-
chy, and hunting mechanisms of grey wolves. GWO employs 

four types of grey wolves namely, alpha, beta, delta, and 
omega for optimization problems. The hunting, searching, 
encircling, and attacking mechanisms are also implemented. 
Further, to investigate the performance of GWO algorithm, it 
was tested on well-known test functions and classical engi-
neering design problems.

Multi-verse optimizer (MVO) is a promising optimization 
algorithm proposed by Mirjalili et al. [56]. It is inspired by 
the theory of multi-verse in physics which consists of three 
main concepts, i.e., white hole, black hole, and worm hole. 
The concepts of white hole and black hole are appropriate 
for exploration and worm hole helps in the exploitation of 
the given search spaces.

Sine cosine algorithm (SCA) is proposed by Mirjalili [57] 
for solving numerical optimization problems. SCA generates 
multiple random solutions and fluctuate them towards the 
best optimal solution using mathematical models such as 
sine and cosine functions. The convergence speed of SCA 
is very high which is helpful for local optima avoidance.

The other well-known metaheuristic algorithms are 
fireworks algorithm (FWA) [58–61], monkey search [62], 
Bacterial foraging optimization algorithm [63], firefly algo-
rithm (FA) [64], fruit fly optimization algorithm (FOA) [65], 
golden section line search algorithm [66], Fibonacci search 
method [67], bird mating optimizer (BMO) [68], Krill Herd 
(KH) [69], artificial fish-swarm algorithm (AFSA) [70], 
Dolphin partner optimization (DPO) [71], bee collecting 
pollen algorithm (BCPA) [72], and hunting search (HS) [73].

3  Proposed algorithm

In this section, the motivation and brief justification of the 
proposed algorithm are described in detail.

3.1  Motivation

Nature has inspired many researchers in many ways and thus 
is a rich source of inspiration. Nowadays, most new algo-
rithms are nature-inspired because they have been devel-
oped by drawing inspiration from nature. The main source of 
inspiration for developing new algorithms is nature. Almost 
all new algorithms can be referred as nature-inspired algo-
rithms. The majority of nature-inspired algorithms are based 
on some characteristics of biological system. Therefore, the 
largest fraction of nature-inspired algorithms are biology 
or bio-inspired. Among bio-inspired algorithms, a special 
class of algorithms have been developed by drawing inspira-
tion from swarm intelligence. It has been observed from the 
literature that multiple-solution or population-based swarm 
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intelligence algorithms are able to solve real-life optimi-
zation problems. They are able to explore throughout the 
search space, and exploit the global optimum. However, pop-
ulation-based techniques are more reliable than single-solu-
tion-based techniques because of more function evaluations.

According to no free lunch theorem [74], there is no opti-
mization algorithm which is able to solve all optimization 
problems. This fact will attract the researchers of different 
fields to propose a new optimization algorithm. These moti-
vate us to propose a new population-based metaheuristic 
algorithm.

The researchers have pointed out convergence and diver-
sity difficulties for real-life problems. Hence, there is a need 
to develop an algorithm that maintains the convergence and 
diversity. In this paper, the navigation and foraging behav-
iors of SSA algorithm is used to maintain the diversity. The 
reasons to select these behaviors over others are:

1. SSA algorithm eliminates the problem of missing selec-
tion individuals.

2. The values of these behaviors are directly optimized, 
without any need for niching, that helps to maintain the 
diversity.

3. SSA ensures that any approximation set that has high-
quality value for a particular problem contains all opti-
mal solutions.

However, the calculation of SSA parameters requires high 
computational effort. To resolve this problem, EPO algo-
rithm is employed. SSA suffers from overhead of maintain-
ing the necessary information. For this, huddling behavior 
of EPO algorithm is used for maintaining the information. 
Therefore, a novel hybrid algorithm is proposed that utilizes 
the features of both EPO and SSA.

3.2  Hybrid emperor penguin and salp swarm 
algorithm (ESA)

The first step is to initialize the population and initial param-
eters of ESA algorithm as explained in Table 1. After the ini-
tialization, objective value of each search agent is calculated 
using FITNESS function as defined in line 4 of Algorithm 1. 
The best search agent is explored from the given search 
space. Further, the huddling behavior is defined using Eq. 
(9) until the suitable result is found for each search agent. 
In line 6 of Algorithm 1, position of each search agent is 
updated. Now, the leader and follower selection approaches 

Fig. 2  Flowchart of the proposed ESA algorithm
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are applied to update the positions of search agents using 
Eq. (14).

Again, the objective value of each search agent is cal-
culated to find the optimal solutions. The condition is 
checked whether any search agent goes beyond the bound-
ary in a given search space and if it happens then adjust 
it. Calculate the updated search agent objective value and 
update the parameters if there is a better solution from 
the previous one. The algorithm will be stopped when the 
stopping criterion is satisfied. This criterion is defined by 
user for how long the algorithm will be run, i.e., maxi-
mum number of iterations. Finally, the optimal solution 
is returned, after the stopping criterion is satisfied (see 
Fig. 2).

The pseudo-code of ESA algorithm is shown in Algo-
rithm 1. There are some interesting points about the pro-
posed ESA algorithm which are given below:

• N(), A, and V assist the candidate solutions to behave 
more randomly in a search space and are responsible in 
avoiding conflicts between search agents.

• The convergence behaviors of common optimization 
algorithms suggest that the exploitation tends to increase 
the speed of convergence, while exploration tends to 
decrease the convergence rate of the algorithm. There-
fore, the possibility of better exploration and exploitation 
is done by the adjusted values of N(), A, and V.

• The huddling and swarm behaviors of ESA in a search 
region defines the effectively collective behavior.

Table 1  Parameter settings for 
algorithms

# Algorithms Parameters Values

1. Spotted hyena optimizer (SHO) Search agents 80

Control parameter ( ⃗h) [5, 0]

M⃗ constant [0.5, 1]

Number of generations 1000
2. Grey wolf optimizer (GWO) Search agents 80

Control parameter ( ⃗a) [2, 0]
Number of generations 1000

3. Particle swarm optimization (PSO) Number of particles 50
Inertia coefficient 0.75
Cognitive and social coeff 1.8, 2
Number of generations 1000

4. Multi-verse optimizer (MVO) Search agents 50
Wormhole existence prob. [0.2, 1]
Travelling distance rate [0.6, 1]
Number of generations 1000

5. Sine cosine algorithm (SCA) Search agents 50
Number of elites 2
Number of generations 1000

6. Gravitational search algorithm (GSA) Search agents 30
Gravitational constant 100
Alpha coefficient 20
Number of generations 1000

7. Salp swarm algorithm (SSA) Population size 80
c1, c2, c3 [0, 1]
Number of generations 1000

8. Emperor penguin optimizer (EPO) Search agents 80
Temperature profile ( T ′) [1, 1000]

A⃗ constant [-1.5, 1.5]

Function S() [0, 1.5]
Parameter M 2
Parameter f [2, 3]
Parameter l [1.5, 2]
Number of generations 1000
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3.3  Computational complexity

In this subsection, the computational complexity of pro-
posed ESA algorithm is discussed. Both the time and space 
complexities of the proposed algorithm are given below.

3.3.1  Time complexity

1. Population initialization process requires O(n × d) time, 
where n indicates the population size and d indicates the 
dimension of a given problem.

2. The fitness of each agent requires O(Maxitr × n × d) 
time, where Maxitr is the maximum number of iterations 
to simulate the proposed algorithm.

3. It requires O(N) time, where N defines the huddling and 
swarm behaviors of EPO and SSA for better exploration 
and exploitation.

Hence, the total time complexity of ESA algorithm is 
O(Maxitr × n × d × N).

3.3.2  Space complexity

The space complexity of ESA algorithm is the maximum 
amount of space used at any one time which is considered 
during its initialization process. Thus, the total space com-
plexity of ESA algorithm is O(n × d).

4  Experimental results and discussion

This section describes the experimentation on 53 standard 
benchmark test functions to evaluate the performance of pro-
posed algorithm. The detailed description of these bench-
marks are presented below. Further, the results are compared 
with well-known metaheuristic algorithms.

4.1  Benchmark test functions

The 53 benchmark test functions are applied on the proposed 
algorithm to demonstrate its applicability and efficiency. 
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These functions are divided into six main categories: uni-
modal [75], multimodal [64], fixed-dimension multimodal 
[64, 75], and IEEE CEC-2017 [76] test functions. The 
descriptions of these test functions are given in “Appendix”. 
In “Appendix”, Dim and Range indicate the dimension of 
the function and boundary of the search space, respectively. 
fmin denotes the minimization function.

“Appendix” shows the characteristics of unimodal, multi-
modal, fixed-dimension multimodal, and CEC-2017 bench-
mark test functions. The seven test functions ( F1–F7 ) are 
included in the first category of unimodal test functions. 
These functions have only one global optimum. The second 
category consists of six test functions ( F8–F13 ) and third cate-
gory includes ten test functions ( F14–F23 ). There are multiple 
local solutions in these categories which are useful for exam-
ining the local optima problem. The fourth category consists 
of 30 CEC-2017 benchmark test functions (C1–C30).

4.2  Experimental setup

The proposed ESA is compared with well-known algorithms 
namely spotted hyena optimizer (SHO) [16], grey wolf opti-
mizer (GWO) [55], particle swarm optimization (PSO) [49], 
multi-verse optimizer (MVO) [56], sine cosine algorithm 
(SCA) [57], gravitational search algorithm (GSA) [39], salp 
swarm algorithm (SSA) [31], emperor penguin optimizer 
(EPO) [30], and jSO [77]. The parameter values of these 
algorithms are set as they are recommended in their original 
papers. Table 1 shows the parameter settings of competitor 
algorithms. The experimentation has been done on Matlab 
R2014a (8.3.0.532) version using 64-bit Core i7 processor 
with 3.20 GHz and 8 GB main memory (Tables 2, 3).

4.3  Performance comparison

In order to demonstrate the effectiveness of the proposed 
algorithm, it is compared with well-known optimization 
algorithms on unimodal, multimodal, fixed-dimension 
multimodal, and CEC-2017 benchmark test functions. The 
average and standard deviation of the best optimal solution 
are mentioned in tables. For each benchmark test function, 
ESA algorithm utilizes 30 independent runs in which each 
run employs 1000 iterations.

4.3.1  Evaluation of test functions F
1
–F

7

The unimodal test functions ( F1–F7 ) are used to assess the 
exploitation capability of metaheuristic algorithm. Table 4 
shows the mean and standard deviation of best optimal 
solution obtained from the above-mentioned algorithms on 
unimodal test functions. For F1,F2, and F3 test functions, 
SHO is the best optimizer whereas ESA is the second best 
optimizer in terms of mean and standard deviation. ESA 
provides better results for F4,F5,F6, and F7 benchmark test 
functions. It is observed from results that ESA is very com-
petitive as compared with other competitor algorithms and 
has better exploitation capability to find the best optimal 
solution very efficiently.

4.3.2  Evaluation of test functions F
8
–F

23

Multimodal test functions have an ability to evaluate 
the exploration of an optimization algorithm. Tables 5 
and 6 depict the performance of above-mentioned 
algorithms on multimodal test functions ( F8–F13 ) and 

Table 2  The obtained 
optimal values on unimodal, 
multimodal, fixed-dimension 
multimodal, and CEC-2017 
benchmark test functions using 
different simulation runs (i.e., 
100, 500, 800, and 1000)

The best-obtained results are in bold

Iterations Functions

F1 F5 F11 F17 F23 C − 1 C − 15

100 2.11E−19 7.03E+01 3.21E−04 8.07E−02 − 2.11E+01 3.40E+03 2.60E+07
500 5.44E−21 6.01E+01 1.20E−04 7.97E−02 − 2.97E+01 3.15E+03 2.56E+06
800 4.00E−26 5.52E+01 7.21E−05 6.00E−02 − 3.11E+01 2.94E+03 2.00E+06
1000 1.40E−28 4.01E+00 3.10E−06 2.87E−02 − 3.47E+00 2.15E+02 1.43E+05

Table 3  The obtained 
optimal values on unimodal, 
multimodal, fixed-dimension 
multimodal, and CEC-2017 
benchmark test functions where 
the number of iterations is fixed 
as 1000

The best-obtained results are in bold
The number of search agents is varied from 30 to 100

Search agents Functions

F1 F5 F11 F17 F23 C − 1 C − 15

30 1.51E−16 7.01E+00 3.11E−03 5.27E−01 − 2.53E+00 1.33E+02 2.86E+06
50 5.43E−18 5.31E+01 3.31E−03 8.10E−01 − 2.80E+00 4.21E+02 1.21E+05
80 2.20E−29 5.00E+00 3.21E−07 4.12E−03 − 3.49E+00 1.23E+02 1.42E+04
100 5.97E−23 5.42E+00 8.32E−04 6.18E−01 − 3.13E+00 2.96E+02 2.18E+05
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fixed-dimension multimodal test functions ( F14–F23 ), 
respectively. From these tables, it can be seen that ESA is 
able to find optimal solution for nine test problems (i.e., 
F8,F10,F13,F14,F15,F17,F18,F19, and F22 ). For F9,F11, and 
F16 test functions, SHO provides better optimal results than 
ESA. ESA is the second best algorithm on these test func-
tions. PSO attains best optimal solution for F12 and F20 test 
functions. For F21 test function, GWO and ESA are the first 
and second best optimization algorithms, respectively. The 
results reveal that ESA obtains competitive results in major-
ity of the test problems and has better exploration capability.

4.3.3  Evaluation of IEEE CEC‑2017 test functions ( C
1
–C

3
0)

This special session is devoted to the algorithms and tech-
niques for solving real parameter single objective optimiza-
tion without making use of the exact equations of the test 
functions. Table 7 shows the performance of proposed ESA 
algorithm and other competitive approaches on IEEE CEC-
2017 test functions. The results reveal that ESA achieves 
best optimal solution for most of the CEC-2017 benchmark 
test functions (i.e., C-4, C-5, C-8, C-10, C-11, C-12, C-13, 
C-20, C-22, C-25, C-26, C-29, C-30).

4.4  Convergence analysis

Figure 3 shows the convergence curves of proposed ESA 
and other competitor algorithm. It is shown that ESA is very 
competitive over benchmark test functions. ESA has three 
different convergence behaviors. In the initial stage of itera-
tions, ESA converges more quickly in the search space due to 
its adaptive mechanism. In the second step, ESA converges 
towards the optimum when final iteration reaches. The last 
step shows the express convergence from the initial step of 
iterations. The results reveal that ESA algorithm maintains a 
proper balance between exploration and exploitation to find 
the global optimum.

4.5  Sensitivity analysis

The proposed ESA algorithm uses four parameters namely, 
maximum number of iterations and number of search agents. 
The sensitivity investigation of these parameters has been 
discussed by varying their values and keeping other param-
eters fixed.

1. Maximum number of iterations: ESA algorithm was 
run for different number of iterations. The values of 
Maxiteration used in experimentation are 100, 500, 800, 
and 1000. Table 2 shows the effect of iterations over 
benchmark test functions. The results reveal that ESA 
converges towards the optimum when the number of 
iterations is increased.Ta

bl
e 

6 
 M

ea
n 

an
d 

st
an

da
rd

 d
ev

ia
tio

n 
of

 b
es

t o
pt

im
al

 so
lu

tio
n 

fo
r 3

0 
in

de
pe

nd
en

t r
un

s o
n 

fix
ed

-d
im

en
si

on
 m

ul
tim

od
al

 b
en

ch
m

ar
k 

te
st 

fu
nc

tio
ns

Th
e 

be
st-

ob
ta

in
ed

 re
su

lts
 a

re
 in

 b
ol

d

F
ES

A
SH

O
G

W
O

PS
O

M
V

O
SC

A
G

SA
SS

A
EP

O

A
ve

St
d

A
ve

St
d

A
ve

St
d

A
ve

St
d

A
ve

St
d

A
ve

St
d

A
ve

St
d

A
ve

St
d

A
ve

St
d

F
1
41

.0
4E

+
00

3.
10

E−
03

9.
68

E+
00

3.
29

E+
00

3.
71

E+
00

3.
86

E+
00

2.
77

E+
00

2.
32

E+
00

9.
98

E+
01

9.
14

E−
12

1.
26

E+
00

6.
86

E−
01

3.
61

E+
00

2.
96

E+
00

4.
39

E+
00

4.
41

E−
02

1.
08

E+
00

4.
11

E−
02

F
1
57

.1
1E

−
04

5.
07

E−
04

9.
01

E−
03

1.
06

E−
03

3.
66

E−
02

7.
60

E−
02

9.
09

E−
03

2.
38

E−
03

7.
15

E−
02

1.
26

E−
01

1.
01

E−
02

3.
75

E−
03

6.
84

E−
02

7.
37

E−
02

7.
36

E−
02

2.
39

E−
03

8.
21

E−
03

4.
09

E−
03

F
1
6−

 1
.0

2E
+

00
9.

80
E−

07
−

 1
.0

3E
+

00
2.

86
E−

11
−

 1
.0

2E
+

00
7.

02
E−

09
−

 1
.0

2E
+

00
0.

00
E+

00
−

 1
.0

2E
+

00
4.

74
E−

08
−

 1
.0

2E
+

00
3.

23
E−

05
−

 1
.0

2E
+

00
0.

00
E+

00
−

 1
.0

2E
+

00
4.

19
E−

07
−

 1
.0

2E
+

00
9.

80
E−

07

F
1
73

.9
7E

−
01

4.
30

E−
05

3.
97

E−
01

2.
46

E−
01

3.
98

E−
01

7.
00

E−
07

3.
97

E−
01

9.
03

E−
16

3.
98

E−
01

1.
15

E−
07

3.
98

E−
01

7.
61

E−
04

3.
98

E−
01

1.
13

E−
16

3.
98

E−
01

3.
71

E−
17

3.
98

E−
01

5.
39

E−
05

F
1
83

.0
0E

+
00

1.
10

E−
08

3.
00

E+
00

9.
05

E+
00

3.
00

E+
00

7.
16

E−
06

3.
00

E+
00

6.
59

E−
05

3.
00

E+
00

1.
48

E+
01

3.
00

E+
00

2.
25

E−
05

3.
00

E+
00

3.
24

E−
02

3.
00

E+
00

6.
33

E−
07

3.
00

E+
00

1.
15

E−
08

F
1
9−

 3
.8

8E
+

00
5.

11
E−

08
−

 3
.7

1E
+

00
4.

39
E−

01
−

 3
.8

4E
+

00
1.

57
E−

03
−

 3
.8

0E
+

00
3.

37
E−

15
−

 3
.7

7E
+

00
3.

53
E−

07
−

 3
.7

5E
+

00
2.

55
E−

03
−

 3
.8

6E
+

00
4.

15
E−

01
−

 3
.8

1E
+

00
4.

37
E−

10
−

 3
.8

6E
+

00
6.

50
E−

07

F
2
0−

2.
86

E+
00

5.
17

E−
01

−
 1

.4
4E

+
00

5.
47

E−
01

−
 3

.2
7E

+
00

7.
27

E−
02

−
 3

.3
2E

+
00

2.
66

E−
01

−
 3

.2
3E

+
00

5.
37

E−
02

−
 2

.8
4E

+
00

3.
71

E−
01

−
 1

.4
7E

+
00

5.
32

E−
01

−
 2

.3
9E

+
00

4.
37

E−
01

−
 2

.8
1E

+
00

7.
11

E−
01

F
2
1−

 7
.0

5E
+

00
1.

25
E+

00
−

 2
.0

8E
+

00
3.

80
E−

01
−

 9
.6

5E
+

00
1.

54
E+

00
−

 7
.5

4E
+

00
2.

77
E+

00
−

 7
.3

8E
+

00
2.

91
E+

00
−

 2
.2

8E
+

00
1.

80
E+

00
−

 4
.5

7E
+

00
1.

30
E+

00
−

 5
.1

9E
+

00
2.

34
E+

00
−

8.
07

E+
00

2.
29

E+
00

F
2
2−

 1
2.

71
E+

00
4.

16
E−

02
−

 1
.6

1E
+

00
2.

04
E−

04
−

 1
.0

4E
+

00
2.

73
E−

04
−

 8
.5

5E
+

00
3.

08
E+

00
−

 8
.5

0E
+

00
3.

02
E+

00
−

 3
.9

9E
+

00
1.

99
E+

00
−

 6
.5

8E
+

00
2.

64
E+

00
−

 2
.9

7E
+

00
1.

37
E−

02
−

 1
0.

01
E+

00
3.

97
E−

02

F
2
3−

3.
52

E+
00

2.
12

E−
03

−
1.

68
E+

00
2.

64
E−

01
−

 1
.0

5E
+

01
1.

81
E−

04
−

 9
.1

9E
+

00
2.

52
E+

00
−

 8
.4

1E
+

00
3.

13
E+

00
−

 4
.4

9E
+

00
1.

96
E+

00
−

 9
.3

7E
+

00
2.

75
E+

00
−

 3
.1

0E
+

00
2.

37
E+

00
−

 3
.4

1E
+

00
1.

11
E−

02



334 Engineering with Computers (2021) 37:323–353

1 3

Ta
bl

e 
7 

 M
ea

n 
an

d 
st

an
da

rd
 d

ev
ia

tio
n 

of
 b

es
t o

pt
im

al
 so

lu
tio

n 
fo

r 3
0 

in
de

pe
nd

en
t r

un
s o

n 
C

EC
-2

01
7 

be
nc

hm
ar

k 
te

st 
fu

nc
tio

ns

Th
e 

be
st-

ob
ta

in
ed

 re
su

lts
 a

re
 in

 b
ol

d

F
ES

A
SH

O
G

W
O

PS
O

M
V

O
SC

A
G

SA
SS

A
jS

O

A
ve

St
d

A
ve

St
d

A
ve

St
d

A
ve

St
d

A
ve

St
d

A
ve

St
d

A
ve

St
d

A
ve

St
d

A
ve

St
d

C
-1

1.
60

E+
04

1.
31

E+
07

2.
38

E+
05

2.
28

E+
07

2.
12

E+
05

2.
18

E+
07

4.
47

E+
04

4.
83

E+
06

1.
57

E+
05

2.
73

E+
07

6.
16

E+
04

5.
12

E+
06

7.
75

E+
05

3.
17

E+
07

3.
30

E+
06

8.
47

E+
07

0.
00

E+
00

0.
00

E+
00

C
-2

6.
80

E+
05

1.
44

E+
09

3.
23

E+
04

4.
29

E+
06

5.
75

E+
05

6.
13

E+
07

9.
51

E+
03

1.
18

E+
05

1.
07

E+
03

1.
56

E+
05

1.
53

E+
04

1.
13

E+
05

7.
43

E+
07

2.
43

E+
09

4.
68

E+
03

1.
19

E+
04

0.
00

E+
00

0.
00

E+
00

C
-3

3.
30

E+
02

1.
26

E−
04

3.
30

E+
02

3.
86

E−
03

3.
30

E+
02

7.
18

E−
03

3.
30

E+
02

8.
71

E−
03

3.
30

E+
02

9.
24

E−
03

3.
30

E+
02

3.
29

E−
03

3.
30

E+
02

7.
63

E−
03

3.
30

E+
02

1.
21

E−
06

0.
00

E+
00

0.
00

E+
00

C
-4

3.
45

E+
01

5.
71

E+
02

4.
21

E+
02

1.
81

E+
02

4.
26

E+
02

1.
13

E+
02

4.
19

E+
02

3.
06

E+
01

4.
36

E+
02

1.
27

E+
02

4.
28

E+
02

1.
13

E+
02

4.
52

E+
02

7.
82

E+
02

4.
49

E+
02

7.
35

E+
02

5.
62

E+
01

4.
88

E+
01

C
-5

1.
41

E+
01

2.
16

E+
03

9.
23

E+
02

1.
95

E+
03

9.
30

E+
02

1.
88

E+
03

8.
75

E+
02

2.
26

E+
03

1.
43

E+
04

3.
55

E+
04

1.
19

E+
04

2.
91

E+
03

1.
86

E+
03

2.
40

E+
03

1.
85

E+
03

2.
89

E+
03

1.
64

E+
01

3.
46

E+
00

C
-6

2.
15

E+
03

1.
15

E+
05

1.
39

E+
04

1.
25

E+
05

2.
36

E+
03

2.
55

E+
05

1.
96

E+
03

1.
03

E+
04

7.
45

E+
03

3.
92

E+
04

3.
92

E+
04

2.
54

E+
04

2.
40

E+
04

2.
51

E+
05

3.
01

E+
05

2.
80

E+
07

1.
09

E−
06

2.
62

E−
06

C
-7

7.
12

E+
02

5.
60

E−
02

7.
12

E+
02

6.
86

E−
02

7.
12

E+
02

7.
17

E−
02

7.
12

E+
03

7.
85

E−
02

7.
12

E+
02

1.
20

E+
01

7.
12

E+
03

9.
50

E−
02

7.
16

E+
02

9.
17

E−
02

7.
18

E+
02

1.
42

E+
01

6.
65

E+
01

3.
47

E+
00

C
-8

1.
57

E+
01

2.
44

E+
04

1.
96

E+
03

1.
08

E+
04

3.
59

E+
04

2.
14

E+
04

3.
53

E+
03

2.
87

E+
04

9.
03

E+
03

8.
84

E+
05

2.
68

E+
04

1.
71

E+
04

6.
83

E+
03

3.
46

E+
04

6.
17

E+
04

4.
91

E+
08

1.
70

E+
01

3.
14

E+
00

C
-9

1.
10

E+
03

1.
61

E+
02

1.
10

E+
04

1.
53

E−
02

1.
10

E+
04

1.
38

E−
02

1.
10

E+
03

7.
33

E−
02

1.
10

E+
04

2.
30

E−
01

1.
10

E+
03

5.
39

E−
03

1.
10

E+
03

9.
89

E−
02

1.
10

E+
04

5.
43

E+
01

0.
00

E+
00

0.
00

E+
00

C
-1

0
1.

33
E+

03
2.

61
E+

05
2.

10
E+

03
2.

83
E+

04
4.

10
E+

04
2.

92
E+

04
3.

37
E+

03
1.

94
E+

04
8.

49
E+

04
1.

22
E+

05
2.

72
E+

03
1.

88
E+

04
9.

01
E+

04
8.

93
E+

04
3.

52
E+

04
1.

84
E+

06
3.

14
E+

03
3.

67
E+

02
C

-1
1

1.
45

E+
01

1.
51

E+
02

1.
48

E+
03

2.
52

E+
02

1.
50

E+
04

5.
91

E+
02

1.
45

E+
03

1.
22

E+
03

1.
47

E+
04

8.
07

E+
02

1.
49

E+
04

5.
52

E+
02

1.
45

E+
04

1.
21

E+
03

1.
51

E+
03

7.
83

E+
02

2.
79

E+
01

3.
33

E+
00

C
-1

2
1.

40
E+

03
7.

60
E+

01
1.

40
E+

04
7.

99
E−

02
1.

40
E+

03
6.

79
E−

02
1.

40
E+

04
6.

04
E−

02
1.

40
E+

03
9.

24
E−

02
1.

40
E+

05
8.

17
E−

02
1.

41
E+

03
1.

64
E+

01
1.

41
E+

06
2.

15
E+

01
1.

68
E+

03
5.

23
E+

02
C

-1
3

1.
40

E+
01

6.
53

E−
06

1.
40

E+
02

2.
86

E−
05

1.
40

E+
06

1.
02

E−
05

1.
40

E+
03

5.
54

E−
04

1.
40

E+
04

1.
14

E−
04

1.
40

E+
03

2.
53

E−
05

1.
40

E+
04

3.
88

E−
04

1.
45

E+
02

4.
80

E+
02

3.
06

E+
01

2.
12

E+
01

C
-1

4
3.

32
E+

03
2.

22
E+

04
4.

35
E+

04
1.

83
E+

04
7.

39
E+

03
2.

55
E+

04
7.

20
E+

03
3.

22
E+

04
7.

70
E+

04
1.

39
E+

04
7.

44
E+

04
2.

57
E+

04
7.

61
E+

03
1.

62
E+

04
9.

40
E+

03
4.

14
E+

03
2.

50
E+

01
1.

87
E+

00
C

-1
5

1.
70

E+
03

5.
79

E+
02

1.
70

E+
03

3.
86

E+
01

1.
71

E+
04

4.
04

E+
01

1.
70

E+
03

2.
76

E−
05

1.
71

E+
06

1.
23

E+
02

1.
70

E+
03

1.
90

E−
03

1.
72

E+
06

3.
74

E+
01

1.
74

E+
06

1.
22

E+
01

2.
39

E+
01

2.
49

E+
00

C
-1

6
2.

50
E+

05
2.

21
E+

09
3.

28
E+

05
3.

18
E+

09
3.

02
E+

06
3.

08
E+

09
5.

37
E+

05
5.

73
E+

08
2.

47
E+

05
3.

63
E+

09
7.

06
E+

05
6.

02
E+

09
8.

65
E+

05
4.

07
E+

09
4.

20
E+

06
9.

37
E+

09
4.

51
E+

02
1.

38
E+

02
C

-1
7

7.
70

E+
06

2.
34

E+
07

4.
13

E+
04

5.
19

E+
04

6.
65

E+
06

7.
03

E+
05

8.
41

E+
04

2.
08

E+
04

2.
97

E+
04

2.
46

E+
04

2.
43

E+
05

2.
03

E+
03

8.
33

E+
06

3.
33

E+
07

5.
58

E+
03

2.
09

E+
03

2.
83

E+
02

8.
61

E+
01

C
-1

8
4.

20
E+

02
2.

16
E−

04
4.

20
E+

02
4.

76
E−

04
4.

20
E+

02
8.

08
E−

04
4.

20
E+

02
9.

61
E−

04
4.

20
E+

02
8.

14
E−

04
4.

20
E+

03
4.

19
E−

04
4.

20
E+

02
8.

53
E−

04
4.

20
E+

03
2.

11
E−

07
2.

43
E+

01
2.

02
E+

00
C

-1
9

5.
10

E+
02

6.
61

E+
02

5.
11

E+
03

2.
71

E+
02

5.
16

E+
02

2.
03

E+
02

1.
09

E+
01

4.
90

E−
01

5.
26

E+
02

2.
17

E+
02

5.
18

E+
03

2.
03

E+
02

5.
42

E+
02

8.
72

E+
02

5.
39

E+
03

8.
25

E+
02

1.
41

E+
01

2.
26

E+
00

C
-2

0
1.

17
E+

02
3.

06
E+

01
8.

13
E+

03
2.

85
E+

01
8.

20
E+

02
2.

78
E+

00
7.

65
E+

02
3.

16
E+

01
2.

33
E+

03
4.

45
E+

02
2.

09
E+

03
3.

81
E+

01
2.

76
E+

04
3.

30
E+

02
2.

75
E+

03
3.

79
E+

01
1.

40
E+

02
7.

74
E+

01
C

-2
1

3.
05

E+
03

2.
05

E+
06

2.
29

E+
03

2.
15

E+
04

3.
26

E+
04

3.
45

E+
05

2.
86

E+
03

2.
93

E+
03

8.
35

E+
04

4.
82

E+
03

4.
82

E+
04

3.
44

E+
04

3.
30

E+
04

3.
41

E+
04

4.
91

E+
06

3.
70

E+
07

2.
19

E+
02

3.
77

E+
00

C
-2

2
8.

02
E+

02
6.

50
E−

02
8.

02
E+

02
7.

76
E−

01
8.

02
E+

03
8.

07
E−

01
8.

02
E+

02
8.

75
E−

01
8.

02
E+

02
2.

10
E+

01
8.

02
E+

03
8.

40
E−

01
8.

06
E+

03
8.

07
E−

02
8.

08
E+

02
2.

32
E+

00
1.

49
E+

03
1.

75
E+

03
C

-2
3

2.
47

E+
03

3.
34

E+
04

2.
86

E+
03

2.
98

E+
04

4.
49

E+
04

3.
04

E+
04

4.
43

E+
04

3.
77

E+
04

8.
93

E+
04

9.
74

E+
04

3.
58

E+
03

2.
61

E+
04

7.
73

E+
03

4.
36

E+
04

7.
07

E+
04

5.
81

E+
06

4.
30

E+
02

6.
24

E+
00

C
-2

4
2.

00
E+

04
2.

51
E+

02
2.

00
E+

04
2.

43
E−

02
2.

00
E+

04
2.

28
E−

02
2.

00
E+

04
7.

23
E−

03
2.

00
E+

04
3.

20
E−

02
2.

00
E+

04
6.

29
E−

03
2.

00
E+

04
8.

79
E−

02
2.

00
E+

04
6.

33
E+

01
5.

07
E+

02
4.

13
E+

00
C

-2
5

2.
23

E+
02

3.
51

E+
05

3.
00

E+
04

3.
73

E+
04

5.
00

E+
04

3.
82

E+
04

4.
27

E+
04

2.
84

E+
04

9.
39

E+
04

2.
12

E+
05

3.
62

E+
04

2.
78

E+
04

8.
91

E+
04

6.
83

E+
04

4.
42

E+
06

2.
74

E+
06

4.
81

E+
02

2.
80

E+
00

C
-2

6
1.

05
E+

03
2.

41
E+

01
2.

38
E+

04
3.

42
E+

02
2.

40
E+

04
6.

81
E+

02
2.

35
E+

05
2.

12
E+

03
2.

37
E+

04
9.

97
E+

02
2.

39
E+

04
6.

42
E+

02
2.

35
E+

04
2.

11
E+

03
2.

41
E+

04
8.

73
E+

02
1.

13
E+

03
5.

62
E+

01
C

-2
7

2.
30

E+
04

8.
50

E+
01

2.
30

E+
04

8.
89

E−
02

2.
30

E+
04

7.
69

E−
02

2.
30

E+
04

7.
94

E−
02

2.
30

E+
04

8.
14

E−
02

2.
30

E+
04

9.
07

E−
02

2.
31

E+
04

3.
54

E+
01

2.
31

E+
04

3.
05

E+
00

5.
11

E+
02

1.
11

E+
01

C
-2

8
5.

30
E+

04
7.

43
E−

06
5.

30
E+

04
3.

76
E−

05
5.

30
E+

04
3.

92
E−

05
5.

30
E+

04
6.

44
E−

04
5.

30
E+

04
2.

04
E−

04
5.

30
E+

04
3.

43
E−

05
5.

30
E+

04
4.

78
E−

04
5.

35
E+

04
4.

70
E+

02
4.

60
E+

02
6.

84
E+

00
C

-2
9

3.
22

E+
02

3.
12

E+
04

5.
25

E+
04

2.
73

E+
04

8.
29

E+
03

3.
45

E+
04

8.
10

E+
04

4.
12

E+
04

8.
60

E+
03

2.
29

E+
05

8.
34

E+
04

3.
47

E+
05

8.
51

E+
03

2.
52

E+
04

8.
30

E+
04

5.
04

E+
03

3.
63

E+
02

1.
32

E+
01

C
-3

0
2.

60
E+

04
6.

69
E+

02
2.

60
E+

04
4.

76
E+

01
2.

61
E+

04
5.

94
E+

01
2.

60
E+

04
3.

66
E−

04
2.

61
E+

04
2.

13
E+

02
2.

60
E+

04
2.

80
E−

03
2.

62
E+

04
4.

64
E+

01
2.

64
E+

04
2.

12
E+

02
6.

01
E+

05
2.

99
E+

04



335Engineering with Computers (2021) 37:323–353 

1 3

2. Number of search agents: ESA algorithm was run for 
different values of search agent (i.e., 30, 50, 80, 100). 
Table 3 shows the effect of number of search agents 
on benchmark test functions. It is observed from table 
that the value of objective function decreases with the 
increase in number of search agents.

4.6  Scalability study

This subsection describes the effect of scalability on various 
test functions by using proposed ESA and other competitive 
algorithms. The dimensionality of the test functions is made 
to vary between the different ranges. Figure 4 shows the per-
formance of ESA and other algorithms on scalable bench-
mark test functions. It is observed that the performance of 
ESA is not too much degraded when the dimensionality of 
search space is increased. The results reveal that the perfor-
mance of ESA is least affected with the increase in dimen-
sionality of search space. This is due to better capability of 
the proposed ESA for balancing between exploration and 
exploitation.

4.7  Statistical testing

Apart from standard statistical analysis such as mean and 
standard deviation, ANOVA test has been conducted. 
ANOVA test is used to determine whether the results 
obtained from proposed algorithm are different from other 
competitor algorithms in a statistically significant way. The 
sample size for ANOVA test is 30 with 95% confidence of 
interval. A p value determines whether the given algorithm 
is statistically significant or not. If the p value of the given 
algorithm is less than 0.05, then the corresponding algo-
rithm is statistically significant. Table 8 shows the analy-
sis of ANOVA test on the benchmark test functions. It is 
observed from Table 8 that the p value obtained from ESA is 
much smaller than 0.05 for all the benchmark test functions. 
Therefore, the proposed ESA is statistically different from 
the other competitor algorithms.

F1 F3 F7 F12

F15 F19 F21 F23

Fig. 3  Convergence analysis of the proposed ESA and other competitor algorithms on benchmark test problems
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Fig. 4  Effect of scalability on the performance of ESA, SSA, and EPO algorithms
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5  ESA for engineering problems

The proposed ESA algorithm has been tested and validated 
on six constrained and one unconstrained engineering 
problems. These are pressure vessel, speed reducer, welded 
beam, tension/compression spring, 25-bar truss, rolling ele-
ment bearing, and displacement of loaded structure design 
problems [78, 79]. These optimization design problems have 
different constraints with different nature. Different types of 
penalty functions are used to handle these problems such as 
static penalty, dynamic penalty, annealing penalty, adaptive 
penalty, co-evolutionary penalty, and death penalty [80].

However, death penalty function handles the solution 
which can violate the constraints. This function assigns the 
fitness value as zero to discard the infeasible solutions dur-
ing optimization, i.e., it does not employ any information 
about infeasible solutions. Due to its low computational 
complexity and simplicity, ESA algorithm is equipped 
with death penalty function to handle both constrained and 
unconstrained engineering design problems.

5.1  Constrained engineering problems

This subsection describes six constrained engineering prob-
lems and compared it with other competitor approaches. The 
statistical analysis of these problems is also done to validate 
the efficiency and effectiveness of proposed algorithm.

5.1.1  Pressure vessel design problem

This problem was first proposed by Kannan and Kramer [81] 
to minimize the total cost consisting of material, forming, 
and welding of a cylindrical vessel. The schematic view of 
pressure vessel problem is shown in Fig. 5 which is capped 
at both ends by hemispherical heads. There are four design 
variables of this problem:

• Ts ( z1 , thickness of the shell).
• Th ( z2 , thickness of the head).
• R ( z3 , inner radius).
• L ( z4 , length of the cylindrical section without consider-

ing the head).Ta
bl
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Fig. 5  Schematic view of pressure vessel problem
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Among these four design variables, R and L are continuous 
variables. Ts and Th are integer values which are multiples 
of 0.0625 in. The mathematical formulation of this problem 
is given below:

(15)

Consider z⃗ = [z1 z2 z3 z4] = [Ts Th R L],

Minimize f (z⃗) = 0.6224z1z3z4 + 1.7781z2z
2
3

+ 3.1661z2
1
z4 + 19.84z2

1
z3,

Subject to:

g1(z⃗) = −z1 + 0.0193z3 ≤ 0,

g2(z⃗) = −z3 + 0.00954z3 ≤ 0,

g3(z⃗) = −𝜋z2
3
z4 −

4

3
𝜋z3

3
+ 1,296,000 ≤ 0,

g4(z⃗) = z4 − 240 ≤ 0,

where

1 × 0.0625 ≤ z1, z2 ≤ 99 × 0.0625, 10.0 ≤ z3, z4 ≤ 200.0.

 Table  9 reveals the obtained best comparison 
between ESA and other competitor algorithms such 
as EPO, SHO, GWO, PSO, MVO, SCA, GSA, and 
SSA. The proposed ESA provides optimal solution at 
z1−4 = (0.778092, 0.383236, 40.315052, 200.00000) wi th 
corresponding fitness value as f (z1−4) = 5879.9558 . From 
this table, it can be seen that, ESA algorithm is able to find 
best optimal design with minimum cost.

The statistical results of pressure vessel design problem 
are tabulated in Table 10. It can be seen from Table 10 that 
ESA surpassed other algorithms for providing the best solu-
tion in terms of best, mean, and median. The convergence 
behavior obtained by proposed ESA for best optimal design 
is shown in Fig. 6.

5.1.2  Speed reducer design problem

The speed reducer design problem is a challenging bench-
mark problem due to its seven design variables [82] as 
shown in Fig. 7. The objective of this problem is to mini-
mize the weight of speed reducer subject to constraints [83]:

Fig. 6  Convergence analysis of ESA for pressure vessel design prob-
lem

Table 9  Comparison of best 
solution obtained from different 
algorithms for pressure vessel 
design problem

The best-obtained result is in bold

Algorithms Optimum variables Optimum 
cost

Ts Th R L

ESA 0.778092 0.383236 40.315052 200.00000 5879.9558
EPO 0.778099 0.383241 40.315121 200.00000 5880.0700
SHO 0.778210 0.384889 40.315040 200.00000 5885.5773
GWO 0.779035 0.384660 40.327793 199.65029 5889.3689
PSO 0.778961 0.384683 40.320913 200.00000 5891.3879
MVO 0.845719 0.418564 43.816270 156.38164 6011.5148
SCA 0.817577 0.417932 41.74939 183.57270 6137.3724
GSA 1.085800 0.949614 49.345231 169.48741 11550.2976
SSA 0.752362 0.399540 40.452514 198.00268 5890.3279

Table 10  Statistical results obtained from different algorithms for 
pressure vessel design problem

The best-obtained results are in bold

Algorithms Best Mean Worst

ESA 5879.9558 5882.5248 5885.6581
EPO 5880.0700 5884.1401 5891.3099
SHO 5885.5773 5887.4441 5892.3207
GWO 5889.3689 5891.5247 5894.6238
PSO 5891.3879 6531.5032 7394.5879
MVO 6011.5148 6477.3050 7250.9170
SCA 6137.3724 6326.7606 6512.3541
GSA 11550.2976 23342.2909 33226.2526
SSA 5890.3279 6264.0053 7005.7500
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• Bending stress of the gear teeth.
• Surface stress.
• Transverse deflections of the shafts.
• Stresses in the shafts.

There are seven design variables ( z1–z7 ) such as face width 
(b), module of teeth (m), number of teeth in the pinion (p), 
length of the first shaft between bearings ( l1 ), length of the 
second shaft between bearings ( l2 ), diameter of first ( d1 ) 
shafts, and diameter of second shafts ( d2 ). The mathemati-
cal formulation of this problem is formulated as follows:

Table 11  Comparison of best 
solution obtained from different 
algorithms for speed reducer 
design problem

The best-obtained result is in bold

Algorithms Optimum variables Optimum cost

b m p l1 l2 d1 d2

ESA 3.50120 0.7 17 7.3 7.8 3.33415 5.26531 2993.9584
EPO 3.50123 0.7 17 7.3 7.8 3.33421 5.26536 2994.2472
SHO 3.50159 0.7 17 7.3 7.8 3.35127 5.28874 2998.5507
GWO 3.506690 0.7 17 7.380933 7.815726 3.357847 5.286768 3001.288
PSO 3.500019 0.7 17 8.3 7.8 3.352412 5.286715 3005.763
MVO 3.508502 0.7 17 7.392843 7.816034 3.358073 5.286777 3002.928
SCA 3.508755 0.7 17 7.3 7.8 3.461020 5.289213 3030.563
GSA 3.600000 0.7 17 8.3 7.8 3.369658 5.289224 3051.120
SSA 3.510253 0.7 17 8.35 7.8 3.362201 5.287723 3067.561

Table 12  Statistical results obtained from different algorithms for 
speed reducer design problem

The best-obtained results are in bold

Algorithms Best Mean Worst

ESA 2993.9584 2996.002 2999.569
EPO 2994.2472 2997.482 2999.092
SHO 2998.5507 2999.640 3003.889
GWO 3001.288 3005.845 3008.752
PSO 3005.763 3105.252 3211.174
MVO 3002.928 3028.841 3060.958
SCA 3030.563 3065.917 3104.779
GSA 3051.120 3170.334 3363.873
SSA 3067.561 3186.523 3313.199

Fig. 7  Schematic view of speed reducer problem

Fig. 8  Convergence analysis of ESA for speed reducer design prob-
lem
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(16)

Consider z⃗ = [z1 z2 z3 z4 z5 z6 z7] = [b m p l1 l2 d1 d2],

Minimize f (z⃗) = 0.7854z1z
2
2
(3.3333z2

3
+ 14.9334z3 − 43.0934)

− 1.508z1(z
2
6
+ z2

7
) + 7.4777(z3

6
+ z3

7
) + 0.7854(z4z

2
6
+ z5z

2
7
),

Subject to:

g1(z⃗) =
27

z1z
2
2
z3

− 1 ≤ 0,

g2(z⃗) =
397.5

z1z
2
2
z2
3

− 1 ≤ 0,

g3(z⃗) =
1.93z3

4

z2z
4
6
z3

− 1 ≤ 0,

g4(z⃗) =
1.93z3

5

z2z
4
7
z3

− 1 ≤ 0,

g5(z⃗) =
[(745(z4∕z2z3))

2 + 16.9 × 106]1∕2

110z3
6

− 1 ≤ 0,

g6(z⃗) =
[(745(z5∕z2z3))

2 + 157.5 × 106]1∕2

85z3
7

− 1 ≤ 0,

g7(z⃗) =
z2z3

40
− 1 ≤ 0,

g8(z⃗) =
5z2

z1
− 1 ≤ 0,

g9(z⃗) =
z1

12z2
− 1 ≤ 0,

g10(z⃗) =
1.5z6 + 1.9

z4
− 1 ≤ 0,

g11(z⃗) =
1.1z7 + 1.9

z5
− 1 ≤ 0,

where

2.6 ≤ z1 ≤ 3.6, 0.7 ≤ z2 ≤ 0.8, 17 ≤ z3 ≤ 28, 7.3 ≤ z4 ≤ 8.3,

7.3 ≤ z5 ≤ 8.3, 2.9 ≤ z6 ≤ 3.9, 5.0 ≤ z7 ≤ 5.5.

Fig. 9  Schematic view of welded beam problem

Fig. 10  Convergence analysis of ESA for welded beam design prob-
lem

Table 13  Comparison of best solution obtained from different algo-
rithms for welded beam design problem

The best-obtained result is in bold

Algo-
rithms

Optimum variables Optimum 
cost

h l t b

ESA 0.203296 3.471148 9.035107 0.201150 1.721026
EPO 0.205411 3.472341 9.035215 0.201153 1.723589
SHO 0.205563 3.474846 9.035799 0.205811 1.725661
GWO 0.205678 3.475403 9.036964 0.206229 1.726995
PSO 0.197411 3.315061 10.00000 0.201395 1.820395
MVO 0.205611 3.472103 9.040931 0.205709 1.725472
SCA 0.204695 3.536291 9.004290 0.210025 1.759173
GSA 0.147098 5.490744 10.00000 0.217725 2.172858
SSA 0.164171 4.032541 10.00000 0.223647 1.873971

Table 14  Statistical results obtained from different algorithms for 
welded beam design problem

The best-obtained results are in bold

Algorithms Best Mean Worst

ESA 1.721026 1.725023 1.727208
EPO 1.723589 1.725124 1.727211
SHO 1.725661 1.725828 1.726064
GWO 1.726995 1.727128 1.727564
PSO 1.820395 2.230310 3.048231
MVO 1.725472 1.729680 1.741651
SCA 1.759173 1.817657 1.873408
GSA 2.172858 2.544239 3.003657
SSA 1.873971 2.119240 2.320125
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 Table 11 shows the comparison of the best obtained opti-
mal solution with various optimization algorithms. The 
proposed ESA algorithm provides optimal solution at 
z1−7 = (3.50120, 0.7, 17, 7.3, 7.8, 3.33415, 5.26531) with cor-
responding fitness value as f (z1−7) = 2993.9584 . The statis-
tical results of ESA and competitor optimization algorithms 
are given in Table 12.

The results show that ESA outperforms than other 
metaheuristic optimization algorithms. Figure  8 shows 
the convergence behavior of ESA on speed reducer design 
problem.

5.1.3  Welded beam design problem

The main objective of this design problem is to minimize 
the fabrication cost of welded beam as shown in Fig. 9. The 
optimization constraints of welded beam are shear stress ( � ), 
bending stress ( � ) in the beam, buckling load ( Pc ) on the bar, 
and end deflection ( � ) of the beam. There are four design 
variables ( z1–z4 ) of this problem.

• h ( z1 , thickness of weld)
• l ( z2 , length of the clamped bar)
• t ( z3 , height of the bar)
• b ( z4 , thickness of the bar)

The mathematical formulation is described as follows:

Table 15  Comparison of best solution obtained from different algo-
rithms for tension/compression spring design problem

The best-obtained result is in bold

Algorithms Optimum variables Optimum cost

d D P

ESA 0.051080 0.342895 12.0895 0.012655526
EPO 0.051087 0.342908 12.0898 0.012656987
SHO 0.051144 0.343751 12.0955 0.012674000
GWO 0.050178 0.341541 12.07349 0.012678321
PSO 0.05000 0.310414 15.0000 0.013192580
MVO 0.05000 0.315956 14.22623 0.012816930
SCA 0.050780 0.334779 12.72269 0.012709667
GSA 0.05000 0.317312 14.22867 0.012873881
SSA 0.05010 0.310111 14.0000 0.013036251

Table 16  Statistical results obtained from different algorithms for 
tension/compression spring design problem

The best-obtained results are in bold

Algorithms Best Mean Worst

ESA 0.012655526 0.012677562 0.012667896
EPO 0.012656987 0.012678903 0.012667902
SHO 0.012674000 0.012684106 0.012715185
GWO 0.012678321 0.012697116 0.012720757
PSO 0.013192580 0.014817181 0.017862507
MVO 0.012816930 0.014464372 0.017839737
SCA 0.012709667 0.012839637 0.012998448
GSA 0.012873881 0.013438871 0.014211731
SSA 0.013036251 0.014036254 0.016251423

Fig. 11  Schematic view of tension/compression spring problem

Fig. 12  Convergence analysis of ESA for tension/compression spring 
design problem
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 The obtained best comparison between proposed ESA and 
other metaheuristics is presented in Table 13. Among other 
algorithms, the proposed ESA provides optimal solution at 
z1−4 = (0.203296, 3.471148, 9.035107, 0.201150) with corre-
sponding fitness value equal to f (z1−4) = 1.721026 . Table 14 

(17)

Consider z⃗ = [z1 z2 z3 z4] = [h l t b],

Minimize f (z⃗) = 1.10471z2
1
z2 + 0.04811z3z4(14.0 + z2),

Subject to:

g1(z⃗) = 𝜏(z⃗) − 13,600 ≤ 0,

g2(z⃗) = 𝜎(z⃗) − 30,000 ≤ 0,

g3(z⃗) = 𝛿(z⃗) − 0.25 ≤ 0,

g4(z⃗) = z1 − z4 ≤ 0,

g5(z⃗) = 6000 − Pc(z⃗) ≤ 0,

g6(z⃗) = 0.125 − z1 ≤ 0,

g7(z⃗) = 1.10471z2
1
+ 0.04811z3z4(14.0 + z2) − 5.0 ≤ 0,

where

0.1 ≤ z1, 0.1 ≤ z2, z3 ≤ 10.0, z4 ≤ 2.0,

𝜏(z⃗) =

�
(𝜏 �

)2 + (𝜏 ��
)2 + (l𝜏 �𝜏 ��

)∕
√
0.25(l2 + (h + t)2),

𝜏
�

=
6000√
2hl

, 𝜎(z⃗) =
504,000

t2b
, 𝛿(z⃗) =

65,856,000

(30 × 106)bt3
,

𝜏
��

=
6000(14 + 0.5l)

√
0.25(l2 + (h + t)2)

2[0.707hl(l2∕12 + 0.25(h + t)2)]
,

Pc(z⃗) = 64, 746.022(1 − 0.0282346t)tb3.

shows the statistical comparison of the proposed algorithm 
and other competitor algorithms. ESA shows superiority to 
other algorithms in terms of best, mean, and median.

Table 17  Member stress limitations for 25-bar truss design problem

Element group Compressive stress limita-
tions Ksi (MPa)

Tensile stress limi-
tations Ksi (MPa)

Group 1 35.092 (241.96) 40.0 (275.80)
Group 2 11.590 (79.913) 40.0 (275.80)
Group 3 17.305 (119.31) 40.0 (275.80)
Group 4 35.092 (241.96) 40.0 (275.80)
Group 5 35.092 (241.96) 40.0 (275.80)
Group 6 6.759 (46.603) 40.0 (275.80)
Group 7 6.959 (47.982) 40.0 (275.80)
Group 8 11.082 (76.410) 40.0 (275.80)

Table 18  Two loading 
conditions for the 25-bar truss 
design problem

Node Case 1 Case 2

PxKips (kN) PyKips (kN) PzKips (kN) PxKips (kN) PyKips (kN) PzKips (kN)

1 0.0 20.0 (89) − 5.0 (22.25) 1.0 (4.45) 10.0 (44.5) − 5.0 (22.25)
2 0.0 − 20.0 (89) − 5.0 (22.25) 0.0 10.0 (44.5) − 5.0 (22.25)
3 0.0 0.0 0.0 0.5 (2.22) 0.0 0.0
6 0.0 0.0 0.0 0.5 (2.22) 0.0 0.0

Table 19  Statistical results obtained from different algorithms for 
25-bar truss design problem

The best-obtained results are in bold

Groups ESA ACO [86] PSO [87] CSS [88] BB-BC [89]

A1 0.01 0.01 0.01 0.01 0.01
A2–A5 2.007 2.042 2.052 2.003 1.993
A6–A9 3.001 3.001 3.001 3.007 3.056
A10–A11 0.01 0.01 0.01 0.01 0.01
A12–A13 0.01 0.01 0.01 0.01 0.01
A14–A17 0.661 0.684 0.684 0.687 0.665
A18–A21 1.620 1.625 1.616 1.655 1.642
A22–A25 2.668 2.672 2.673 2.66 2.679
Best weight 544.92 545.03 545.21 545.10 545.16
Average 

weight
545.13 545.74 546.84 545.58 545.66

Std. dev. 0.401 0.94 1.478 0.412 0.491

Fig. 13  Convergence analysis of ESA for 25-bar truss design problem
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Figure 10 shows the convergence analysis of best opti-
mal solution obtained from ESA for welded beam design 
problem.

5.1.4  Tension/compression spring design problem

The objective of this design problem is to minimize the ten-
sion/ compression spring weight (see Fig. 11). The optimi-
zation constraints of this problem are described as follows:

• Shear stress.
• Surge frequency.
• Minimum deflection.

Fig. 14  Schematic view of 25-bar truss problem

Table 20  Comparison of best solution obtained from different algorithms for rolling element bearing design problem

The best-obtained result is in bold

Algorithms Optimum variables Opt. cost

Dm Db Z fi fo KDmin KDmax � e �

ESA 125 21.41750 10.94109 0.510 0.515 0.4 0.7 0.3 0.02 0.6 85070.085
EPO 125 21.41890 10.94113 0.515 0.515 0.4 0.7 0.3 0.02 0.6 85,067.983
SHO 125 21.40732 10.93268 0.515 0.515 0.4 0.7 0.3 0.02 0.6 85,054.532
GWO 125.6199 21.35129 10.98781 0.515 0.515 0.5 0.68807 0.300151 0.03254 0.62701 84,807.111
PSO 125 20.75388 11.17342 0.515 0.515000 0.5 0.61503 0.300000 0.05161 0.60000 81,691.202
MVO 125.6002 21.32250 10.97338 0.515 0.515000 0.5 0.68782 0.301348 0.03617 0.61061 84,491.266
SCA 125 21.14834 10.96928 0.515 0.515 0.5 0.7 0.3 0.02778 0.62912 83,431.117
GSA 125 20.85417 11.14989 0.515 0.517746 0.5 0.61827 0.304068 0.02000 0.624638 82,276.941
SSA 125 20.77562 11.01247 0.515 0.515000 0.5 0.61397 0.300000 0.05004 0.610001 82,773.982

Table 21  Statistical results obtained from different algorithms for 
rolling element bearing design problem

The best-obtained results are in bold

Algorithms Best Mean Worst

ESA 85,070.085 85,045.953 86,553.485
EPO 85,067.983 85,042.352 86,551.599
SHO 85,054.532 85,024.858 85,853.876
GWO 84,807.111 84,791.613 84,517.923
PSO 81,691.202 50,435.017 32,761.546
MVO 84,491.266 84,353.685 84,100.834
SCA 83,431.117 81,005.232 77,992.482
GSA 82,276.941 78,002.107 71,043.110
SSA 82,773.982 81,198.753 80,687.239
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There are three design variables such as wire diameter (d), 
mean coil diameter (D), and the number of active coils (P). 
The mathematical formulation of this problem is given below:

 Table  15 shows the comparison for the best solution 
obtained from the proposed ESA and other competi-
tor algorithms in terms of design variables and objective 
values. ESA obtained best solution at design variables 
z1−3 = (0.051080, 0.342895, 12.0895) with an objective 
function value of f (z1−3) = 0.012655526 . The results reveal 
that ESA performs better than the other competitor algo-
rithms. The statistical results of tension/compression spring 
design problem for the reported algorithms are compared 
and tabulated in Table 16. It can be seen from Table 16 that 
ESA provides better statistical results than the other optimi-
zation algorithms in terms of best, mean, and median.

Figure 12 shows the convergence behavior of best optimal 
solution obtained from proposed ESA.

5.1.5  25‑bar truss design problem

The truss design problem is a popular optimization prob-
lem [84, 85] (see Fig. 14). There are 10 nodes and 25 bars 

(18)

Consider z⃗ = [z1 z2 z3] = [d D P],

Minimize f (z⃗) = (z3 + 2)z2z
2
1
,

Subject to:

g1(z⃗) = 1 −
z3
2
z3

71785z4
1

≤ 0,

g2(z⃗) =
4z2

2
− z1z2

12566(z2z
3
1
− z4

1
)
+

1

5108z2
1

≤ 0,

g3(z⃗) = 1 −
140.45z1

z2
2
z3

≤ 0,

g4(z⃗) =
z1 + z2

1.5
− 1 ≤ 0,

where

0.05 ≤ z1 ≤ 2.0, 0.25 ≤ z2 ≤ 1.3, 2.0 ≤ z3 ≤ 15.0.

Fig. 15  Schematic view of rolling element bearing problem

Fig. 16  Convergence analysis of ESA for rolling element bearing 
design problem

Table 22  Comparison of best 
solution obtained from different 
algorithms for displacement of 
loaded structure problem

The best-obtained result is in 
bold

Algorithms Optimum cost ( �)

ESA 167.2635
EPO 168.8231
SHO 168.8889
GWO 170.3645
PSO 170.5960
MVO 169.3023
SCA 169.0032
GSA 176.3697
SSA 171.3674

Fig. 17  Schematic view of displacement of loaded structure
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cross-sectional members. These are grouped into eight 
categories.

• Group 1: A1

• Group 2: A2,A3,A4,A5

• Group 3: A6,A7,A8,A9

• Group 4: A10,A11

• Group 5: A12,A13

• Group 6: A14,A15,A17

• Group 7: A18,A19,A20,A21

• Group 8: A22,A23,A24,A25

The other variables which affects on this problem are as 
follows:

• p = 0.0272 N/cm3 (0.1 lb/in.3)
• E = 68947 MPa (10,000 Ksi)
• Displacement limitation = 0.35 in.
• Maximum displacement = 0.3504 in.
• Design variable set = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,

0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1,

2.2, 2.3, 2.4, 2.6, 2.8, 3.0, 3.2, 3.4}

Table 17 shows the member stress limitations for this prob-
lem. The loading conditions for 25-bar truss are presented in 
Table 18. The comparison of best obtained solutions among 
several algorithms is tabulated in Table 19. It can be seen that 
the proposed ESA is better than other algorithms in terms of 
best, average, and standard deviation. ESA converges very 
efficiently towards optimal solution as shown in Fig. 13.

5.1.6  Rolling element bearing design problem

The main objective of this problem is to maximize the 
dynamic load carrying capacity of a rolling element bearing 
as depicted in Fig. 15. There are ten decision variables such 
as pitch diameter ( Dm ), ball diameter ( Db ), number of balls 
(Z), inner ( fi ) and outer ( fo ) raceway curvature coefficients, 
KDmin , KDmax , � , e, and � (see Fig. 15). The mathematical 
representation of this problem is given below:

Fig. 18  Convergence analysis of ESA for displacement of loaded 
structure problem

Table 23  Statistical results obtained from different algorithms for dis-
placement of loaded structure problem

The best-obtained results are in bold

Algorithms Best Mean Worst

ESA 167.2635 169.5362 176.1128
EPO 168.8231 170.1309 230.9721
SHO 168.8889 170.3659 173.6357
GWO 170.3645 171.3694 174.3970
PSO 170.5960 174.6354 175.3602
MVO 169.3023 171.0034 174.3047
SCA 169.0032 171.7530 174.4527
GSA 176.3697 178.7521 179.5637
SSA 171.3674 172.0374 174.0098

Table 24  Shekel’s Foxholes 
function F14

(aij, i = 1, 2 and j = 1, 2,… , 25)

i∖j 1 2 3 4 5 6 ... 25

1 −32 −16 0 16 32 −32 ... 32
2 −32 −32 −32 −32 −32 −16 ... 32

Table 25  Hartman function F19 i (aij, j = 1, 2, 3) ci (pij, j = 1, 2, 3)

1 3 10 30 1 0.3689 0.1170 0.2673
2 0.1 10 35 1.2 0.4699 0.4387 0.7470
3 3 10 30 3 0.1091 0.8732 0.5547
4 0.1 10 35 3.2 0.038150 0.5743 0.8828
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(19)

Maximize Cd =

{
fcZ

2∕3D1.8
b

, if D ≤ 25.4mm

Cd = 3.647fcZ
2∕3D1.4

b
, if D > 25.4mm

Subject to:

g1(z⃗) =
𝜙0

2sin−1(Db∕Dm)
− Z + 1 ≤ 0,

g2(z⃗) = 2Db − KDmin(D − d) ≥ 0,

g3(z⃗) = KDmax(D − d) − 2Db ≥ 0,

g4(z⃗) = 𝜁Bw − Db ≤ 0,

g5(z⃗) = Dm − 0.5(D + d) ≥ 0,

g6(z⃗) = (0.5 + e)(D + d) − Dm ≥ 0,

g7(z⃗) = 0.5(D − Dm − Db) − 𝜀Db ≥ 0,

g8(z⃗) = fi ≥ 0.515,

g9(z⃗) = fo ≥ 0.515,

where

fc = 37.91

[
1 +

{
1.04

(
1 − 𝛾

1 + 𝛾

)1.72(
fi(2fo − 1)

fo(2fi − 1)

)0.41}10∕3]−0.3

×

[
𝛾0.3(1 − 𝛾)1.39

(1 + 𝛾)1∕3

][
2fi

2fi − 1

]0.41

x = [{(D − d)∕2 − 3(T∕4)}2 + {D∕2 − T∕4 − Db}
2 − {d∕2 + T∕4}2]

y = 2{(D − d)∕2 − 3(T∕4)}{D∕2 − T∕4 − Db}

𝜙o = 2𝜋 − 2cos−1
(
x

y

)

𝛾 =
Db

Dm

, fi =
ri

Db

, fo =
ro

Db

, T = D − d − 2Db

D = 160, d = 90, Bw = 30, ri = ro = 11.033

0.5(D + d) ≤ Dm ≤ 0.6(D + d), 0.15(D − d) ≤ Db

≤ 0.45(D − d), 4 ≤ Z ≤ 50, 0.515 ≤ fi and fo ≤ 0.6,

0.4 ≤ KDmin ≤ 0.5, 0.6 ≤ KDmax ≤ 0.7, 0.3 ≤ e ≤ 0.4,

0.02 ≤ e ≤ 0.1, 0.6 ≤ 𝜁 ≤ 0.85.

Table 20 shows the performance comparison of best 
obtained optimal solution. The proposed ESA provides 
optimal solution at z1−10 = (125, 21.41750, 10.94109,

0.510, 0.515, 0.4, 0.7, 0.3, 0.02, 0.6) with corresponding fit-
ness value equal to f (z1−10) = 85070.085 . The statistical 
results obtained for rolling element bearing design problem 
are compared and tabulated in Table 21. The results reveal 
that the proposed ESA gives the best solution with consider-
able improvement.

Figure 16 shows the convergence analysis of ESA algo-
rithm and reveals that ESA is able to achieve best optimal 
solution.

5.2  Unconstrained engineering problem

This subsection describes the displacement of loaded struc-
ture design problem to minimize the potential energy.

5.2.1  Displacement of loaded structure design problem

A displacement is a vector which defines the shortest dis-
tance between initial and final position of a given point.

The objective of this problem is to minimize the potential 
energy for reducing the excess load of structure. The loaded 
structure that should have minimum potential energy ( f (z⃗) ) 
is shown in Fig. 17. The problem can be stated as follows:

Table 22 reveals the comparison of best optimal solution 
obtained from ESA and other metaheuristics including EPO, 
SHO, GWO, PSO, MVO, SCA, GSA, and SSA. The pro-
posed ESA generates best optimum cost at � = 167.2635 . 
It can be seen that ESA is able to minimize the potential 
energy for loaded structure problem.

The statistical results for the reported algorithms are tabu-
lated in Table 23. From Table 23, it is noticed that the results 
obtained from ESA are far better than the other competitor 

(20)

f (z⃗) = Minimizez1,z2 𝜋

where

𝜋 =
1

2
K1u

2
1
+

1

2
K2u

2
2
− Fzz1 − Fyz2

K1 = 8N/cm,K2 = 1N/cm,Fy = 5N,Fz = 5N

u1 =

√
z2
1
+ (10 − z2

2
) − 10, u2 =

√
z2
1
+ (10 + z2

2
) − 10.

Table 26  Shekel’s Foxholes 
functions F21,F22,F23

i (aij, j = 1, 2, 3, 4) ci

1 4 4 4 4 0.1
2 1 1 1 1 0.2
3 8 8 8 8 0.2
4 6 6 6 6 0.4
5 3 7 3 7 0.4
6 2 9 2 9 0.6
7 5 5 3 3 0.3
8 8 1 8 1 0.7
9 6 2 6 2 0.5
10 7 3.6 7 3.6 0.5

Table 27  Hartman function F20 i (aij, j = 1, 2,… , 6) ci (pij, j = 1, 2,… , 6)

1 10 3 17 3.5 1.7 8 1 0.1312 0.1696 0.5569 0.0124 0.8283 0.5886
2 0.05 10 17 0.1 8 14 1.2 0.2329 0.4135 0.8307 0.3736 0.1004 0.9991
3 3 3.5 1.7 10 17 8 3 0.2348 0.1415 0.3522 0.2883 0.3047 0.6650
4 17 8 0.05 10 0.1 14 3.2 0.4047 0.8828 0.8732 0.5743 0.1091 0.0381
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algorithms in terms of best, mean, and median. Figure 18 
shows the convergence analysis of best solution obtained 
from proposed ESA algorithm (Tables 24, 25, 26, 27).

In summary, ESA is an effective optimizer for solving both 
constrained and unconstrained engineering design problems 
with low computational cost and fast convergence speed.

6  Conclusion and future works

This paper presents a hybrid swarm-based bio-inspired 
metaheuristic algorithm called emperor penguin and salp 
swarm algorithm (ESA). The fundamental concepts behind 
this algorithm are the huddling and swarm behaviors of EPO 
and SSA algorithms, respectively. The proposed ESA algo-
rithm has been tested on fifty-three benchmark test func-
tions. It is observed from statistical analysis that ESA attains 
global optimal solution with better convergence as compared 
to other competitive algorithms.

For CEC-2017 benchmark test functions, the performance 
of ESA is found accurate and consistent. The effect of scal-
ability has also been investigated on the performance of 
ESA. The results reveal that the performance of ESA is less 
susceptible to scalability as compared to other algorithms. 
The sensitivity analysis has also been investigated on ESA.

Moreover, ESA is applied on six constrained and one 
unconstrained engineering design problems to show its 
effectiveness and efficacy. On the basis of results, it can be 
concluded that the proposed ESA is applicable to engineer-
ing design problems. In future, ESA may be extended for 
solving multi-objective optimization problems. The binary 
and many objective versions of ESA can be valuable contri-
butions. ESA may also be extended for solving online large 
scale optimization and engineering applications.
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Appendix: Unimodal, multimodal, 
and fixed‑dimension multimodal benchmark 
test functions

Unimodal benchmark test functions

Sphere model

F1(z) =

30∑
i=1

z2
i

− 100 ≤ zi ≤ 100, fmin = 0, Dim = 30

Schwefel’s problem 2.22

Schwefel’s problem 1.2

Schwefel’s problem 2.21

Generalized Rosenbrock’s function

Step function

Quartic function

Multimodal benchmark test functions

Generalized Schwefel’s problem 2.26

Generalized Rastrigin’s function

F2(z) =

30∑
i=1

|zi| +
30∏
i=1

|zi|

− 10 ≤ zi ≤ 10, fmin = 0, Dim = 30

F3(z) =

30∑
i=1

( i∑
j=1

zj

)2

− 100 ≤ zi ≤ 100, fmin = 0, Dim = 30

F4(z) = maxi{|zi|, 1 ≤ i ≤ 30}

− 100 ≤ zi ≤ 100, fmin = 0, Dim = 30

F5(z) =

29∑
i=1

[100(zi+1 − z2
i
)2 + (zi − 1)2]

− 30 ≤ zi ≤ 30, fmin = 0, Dim = 30

F6(z) =

30�
i=1

(⌊zi + 0.5⌋)2

− 100 ≤ zi ≤ 100, fmin = 0, Dim = 30

F7(z) =

30∑
i=1

iz4
i
+ random[0, 1]

− 1.28 ≤ zi ≤ 1.28, fmin = 0, Dim = 30

F8(z) = v30
i=1

− zisin(
√�zi�)

− 500 ≤ zi ≤ 500, fmin = −12569.5, Dim = 30

F9(z) =

30∑
i=1

[z2
i
− 10cos(2�zi) + 10]

− 5.12 ≤ zi ≤ 5.12, fmin = 0, Dim = 30
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Ackley’s function

Generalized Griewank function

F10(z) = −20exp

(
− 0.2

√√√√ 1

30

30∑
i=1

z2
i

)

− exp

(
1

30

30∑
i=1

cos(2�zi)

)
+ 20 + e

− 32 ≤ zi ≤ 32, fmin = 0, Dim = 30

F11(z) =
1

4000

30�
i=1

z2
i
−

30�
i=1

cos

�
zi√
i

�
+ 1

− 600 ≤ zi ≤ 600, fmin = 0, Dim = 30

Generalized penalized functions

• 

• 

 where xi = 1 +
zi + 1

4

Fixed‑dimension multimodal benchmark test 
functions

Shekel’s Foxholes function

Kowalik’s function

F12(z) =
�

30
{10sin(�x1) +

29∑
i=1

(xi − 1)2

× [1 + 10sin2(�xi+1)] + (xn − 1)2}

+

30∑
i=1

u(zi, 10, 100, 4)

− 50 ≤ zi ≤ 50, fmin = 0, Dim = 30

F13(z) = 0.1{sin2(3�z1) +

29∑
i=1

(z
i
− 1)2

× [1 + sin
2(3�z

i
+ 1)] + (z

n
− 1)2[1 + sin

2(2�z30)]}

+

N∑
i=1

u(z
i
, 5, 100, 4)

− 50 ≤ z
i
≤ 50, fmin = 0, Dim = 30,

u(zi, a, k,m) =

⎧⎪⎨⎪⎩

k(zi − a)m zi > a

0 − a < zi < a

k(−zi − a)m zi < −a

F14(z) =

�
1

500
+

25�
j=1

1

j +
∑2

i=1
(zi − aij)

6

�−1

− 65.536 ≤ zi ≤ 65.536, fmin ≈ 1, Dim = 2

F15(z) =

11∑
i=1

[
ai −

z1(b
2
i
+ biz2)

b2
i
+ biz3 + z4

]2

− 5 ≤ zi ≤ 5, fmin ≈ 0.0003075, Dim = 4

Table 28  IEEE CEC-2017 benchmark test functions

No. Functions fmin

C-1 Shifted and rotated bent cigar function 100
C-2 Shifted and rotated sum of different power function 200
C-3 Shifted and rotated Zakharov function 300
C-4 Shifted and rotated Rosenbrock’s function 400
C-5 Shifted and rotated Rastrigin’s function 500
C-6 Shifted and rotated expanded Scaffer’s function 600
C-7 Shifted and rotated Lunacek Bi_Rastrigin function 700
C-8 Shifted and rotated non-continuous Rastrigin’s function 800
C-9 Shifted and rotated Levy function 900
C-10 Shifted and rotated Schwefel’s function 1000
C-11 Hybrid function1 ( N = 3) 1100
C-12 Hybrid function2 ( N = 3) 1200
C-13 Hybrid function3 ( N = 3) 1300
C-14 Hybrid function4 ( N = 4) 1400
C-15 Hybrid function5 ( N = 4) 1500
C-16 Hybrid function6 ( N = 4) 1600
C-17 Hybrid function6 ( N = 5) 1700
C-18 Hybrid function6 ( N = 5) 1800
C-19 Hybrid function6 ( N = 5) 1900
C-20 Hybrid function6 ( N = 6) 2000
C-21 Composition function1 ( N = 3) 2100
C-22 Composition function2 ( N = 3) 2200
C-23 Composition function3 ( N = 4) 2300
C-24 Composition function4 ( N = 4) 2400
C-25 Composition function5 ( N = 5) 2500
C-26 Composition function6 ( N = 5) 2600
C-27 Composition function7 ( N = 6) 2700
C-28 Composition function8 ( N = 6) 2800
C-29 Composition function9 ( N = 3) 2900
C-30 Composition function10 ( N = 3) 3000
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Six‑hump camel‑back function

Branin function

Goldstein–Price function

Hartman’s family

• 

• 

Shekel’s Foxholes function

• 

• 

F16(z) = 4z2
1
− 2.1z4

1
+

1

3
z6
1
+ z1z2 − 4z2

2
+ 4z4

2

− 5 ≤ zi ≤ 5, fmin = −1.0316285, Dim = 2

F17(z) =

(
z2 −

5.1

4�2
z2
1
+

5

�
z1 − 6

)2

+ 10

(
1 −

1

8�

)
cosz1 + 10

− 5 ≤ z1 ≤ 10, 0 ≤ z2 ≤ 15, fmin = 0.398, Dim = 2

F18(z) = [1 + (z1 + z2 + 1)2(19 − 14z1 + 3z2
1

− 14z2 + 6z1z2 + 3z2
2
)]

× [30 + (2z1 − 3z2)
2

× (18 − 32z1 + 12z2
1
+ 48z2 − 36z1z2 + 27z2

2
)]

− 2 ≤ zi ≤ 2, fmin = 3, Dim = 2

F19(z) = −

4∑
i=1

ciexp

(
−

3∑
j=1

aij(zj − pij)
2

)

0 ≤ zj ≤ 1, fmin = −3.86, Dim = 3

F20(z) = −

4∑
i=1

ciexp

(
−

6∑
j=1

aij(zj − pij)
2

)

0 ≤ zj ≤ 1, fmin = −3.32, Dim = 6

F21(z) = −

5∑
i=1

[(X − ai)(X − ai)
T + ci]

−1

0 ≤ zi ≤ 10, fmin = −10.1532, Dim = 4

F22(z) = −

7∑
i=1

[(X − ai)(X − ai)
T + ci]

−1

0 ≤ zi ≤ 10, fmin = −10.4028, Dim = 4

• 

CEC‑2017 benchmark test functions

The detailed descriptions of 15 well-known CEC-2017 
benchmark test functions (C1–C30) are mentioned in 
Table 28.
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