Engineering with Computers (2021) 37:323-353
https://doi.org/10.1007/500366-019-00826-w

ORIGINAL ARTICLE

=

Check for
updates

ESA: a hybrid bio-inspired metaheuristic optimization approach

for engineering problems

Gaurav Dhiman'?

Received: 27 March 2019 / Accepted: 10 July 2019 / Published online: 19 July 2019

© Springer-Verlag London Ltd., part of Springer Nature 2019

Abstract

In this paper, a hybrid bio-inspired metaheuristic optimization approach namely emperor penguin and salp swarm algorithm
(ESA) is proposed. This algorithm imitates the huddling and swarm behaviors of emperor penguin optimizer and salp swarm
algorithm, respectively. The efficiency of the proposed ESA is evaluated using scalability analysis, convergence analysis,
sensitivity analysis, and ANOVA test analysis on 53 benchmark test functions including classical and IEEE CEC-2017. The
effectiveness of ESA is compared with well-known metaheuristics in terms of the optimal solution. The proposed ESA is
also applied on six constrained and one unconstrained engineering problems to evaluate its robustness. The results reveal
that ESA offers optimal solutions as compared to the other competitor algorithms.

Keywords Metaheuristics - Optimization - Emperor penguin optimizer - Salp swarm algorithm - Engineering problems

1 Introduction

During the last few decades, various algorithms have been
proposed to solve a variety of engineering optimization prob-
lems [1-21]. These optimization problems are very complex
in nature because they have more than one local optimum
solution. These problems are categorized into various catego-
ries whether they are constrained or unconstrained, discrete
or continuous, static or dynamic, single or multi-objective.
In order to increase the efficiency and accuracy of these
problems [22-26], researchers have encouraged to rely on
metaheuristic algorithms [27-29]. Metaheuristics become
more popular in various field because they do not require
gradient information and bypass the local optima problem.
Metaheuristics are classified into two main categories:
single-solution and multiple-solution. In single-solution-
based algorithms, the searching process starts with one
candidate solution, whereas in multiple-solution-based algo-
rithm, the optimization performs using a set of solutions

P< Gaurav Dhiman
gaurav.dhiman @thapar.edu

Computer Science and Engineering Department, Thapar
Institute of Engineering and Technology, Patiala,
Punjab 147004, India

Department of Computer Science, Government Bikram
College of Commerce, Patiala, Punjab 147004, India

(i.e., population). Multiple-solution or population-based
metaheuristics have advantages over single-solution-based
metaheuristics. These are as follows:

e The searching process starts with random generated
population, i.e, a set of multiple solutions.

e The multiple solutions can share the information between
each other around the search space and avoid local opti-
mal solutions.

e The exploration capability of multiple-solution or pop-
ulation-based metaheuristics is better than the single-
solution-based metaheuristics.

The key phases of metaheuristic algorithms are exploration
and exploitation. The exploration phase ensures that algo-
rithm investigates the different promising regions in a given
search space, whereas exploitation ensures the searching of
optimal solutions around the promising regions. However,
it is difficult to balance between these phases due to its sto-
chastic nature. Therefore, the fine-tuning of these two phases
is required to achieve the near-optimal solutions.

In recent years, a large number of metaheuristic algo-
rithms have been developed. However, there is no single
algorithm present which can solve all types of optimization
problems. Some algorithms provide better optimal results
as compared to the others. Therefore, developing a new
metaheuristic algorithm is an open problem. This is the one

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00366-019-00826-w&domain=pdf

324

Engineering with Computers (2021) 37:323-353

fact which can motivates us to develop a novel metaheuristic
algorithm for solving optimization problems.

This paper presents a hybrid bio-inspired metaheuris-
tic algorithm named as emperor penguin and salp swarm
algorithm (ESA). It is inspired by the huddling and swarm
behavior of emperor penguin optimizer (EPO) [30] and salp
swarm algorithm (SSA) [31], respectively. The main contri-
butions of this work are as follows:

e A hybrid bio-inspired swarm algorithm (ESA) is pro-
posed.

e The proposed ESA is implemented and tested on 53
benchmark test functions (i.e., classical and CEC-2017).

e The performance of ESA is compared with well-known
metaheuristics using sensitivity analysis, convergence
analysis, and ANOVA test analysis.

e The robustness of proposed ESA and other metaheuris-
tics are examined for solving engineering problems.

The rest of this paper is structured as follows: Sect. 2 pre-
sents the background and related works of optimization
problems. The proposed ESA algorithm is discussed in
Sect. 3. The experimental results and discussion is presented
in Sect. 4. Section 5 focuses on the applications of ESA
in engineering problems. Finally, the conclusion and some
future research directions are given in Sect. 6.

2 Background and related works

This section firstly describes the recently developed EPO
and SSA algorithms followed by related works in the field
of optimization.

2.1 Emperor penguin optimizer (EPO)

Emperor penguins are social animals that perform vari-
ous activities for living like hunting, foraging in groups.
Emperor penguins perform huddling during extreme win-
ters in the Antarctic to survive. Each penguin contributes
equally while huddling depicting the sense of collectiveness
and unity in their social behavior [32]. The huddling behav-
ior can be summarized as below [30]:

Create and discover huddling boundary.
Compute the temperature around the huddle.
Calculate the distance between each penguin.
Effective mover is relocated.

2.1.1 Mathematical modeling

The main objective of modeling is to identify effective
mover. L-shape polygon plane is considered as the shape

@ Springer

of the huddle. After the effective mover is identified, the
boundary of the huddle is again computed.

2.1.1.1 Generate and determine the huddle boundary To
map the huddling behavior of emperor penguins, the first
thing we need to consider is their polygon-shaped grid
boundary. Every penguin is surrounded by at least two pen-
guins while huddling. The huddling boundary is decided by
the direction and speed of wind flow. Wind flow is generally
faster as compared to penguins movement. Mathematically
huddling boundary can be formulated as: let n represents the
velocity of wind and y represents the gradient of #:

x=Vn. D
Vector « is integrated with # to obtain complex potential:

G=n+ia, ()
where i represents the imaginary constant and G defines the
polygon plane function.

2.1.1.2 Temperature profile around the huddle Emperor
penguins perform huddling to conserve their energy and
maximize huddle temperature 7 =0 if X >05and T =1
if X < 0.5, where X is the polygon radius. This temperature
measure helps to perform exploration and exploitation task
among emperor penguins. The temperature is computed as:

v Max;,,
y — Max;

0 ifX>05llr ©)
T={ IEX> 0.

1,if X <0.5,

where y represents the current iteration, defines the current
iteration, Max;,, represents the maximum count of iterations,
X is the radius, and T is the time require to identify best
optimal solution.

2.1.1.3 Distance between emperor penguins After the
huddling boundary is computed, distance between the
emperor penguin is calculated. The current optimal solution
is the solution with higher fitness value than previous opti-
mum solution. The search agents update their positions cor-
responding to current optimal solution. The position upda-
tion can be mathematically represented as:

A/iep = Abs (N(A) Q) —A - Qe;(x)>, “

where M;, denotes the distance between the emperor pen-
guin and best fittest search agent (i.e., with less fitness
value), x represents the ongoing iteration. X and A help to
avoid collision among penguin. é represents the best optimal
solution (i.e., fittest emperor penguin), Q;p represents the
position vector of emperor penguin. N() denotes the social

Engineering with Computers (2021) 37:323-353 325
sy o s ety o OO TS szt
' i T\F, = ¢, ((ub; — Ib)c, + b)), ¢; < 1, (10)

X = (M x (T' + Ry(Accuracy)) x Rand()) — T’ 5)
R yiq(Accuracy) = Abs(Q — 0,,) ©6)
C = Rand(), @)

where M is the movement parameter that maintains a gap

between search agents for collision avoidance. The value of

parameter M is set to 2. 7" is the temperature profile around

the huddle, P,;q(Accuracy) defines the polygon grid accu-

racy by comparing the difference between emperor penguins,

and Rand() is a random function lies in the range of [0, 1].
The function S() is calculated as follows:

2
N(A) = <\/f-e"‘ﬂ —e-x> : ®)

where e defines the expression function. f and / are control
parameters for better exploration and exploitation. The val-
ues of fand / lie in the range of [2, 3] and [1.5, 2], respec-
tively. Note that it has been observed that EPO algorithm
provides better results between these ranges.

2.1.1.4 Relocate the mover The best obtained optimal
solution (mover) is used to update the position of emperor
penguins. The selected moves lead to the movement of other
search agents in a search space. To find next position of a
emperor penguin, following equations are used:

O,(x+1) = 0() =X - M,,,)

where Q_;p(x + 1) denotes the updated position of emperor
penguin.

2.2 Salp swarm algorithm (SSA)

Salp swarm algorithm is a metaheuristic bio-inspired opti-
mization algorithm developed by Mirjalili et al. [31]. This
algorithm is based on the swarming behavior of salps when
navigating and foraging in the deep sea. This swarming
behavior is mathematically modeled named as salp chain.
This chain is divided into two groups: leader and follow-
ers. The leader leads the whole chain from the front while
the followers follow each other. The updated position of the
leader in a n-dimensional search environment is described
as follows:

where xl.' represents the first position of salp, i.e., leader in
the ith dimension, F; is the position of food source, ub; and
Ib; are the lower bound and upper bound of ith dimension,
respectively. However, ¢, ¢,, and c; are random numbers.

The coefficient ¢, is responsible for better exploration and
exploitation which is defined as follows:

<ﬂ> a
¢ =2e L

k]

where / represents the current iteration and L is the maxi-
mum number of iterations; whereas, the parameters ¢, and
¢ are random numbers in range [0, 1].

To update the position of followers, the following equa-
tions are defined as follows:

| .
X =SAT + VT, j22, (12)
where xi shows the position of follower, T represents the

time and V,, represents the initial speed. The parameter A is
calculated as follows:

A zv‘ﬁ/nal
0
o, (13)
V =
T

Considering V,, = 0, the following equation can be expressed
as:

=20+, (14)

The SSA algorithm is able to solve high-dimensional prob-
lems using low computational efforts.

2.3 Related works

Multiple-solution-based metaheuristic algorithms are further
classified into three categories such as evolutionary-based,
physics-based, and swarm-based algorithms (see Fig. 1). The
former one is generic population-based metaheuristic which
is inspired from biological evolution, i.e., mutation, recom-
bination, and selection. These do not make any assumptions
about fitness landscape. The most popular evolutionary
algorithm is genetic algorithm (GA) [33]. The evolution
starts with randomly generated individuals from the given
population. The fitness of each individual is computed in

@ Springer

326

Engineering with Computers (2021) 37:323-353

Population-based
Metaheuristics

Evolutionary Algorithms

Differential
Evolution (DE)

o
£l
ER
N2
2o
oL
30
—_3
p<
o
o
|

Fig. 1 Classification of population-based metaheuristic algorithms

each generation. The crossover and mutation operators are
applied on individual to create a new population. The best
individuals can generate a new population during the course
of iterations. However, compared to other stochastic meth-
ods, genetic algorithm has advantage that it can be paral-
lelized with little effort and not necessarily remain trapped
in a sub-optimal local maximum or minimum of the tar-
get function. GA may provides local minima of a function
that can steer the search in the wrong direction for some
of the optimization problems. differential evolution (DE)
[34] is another evolutionary-based metaheuristic algorithm
that optimizes a problem by maintaining a candidate solu-
tions and creates new candidate solutions by combining the
existing ones. It can keep the candidate solution which has
best fitness value for optimization problem. It has an ability
to handle non-differentiable and non-linear cost functions.
There are only few parameters to steer the minimization
problem. The parameter tuning is a main challenge in DE
because same parameters may not guarantee the global opti-
mum solution. Apart from these, some of the other popular
evolutionary-based algorithms are genetic programming
(GP) [35], evolution strategy (ES) [36], and biogeography-
based optimizer (BBO) [37].

The second category is physics-based algorithms in
which each search agent can move throughout the search
space according to physics rules such as gravitational force,
electromagnetic force, inertia force, and many more. The
well-known physics-based metaheuristic algorithms are

@ Springer

Physics-based Algorithms

|
i
|
|
i
i
P pp——————— ey .
Firefly b Gravitational Search
Algorithm (FA) i Algorithm (GSA) i
-
[|
i i
Cuckoo i Black Hole |
Search (CS) [Algorithm (BH) !
i]
[|
| i
Bat i Charged System |
Algorithm (BA) L] Search (CSS) !
|
[|
I ‘ I
Bacterial Foraging | Galaxy-based Search
Optimization (BFO) | ‘ Algorithm (GbSA) |
I

simulated annealing (SA) [38] and gravitational search
algorithm (GSA) [39]. Simulated annealing is inspired from
annealing in metallurgy that involves heating and controlled
cooling attributes of a material. These attributes depend on
its thermodynamic free energy. SA is advantageous in terms
to deal with non-linear models and noisy data. The main
advantage of SA over other search methods is its ability to
search the global optimal solution. However, it suffers from
high computational time especially if the fitness function is
very complex and non-linear in nature. Gravitational search
algorithm is based on the law of gravity and mass interac-
tions. The population solutions are interact with each other
through the gravity force and their performance is meas-
ured by its mass. GSA requires only two input parameters
to adjust, i.e., mass and velocity. It is easy to implement.
The ability to find near the global optimum solution makes
GSA differ from the other optimization algorithms. How-
ever, it suffers from computational time and convergence
problem if the initial population is not generated well. Some
of the other popular algorithms are: big-bang big-crunch
(BBBC) [40], charged system search (CSS) [41], black hole
(BH) [42] algorithm, central force optimization (CFO) [43],
small-world optimization algorithm (SWOA) [44], artificial
chemical reaction optimization algorithm (ACROA) [45],
ray optimization (RO) algorithm [46], galaxy-based search
algorithm (GbSA) [47], and curved space optimization
(CSO) [48].

Engineering with Computers (2021) 37:323-353

327

The third category is swarm-based algorithms which are
inspired by the collective behavior of social creatures. This
collective intelligence is based on the interaction of swarm
with each other. These are easier to implement than the evo-
lutionary-based algorithms due to number of operators (i.e.,
selection, crossover, and mutation).

The most popular algorithm is particle swarm optimiza-
tion (PSO) which was proposed by Kennedy and Eberhart
[49]. In PSO, particles move around the search space using
the combination of best solutions [50]. The whole process
is repeated until the termination criterion is satisfied. The
main advantage of PSO is that it has no overlapping and
mutation computation. During simulation, the most optimist
particle can transmit information among the other particles.
However, it suffers from the stagnation problem.

Ant colony optimization (ACO) is another popular swarm
intelligence algorithm which was proposed by Dorigo [51].
The main inspiration behind this algorithm is the social
behavior of ants in ant colony. The social intelligence of
ants is to find the shortest path between the source food and
nest. ACO is able to solve the travelling salesman and simi-
lar problems in an efficient way that can be advantageous of
ACO over the other approaches. The theoretical analysis of
a problem is very difficult using ACO because the compu-
tational cost is high during convergence.

Bat-inspired algorithm (BA) [52] is inspired by the echo-
location behavior of bats. Another well-known swarm-based
metaheuristic is artificial bee colony (ABC) algorithm [53]
which is inspired by the collective behavior of bees to find
the food sources. Spotted hyena optimizer (SHO) [16] is a
bio-inspired metaheuristic algorithm that mimics the search-
ing, hunting, and attacking behaviors of spotted hyenas in
nature. The main concept behind this technique is the social
relationship and collective behavior of spotted hyenas for
hunting strategy. Cuckoo search (CS) [54] is inspired by
the obligate brood parasitism of cuckoo species. These spe-
cies lay their eggs in the nest of other species. Each egg
and a cuckoo egg represent a solution and a new solution,
respectively.

Emperor penguin optimizer (EPO) [30] is a recently
developed bio-inspired metaheuristic algorithm that mim-
ics the huddling behaviors of emperor penguins. The main
steps of EPO are to generate huddle boundary, compute tem-
perature around the huddle, calculate the distance, and find
the effective mover.

Grey wolf optimizer (GWO) [55] is a very popular bio-
inspired based algorithm for solving real-life constrained
problems. Grey wolf optimizer (GWO) is inspired by the
behaviors of grey wolves. It mimics the leadership, hierar-
chy, and hunting mechanisms of grey wolves. GWO employs

four types of grey wolves namely, alpha, beta, delta, and
omega for optimization problems. The hunting, searching,
encircling, and attacking mechanisms are also implemented.
Further, to investigate the performance of GWO algorithm, it
was tested on well-known test functions and classical engi-
neering design problems.

Multi-verse optimizer (MVO) is a promising optimization
algorithm proposed by Mirjalili et al. [56]. It is inspired by
the theory of multi-verse in physics which consists of three
main concepts, i.e., white hole, black hole, and worm hole.
The concepts of white hole and black hole are appropriate
for exploration and worm hole helps in the exploitation of
the given search spaces.

Sine cosine algorithm (SCA) is proposed by Mirjalili [57]
for solving numerical optimization problems. SCA generates
multiple random solutions and fluctuate them towards the
best optimal solution using mathematical models such as
sine and cosine functions. The convergence speed of SCA
is very high which is helpful for local optima avoidance.

The other well-known metaheuristic algorithms are
fireworks algorithm (FWA) [58-61], monkey search [62],
Bacterial foraging optimization algorithm [63], firefly algo-
rithm (FA) [64], fruit fly optimization algorithm (FOA) [65],
golden section line search algorithm [66], Fibonacci search
method [67], bird mating optimizer (BMO) [68], Krill Herd
(KH) [69], artificial fish-swarm algorithm (AFSA) [70],
Dolphin partner optimization (DPO) [71], bee collecting
pollen algorithm (BCPA) [72], and hunting search (HS) [73].

3 Proposed algorithm

In this section, the motivation and brief justification of the
proposed algorithm are described in detail.

3.1 Motivation

Nature has inspired many researchers in many ways and thus
is a rich source of inspiration. Nowadays, most new algo-
rithms are nature-inspired because they have been devel-
oped by drawing inspiration from nature. The main source of
inspiration for developing new algorithms is nature. Almost
all new algorithms can be referred as nature-inspired algo-
rithms. The majority of nature-inspired algorithms are based
on some characteristics of biological system. Therefore, the
largest fraction of nature-inspired algorithms are biology
or bio-inspired. Among bio-inspired algorithms, a special
class of algorithms have been developed by drawing inspira-
tion from swarm intelligence. It has been observed from the
literature that multiple-solution or population-based swarm

@ Springer

328

Engineering with Computers (2021) 37:323-353

intelligence algorithms are able to solve real-life optimi-
zation problems. They are able to explore throughout the
search space, and exploit the global optimum. However, pop-
ulation-based techniques are more reliable than single-solu-
tion-based techniques because of more function evaluations.

According to no free lunch theorem [74], there is no opti-
mization algorithm which is able to solve all optimization
problems. This fact will attract the researchers of different
fields to propose a new optimization algorithm. These moti-
vate us to propose a new population-based metaheuristic
algorithm.

The researchers have pointed out convergence and diver-
sity difficulties for real-life problems. Hence, there is a need
to develop an algorithm that maintains the convergence and
diversity. In this paper, the navigation and foraging behav-
iors of SSA algorithm is used to maintain the diversity. The
reasons to select these behaviors over others are:

1. SSA algorithm eliminates the problem of missing selec-
tion individuals.

2. The values of these behaviors are directly optimized,
without any need for niching, that helps to maintain the
diversity.

3. SSA ensures that any approximation set that has high-
quality value for a particular problem contains all opti-
mal solutions.

However, the calculation of SSA parameters requires high
computational effort. To resolve this problem, EPO algo-
rithm is employed. SSA suffers from overhead of maintain-
ing the necessary information. For this, huddling behavior
of EPO algorithm is used for maintaining the information.
Therefore, a novel hybrid algorithm is proposed that utilizes
the features of both EPO and SSA.

3.2 Hybrid emperor penguin and salp swarm
algorithm (ESA)

The first step is to initialize the population and initial param-
eters of ESA algorithm as explained in Table 1. After the ini-
tialization, objective value of each search agent is calculated
using FITNESS function as defined in line 4 of Algorithm 1.
The best search agent is explored from the given search
space. Further, the huddling behavior is defined using Eq.
(9) until the suitable result is found for each search agent.
In line 6 of Algorithm 1, position of each search agent is
updated. Now, the leader and follower selection approaches

@ Springer

Generate the initial population

\ 4

Choose the initial parameters

Calculate the fitness of each search agent

1
|
|
|
i
i
|
i
i
¥

v

Determine the huddling and swarm
behaviors of ESA using Egs. (9) and (14)

A

Update the position of each search agent

\ 4

Calculate the fitness of updated search
agents

Amend search agent if it goes beyond
the region of search space

v

No
—'—'< Checking the stopping criteria >

Yes

,_.

v

Return the best optimal solution

|

Fig.2 Flowchart of the proposed ESA algorithm

Engineering with Computers (2021) 37:323-353 329
Table.1 Parameter settings for # Algorithms Parameters Values
algorithms
1. Spotted hyena optimizer (SHO) Search agents 80
Control parameter (%) [5, 0]
M constant [0.5, 1]
Number of generations 1000
2. Grey wolf optimizer (GWO) Search agents 80
Control parameter () [2,0]
Number of generations 1000
3. Particle swarm optimization (PSO) Number of particles 50
Inertia coefficient 0.75
Cognitive and social coeff 1.8,2
Number of generations 1000
4. Multi-verse optimizer (MVO) Search agents 50
Wormhole existence prob. [0.2, 1]
Travelling distance rate [0.6, 1]
Number of generations 1000
5. Sine cosine algorithm (SCA) Search agents 50
Number of elites 2
Number of generations 1000
6. Gravitational search algorithm (GSA) Search agents 30
Gravitational constant 100
Alpha coefficient 20
Number of generations 1000
7. Salp swarm algorithm (SSA) Population size 80
C1,Cp,C3 [0, 1]
Number of generations 1000
8. Emperor penguin optimizer (EPO) Search agents 80
Temperature profile (77) [1, 1000]
A constant [-15.1.5]
Function S() [0, 1.5]
Parameter M 2
Parameter f 2, 3]
Parameter [[1.5,2]
Number of generations 1000

are applied to update the positions of search agents using
Eq. (14).

Again, the objective value of each search agent is cal-
culated to find the optimal solutions. The condition is
checked whether any search agent goes beyond the bound-
ary in a given search space and if it happens then adjust
it. Calculate the updated search agent objective value and
update the parameters if there is a better solution from
the previous one. The algorithm will be stopped when the
stopping criterion is satisfied. This criterion is defined by
user for how long the algorithm will be run, i.e., maxi-
mum number of iterations. Finally, the optimal solution
is returned, after the stopping criterion is satisfied (see
Fig. 2).

The pseudo-code of ESA algorithm is shown in Algo-
rithm 1. There are some interesting points about the pro-
posed ESA algorithm which are given below:

e N(), A, and V assist the candidate solutions to behave
more randomly in a search space and are responsible in
avoiding conflicts between search agents.

e The convergence behaviors of common optimization
algorithms suggest that the exploitation tends to increase
the speed of convergence, while exploration tends to
decrease the convergence rate of the algorithm. There-
fore, the possibility of better exploration and exploitation
is done by the adjusted values of N(), A, and V.

e The huddling and swarm behaviors of ESA in a search
region defines the effectively collective behavior.

@ Springer

330

Engineering with Computers (2021) 37:323-353

Algorithm 1 Hybrid emperor penguin and salp swarm algorithm

Input: Population P_;,
Output: Optimal fitness value

1: procedure ESA

2: Initialize the parameters N(), c1, ¢3, ¢3, and Max,

3 while (x < Max;,) do

4: FITNESS(P_;) /* Compute the fitness of each search agent using FITNESS function*/

5 for j — 1 tondo

6 Update the positions of search agents using Eq. (9)

7 end for

8 Apply the leader and follower selection approach to the updated positions of search agents using Eq. (14)
9: FITNESS(P?,) /* Again compute the fitness value of updated search agents using FITNESS function*/
10: Amend search agent which goes beyond the region of search space
11: xe—x+1
12: end while
13: return P

14: end procedure

15: procedure FITNESS(P_;,)

16: fori < 1tondo
17: FIT[i] « FITNESS_FUNCTION(P),)
18: end for

19: FIT).s; «— BEST(FIT[])
20: return FIT .
21: end procedure

22: procedure BEST(FIT[])
23: best «— FIT[0]

24: fori < 1tondo

25: if(FIT[i] < best) then
26: best « FITIi]

27: end if

28: end for

29: return best
30: end procedure

/* Compute the best fitness value using BEST function */

3.3 Computational complexity

In this subsection, the computational complexity of pro-
posed ESA algorithm is discussed. Both the time and space
complexities of the proposed algorithm are given below.

3.3.1 Time complexity

1. Population initialization process requires O(n X d) time,
where n indicates the population size and d indicates the
dimension of a given problem.

2. The fitness of each agent requires O(Max;, X n X d)

time, where Max;,, is the maximum number of iterations
to simulate the proposed algorithm.

3. Itrequires O(N) time, where N defines the huddling and
swarm behaviors of EPO and SSA for better exploration

and exploitation.

Hence, the total time complexity of ESA algorithm is
OMax,. X nXdXN).

itr

@ Springer

3.3.2 Space complexity

The space complexity of ESA algorithm is the maximum
amount of space used at any one time which is considered
during its initialization process. Thus, the total space com-
plexity of ESA algorithm is O(n X d).

4 Experimental results and discussion

This section describes the experimentation on 53 standard
benchmark test functions to evaluate the performance of pro-
posed algorithm. The detailed description of these bench-
marks are presented below. Further, the results are compared
with well-known metaheuristic algorithms.

4.1 Benchmark test functions

The 53 benchmark test functions are applied on the proposed
algorithm to demonstrate its applicability and efficiency.

Engineering with Computers (2021) 37:323-353 331
Tab]e 2 The obtaineq Iterations Functions

optimal values on unimodal,

multimodal, fixed-dimension F, Fs Fy, Fi; Fy, Cc-1 Cc-15
multimodal, and CEC-2017

benchmark test functions using 100 2.11E-19 7.03E+01 3.21E-04 8.07E-02 —2.11E+01 3.40E+03 2.60E+07
different simulation runs (i.e., 500 544E-21 6.01E+01 120E-04 7.97E—02 —2.97E+01 3.15E+03 2.56E+06
100, 500, 800, and 1000) 800 4.00E-26 5.52E+01 7.21E-05 6.00E-02 —3.11E+01 2.94E+03 2.00E+06

1000 1.40E-28 4.01E+400

3.10E-06 2.87E—02 —347E+00 2.15E+02 1.43E+05

The best-obtained results are in bold

Table 3 The obtained

: ; Search agents Functions
optimal values on unimodal,

multimodal, fixed-dimension F, Fs Fi Fi Fys c-1 Cc-15

multimodal, and CEC-2017

benchmark test functions where 30 151E-16 7.01E+00 3.11E-03 5.27E-01 —2.53E+00 1.33E+02 2.86E+06

the number of iterations is fixed 50 543E—18 531E+01 331E—03 8.10E-01 —2.80E+00 421E+02 1.21E+05

as 1000 80 220E-29 5.00E+00 321E—07 4.12E—03 —3.49E+00 1.23E+02 1.42E+04
100 597E-23 5.42E+00 832E—04 6.18E-01 —3.13E+00 2.96E+02 2.18E+05

The best-obtained results are in bold

The number of search agents is varied from 30 to 100

These functions are divided into six main categories: uni-
modal [75], multimodal [64], fixed-dimension multimodal
[64, 75], and IEEE CEC-2017 [76] test functions. The
descriptions of these test functions are given in “Appendix”.
In “Appendix”, Dim and Range indicate the dimension of
the function and boundary of the search space, respectively.
Jmin denotes the minimization function.

“Appendix” shows the characteristics of unimodal, multi-
modal, fixed-dimension multimodal, and CEC-2017 bench-
mark test functions. The seven test functions (F—F;) are
included in the first category of unimodal test functions.
These functions have only one global optimum. The second
category consists of six test functions (Fg—F';) and third cate-
gory includes ten test functions (F4—F,3). There are multiple
local solutions in these categories which are useful for exam-
ining the local optima problem. The fourth category consists
of 30 CEC-2017 benchmark test functions (C1-C30).

4.2 Experimental setup

The proposed ESA is compared with well-known algorithms
namely spotted hyena optimizer (SHO) [16], grey wolf opti-
mizer (GWO) [55], particle swarm optimization (PSO) [49],
multi-verse optimizer (MVO) [56], sine cosine algorithm
(SCA) [57], gravitational search algorithm (GSA) [39], salp
swarm algorithm (SSA) [31], emperor penguin optimizer
(EPO) [30], and jSO [77]. The parameter values of these
algorithms are set as they are recommended in their original
papers. Table 1 shows the parameter settings of competitor
algorithms. The experimentation has been done on Matlab
R2014a (8.3.0.532) version using 64-bit Core i7 processor
with 3.20 GHz and 8 GB main memory (Tables 2, 3).

4.3 Performance comparison

In order to demonstrate the effectiveness of the proposed
algorithm, it is compared with well-known optimization
algorithms on unimodal, multimodal, fixed-dimension
multimodal, and CEC-2017 benchmark test functions. The
average and standard deviation of the best optimal solution
are mentioned in tables. For each benchmark test function,
ESA algorithm utilizes 30 independent runs in which each
run employs 1000 iterations.

4.3.1 Evaluation of test functions F,-F,

The unimodal test functions (F,—F;) are used to assess the
exploitation capability of metaheuristic algorithm. Table 4
shows the mean and standard deviation of best optimal
solution obtained from the above-mentioned algorithms on
unimodal test functions. For F, F,, and F; test functions,
SHO is the best optimizer whereas ESA is the second best
optimizer in terms of mean and standard deviation. ESA
provides better results for F,, Fs, Fs, and F; benchmark test
functions. It is observed from results that ESA is very com-
petitive as compared with other competitor algorithms and
has better exploitation capability to find the best optimal
solution very efficiently.

4.3.2 Evaluation of test functions Fg—F,;
Multimodal test functions have an ability to evaluate
the exploration of an optimization algorithm. Tables 5

and 6 depict the performance of above-mentioned
algorithms on multimodal test functions (Fs—F,3;) and

@ Springer

Engineering with Computers (2021) 37:323-353

332

PIOQ UI aIk S)[NSaI paure)qo-jsaq oy,

00+3000 00+F000 C0-d6v'y TO-H6€9 TE—AS6'S TE—ACL'S TO+ACY'S TO+AIST CO-HEEH T0-H099 €0-H6€S €0—HLO+ 10—-ASET 10—ASLY C0-AS'6 10-H6T6 00+T00'0 00+T000 *'of

€0—HSL'E €0—H60°S LO-H88'Y 80—H9I'6 10-AYI'C 10-HSYT CO+ALF'T 10+AITS 00+ATO'T 00+dLTT OI—d90C OI—ASO'T CO—Ack'T <CO0—dAL6'€ CO—ASI'T T0—H89'€ vO—dAOL'E SO-AI0°€ ¢'y

YO—HELY SO—H0CY SO-ACTY 90—HICE 00+A0L'E 00+AGI'S 10—~F68C 10—AI0C 10-ACI'T 10-APL'S €0-H6€L €0—HOS'S €0—AYTS €0—A6TT 00+H000 00+H00°0 90—ATE9 90—AT0S 'y

PI-AvLT 91-AL0'8 OI-AIT'T TI-AIES 60-H06'T 60-AST'8 00+ATT'S T0+ASST 10-AL8L O00+HAST'T T0-HITT T0-H98'E SI-API'E +I—-ALYT 00+AIY'T 00+dASY'T SI-AOST ST-AT09 O’y

10—dI8% 10—H069 T0+dIl't T0—HET'T [0+d6I'] [0+HSEC T0+dST'E T0+HETT 10+H68'T CO+HIO T [0+HE0'T T0+HCLY 00+H99'1 100Gy 00+00°0 00+T00°0 TO—ALE'S TO-AILS O

10+826'S TO+A9L'S — T0+ALE'Y CO+ATT'S — T0+HATL'S TOHASL'T— T0+HEST TO+AIS'E — 10+d61'6 CO+HAT6'9 — CO+HOST TO+ATO9 — T0+ATE6 TO+API'9 — TO+HATLT CO+HIT'T — T0+ASS'S TO+ATES — 54
PIs Ay pPIs Ay pPIs AAY pPIs Ay pIs Ay pPIs AAY 12N Ay pPIs Ay pIs AAY

Odd VO VSD VOS OAIN 0OSd OMD OHS vsd A

suonouNy 189 MIBWYdUSq [epownnur uo suni juspuadopur (¢ 10§ uonnjos [ewndo Jsaq JO UOTIRIASP PIEPUE)S PUB UBSJA § d|qeL

PIOq UI Ik S)[NSAI Paure)qo-jsaq oy,

90—A9T6 SO-AILT €0-H6T€ vO-H6L9 O00+HLLT T10—A89'L CTO-HA6L'S TO-HA8Y'E €O-HSY'L TO—ATOT CTO-ALST T0-HAC6'9 vO-HSS'E +0—A0S'L SO-ACKT SO-A6TE LO—ATT'9 90-AOL'E o

07-36€% 61-AI0L T0-A86'6 [0-AST'E LI-H00F OI-AS0T 10-ASL'6 00+d88y TO-H86'6 10—ASI'E 80-ASLT 60-HET6 I10-ASE'E 10-ASS9 10-ASLT 10-A9¥'T 1T-AET OC-AIL'S 2o

10-306% 00+dL0'S T0+A9T'Y TO+ALS'S TO+ALY'E T0+ASS'E €O+ASG'T CO+ALEL TO+ESY'T TO+ASIT [0+A68'€ [0+dE6'y 00+aAPS'T 10+36LC 10-AESS 00+H6S'S TO—AIS'S 00+AE0'S

61-A86'C SI-ACCY 10+ALY'S T0+ALI'6 T10-T68'6 00+ATIT 00+AIT'S T10+dL8T T10-H0ST 10—A08'8 10-ACLT 10-H009 vI-HSy'T +I-AC0C CI-A96'S CI-ASL'L 17-AS6'r OC-AIET "o

07-dLT'6 61-AS0T 60-H9EL O1-HOLL CTO+HAIS'T CTO+HOIY €O+H6S'E €O+AI6Y O00+AL6'S [0+AICY 00+ACIL 10+A0Y'T +I-40I'v $I-H00'T 00+H00'0 00+H000 O0CT—HOIY O0T-HSIE

Ob—dTE'€ 0p—H0T9 LI-AOI'S 81-HES9 10—-d6T6 [0-H0LT SO-HLS'S SO-AETE 10—l 10-H96'€ €0—Ar8'T PO—A6TL vE—HOET +E—T0TT 00+H00'0 00+H000 Ov—ATOT Or—AITL °J

67—A1E'S ST—AIL'S TI1-A10C ¢I-AS6'T LI-H0T'9 9I-A9T'T 10-A90'T 20-dASS'E T0-HAIT'T T0-AI8T S80-AOKT 6086y €C—-ALEL €T—AI9F 00+H000 00+H000 0S—HOE9 6T-HAITH '
pPIs AAY PIs oAy pPIs AV pIs AV pPIs oAy pIS oAy pPIs AV pIs Ay pIs Ay

Oodd VSS VSD VoS OAIN 0OSd OMD OHS vsd A

suonoUNy 189} SBWYOUS [epowrun uo suni juspuadapur (¢ 10} uonnjos ewndo 1saq JO UOTBIAD PIEPUER)S pUe UBAA d|qel

pringer

Qs

Engineering with Computers (2021) 37:323-353

333

Table 6 Mean and standard deviation of best optimal solution for 30 independent runs on fixed-dimension multimodal benchmark test functions

EPO

SSA

GSA

SCA

MVO

PSO

GWO

SHO

F ESA

Std

Ave

Std

Ave

Std

Ave

Std

Ave

Std

Ave

Std

Ave

Std

Ave

Std

Ave

Std

Ave

4.11E-02
4.09E-03

1.08E+00

2.96E+00 4.39E+00 4.41E-02

6.86E—01 3.61E+00
3.75E-03 6.84E-02

9.14E-12 1.26E+00
1.26E-01 1.01E-02

3.86E+00 2.77E+00 2.32E+00 9.98E+01

7.60E-02 9.09E-03

3.29E+00 3.71E+00

3.10E-03 9.68E+00
5.07E-04 9.01E-03

F, 1.04E-+00
F,<711E—04

2.39E-03 8.21E-03

7.37E-02 7.36E-02

2.38E-03 7.15E-02

1.06E-03 3.66E—02

Fig~ 1.02E4+00 9.80E—07 —1.03E+00 2.86E—11 — 1.02E+00 7.02E-09 — 1.02E+00 0.00E+00 — 1.02E+00 4.74E-08 — 1.02E+00 3.23E—05 — 1.02E+00 0.00E+00 — 1.02E+00 4.19E-07 — 1.02E+00 9.80E-07

F,A.9TE—01

5.39E-05
1.15E-08

3.71E-17 3.98E-01

1.13E-16 3.98E-01
3.24E-02 3.00E+00

7.61E-04 3.98E-01

7.00E-07 3.97E-01 9.03E—16 3.98E—01 1.15E-07 3.98E—01
1.48E+01 3.00E+00

2.46E-01 3.98E-01

4.30E-05 3.97E-01

6.33E—-07 3.00E+00

2.25E-05 3.00E+00

7.16E-06 3.00E+00 6.59E—05 3.00E+00

1.10E-08 3.00E4+00 9.05E+00 3.00E+00

F3.00E+00

Fig~3.88E+00 5.11E-08 —3.71E+00 4.39E-01 —3.84E+00 1.57E—03 — 3.80E+00 3.37E—15 —3.77E+00 3.53E—07 — 3.75E+00 2.55E-03 —3.86E+00 4.15E—01 —3.81E+00 4.37E-10 — 3.86E+00 6.50E—07

F,;72.86E+00 5.17E-01 — 1.44E+00 5.47E-01 —3.27E+00 7.27E-02 — 3.32E+00 2.66E-01 —3.23E+00 5.37E-02 —2.84E+00 3.71E-01 — 1.47E+00 5.32E-01 —2.39E+00 4.37E-01 —2.81E+00 7.11E-01

F5=7.05E+00 1.25E+00 —2.08E+00 3.80E—01 —9.65E+00 1.54E+00 —7.54E+00 2.77E+00 —7.38E+00 2.91E+00 —2.28E+00 1.80E+00 —4.57E+00 1.30E+00 —5.19E+00 2.34E+00 —8.07E+00 2.29E+00

F,;~12.71E400 4.16E-02 — 1.61E+00 2.04E—04 — 1.04E+00 2.73E-04 — 8.55E+00 3.08E+00 — 8.50E+00 3.02E+00 —3.99E+00 1.99E+00 — 6.58E+00 2.64E+00 —2.97E+00 1.37E—02 —10.01E+00 3.97E—02

F,373.52E+00 2.12E-03 —1.68E+00 2.64E-01 — 1.05E+01 1.81E—04 —9.19E+00 2.52E+00 — 8.41E+00 3.13E+00 —4.49E+00 1.96E+00 —9.37E+00 2.75E+00 —3.10E+00 2.37E+00 —3.41E+00 1.11E-02

The best-obtained results are in bold

fixed-dimension multimodal test functions (F4,—F,3),
respectively. From these tables, it can be seen that ESA is
able to find optimal solution for nine test problems (i.e.,
Fg,Fio,Fi3,F14, F15. F 17, F13. Fg,and F,,). For Fy, F |, and
F ¢ test functions, SHO provides better optimal results than
ESA. ESA is the second best algorithm on these test func-
tions. PSO attains best optimal solution for F|, and F, test
functions. For F,, test function, GWO and ESA are the first
and second best optimization algorithms, respectively. The
results reveal that ESA obtains competitive results in major-
ity of the test problems and has better exploration capability.

4.3.3 Evaluation of IEEE CEC-2017 test functions (C,-C;0)

This special session is devoted to the algorithms and tech-
niques for solving real parameter single objective optimiza-
tion without making use of the exact equations of the test
functions. Table 7 shows the performance of proposed ESA
algorithm and other competitive approaches on IEEE CEC-
2017 test functions. The results reveal that ESA achieves
best optimal solution for most of the CEC-2017 benchmark
test functions (i.e., C-4, C-5, C-8, C-10, C-11, C-12, C-13,
C-20, C-22, C-25, C-26, C-29, C-30).

4.4 Convergence analysis

Figure 3 shows the convergence curves of proposed ESA
and other competitor algorithm. It is shown that ESA is very
competitive over benchmark test functions. ESA has three
different convergence behaviors. In the initial stage of itera-
tions, ESA converges more quickly in the search space due to
its adaptive mechanism. In the second step, ESA converges
towards the optimum when final iteration reaches. The last
step shows the express convergence from the initial step of
iterations. The results reveal that ESA algorithm maintains a
proper balance between exploration and exploitation to find
the global optimum.

4.5 Sensitivity analysis

The proposed ESA algorithm uses four parameters namely,
maximum number of iterations and number of search agents.
The sensitivity investigation of these parameters has been
discussed by varying their values and keeping other param-
eters fixed.

1. Maximum number of iterations: ESA algorithm was

run for different number of iterations. The values of
MaxX;eraion Used in experimentation are 100, 500, 800,
and 1000. Table 2 shows the effect of iterations over
benchmark test functions. The results reveal that ESA
converges towards the optimum when the number of

iterations is increased.

@ Springer

Engineering with Computers (2021) 37:323-353

334

PIOQ UI a1k S)[NSAI Paure)qo-saq ayJ,

¥0+d66'C SO+HI09 CTO+HCI'T $0+d¥9°C 10+dY9v +O+HC9'C €0—HO08C +O+H09'C CTO+HEI'T HO+HIOT $0—H99'€ +O+HO9C 10+d¥6’'S +O+HI9C [0+HILY +0+H09'C TO+H69'9 H#0+H09°T 0¢-D
TO+HATET CO+HEYE €0+db0'S +vO+H0E'8 +vO+HCST €0+HIS8 SO+HLY'E vO+HVE'8 SO+H6TT €0+H09'8 $O+HCIY +0+H0T'8 +vO+HSY'E €0+H6T8 YO+HEL'T +O+HST'S vO+HCI'E CO+ATTE 6TO
00+d¥89 TO+HO9'Y CO+HOLY PO+HSE'S $0—H8LY ¥O+HOE'S SO—HEr'e€ +O+HOE'S +O—HPO'C YO+HOE'S +O—HPY'9 +0+HOE'S SO0—HC6'E +O+HOE'S SO0—HIL'E +O+HOE'S 90—HEY'L P#O+HOE'S 8T-D
I0+dIT°'T TOHHAIT'S 00+HSO'C PO+HICT 10+dyS'€ vO+HIECT CO0—HLO'6 +O+HOET TO—HPI'S YO+HOET CTO—HP6'L PO+HOET TO—H69'L +O+HOEC 7T0—H688 +O+HOE'C 10+H0S'8 #0+HOET LTD
10+929°S €O+HET'T CO+dEL'8 vO+HIY'T €OHHITT +vO+HSET CTO+HTY'9 $0+H6E€T TO+HLO'6 YO+HLEC €O+HCI'T SO+HSET CTO+HI89 $0+HOY'C TO+HCy'€ +vO+d8¢C T0+AIP'T €0+HSO'T 9T-O
00+H08'C TO+HI8Y 90+HAPLT 90+HCTY'Y $O+HES9 HO+HI68 +O+HSL'C +0+HC9'C SO+HHCIT $0+H6E6 YO+HYST PO+HLTY $0+HC8'E€ +0+HO0'S +O+HEL'E $O+HO0E€ SO+HISE TO+HAETT STO
00+dETy TOHHLOS T0+HEE'9 #0+HO00T TO0—H6L'8 ¥0+H00C €0—H6T9 +0+HO0C TO—HOT'E VYO+HO0C €0—HETL PO0+HO0'C CO—H8CTT +0+HO00C CO0—HEey'c +0+HO00C CTO+dIST #0+H00CT ¥CT-D
00+d¥T9 TO+HHOEY 90+HIS'S PO+HLOL +O+HICY €O+HEL'L +O+HIOT €O+HSS'E PO+HPL'6 $0+HE6'8 PO+HLLE VO+HEY'Y PO+HYO'E vO+H6YY +vO+H86'C ¢€0+HI8'T +vO+HAPE'E COtHLY'T €TD
€0+HSL'T €O+H6Y'T 00+dCET TO+H80'8 TO—HLO'8 €0+H90'8 T0—HOY'8 €0+dC0'8 T0+HOI'C TO+HCO0'8 T0—HSL'8 <TO+HC0'8 T10—HLO'8 €0+HCO'8 T0—H9L'L <TO+HC0'8 TO—H0S9 TO+HIO'8 <TTO
00+HLL'E TO+HGI'T LOHHOL'E 90+HI6Y PO+HIV'E $O+HOCE +O+HPY'E +v0+HC8Y €0+HI8Y $O+HSES €O+HE6C €0+H98T SO+HSY'E€ +vO+HIT'E +vO+HSIT €0+H6TT 90+HSOT €0+dS0°E 12D
10+dpL’L TOHAOY'T 10+H6L'E €0+HSLT TOHHOC'E PO+HIL'T 10+HISE €0+H60T TO+HHSY'y €0+dee’T 10+d91°¢ TO+HHS9'L 00+ASL'T T0+HOT'S 10+dS8'C €0+dEI'S 10+H90°€ CO+ALIT'T 0TO
00+39T°C T0+dI¥'T CTO+HST8 €O+H6E'S CTO+HTIL'S CO+HTY'S TO+HHE0'T €0+dS8T'S TO+HLI'T CO+HITS T0—HO6'Y TO+H60'T TO+HCOCT <TO+HIT'S TO+HILT €O+HIT'S TO+HI99 TO+HOI'S 61D
00+d20'C T0+HEP'T LO—HIT'T €0+HOTHY P0—HES'8 TO+HOTY ¥0—d6I'v €0+HOCTY +vO—HPI'S CO0+HOTT +0—HI96 TO+HOTY $0—H808 <TO+HOCY ¥0—HILY CTO+HOCY +0—H9I'C CO0+HOTY 8I-D
T0+HT19'8 CTO+HEST ¢€O0+HO60T ¢€O+H8S'S LOTHEE'E 90+HEE'S €O+HE0T SO+HEY'T $0+HIY'T $O+HLO6'C $0+H80C +O+HIP'S SO+HEO'L 90+HS99 +O+H6I'S PO+HElY LO+HPET 90+HOL'L LI-D
C0+U8ET TOHHAISF 60+HLE6 90+HOTYHY 60+HLOY SO+HS9'8 60+HC09 SO+HI0L 60+HEY'E SO+HLY'T 80+HEL'S SO+HLE'S 60+H80'C 90+HCO'C 60+d8I'C SO+H8CTE 60+HITT SO0+H0ST 91D
00+d6¥'C TO+HAGET TO+HCTT 90+AYL'T TO+HYL'E 90+HTILT €0—H06'T €0+H0L'T TO+HETT 90+HILT SO—HIL'T €O+HOL'T T0+aF0Y +O+HILT T0+H98°¢ €O+HOL'T TO+HH6L'S €0+HOL'T ST-D
00+HL8T TO+HOST €O+APIY €0+dO¥'6 ¥0+HTOT €O0+dI9L PO+HLST vO+HYY'L vO+H6ET $O+HOL’L VYO+HCCE €0+HOTL $O+HSST €0+H6EL PO+HEST YO+HSEY +O+dCTT ¢o+deee vI-D
[0+dCI'C 10+H90°C TO+HO8'Y <TO+HSY'T $0—H88'¢ $O+HOY' 1T SO—HEST ¢€O+dOY' T +vO—d¥I'l +vO+HOY' T +O0—H¥S'S ¢€O0+dOP' 1 SO—HCO'T 90+HOY'I SO0—H98°C TO+HOY'T 90—HES9 T0+HOF'T €1-DO
CO+HETS €0+H89'T TO+HSIT 90+HIY T T0+HY9T €O+HIP'T TO—HLI'8 SO+HOY'T TO—HFT6 €O+HOY'T TO—dv0'9 HO+HOY'T TO—H6L'9 €O+HOF'T TO—H66'L PO+HOY'T T0+H09°L €0+HOF'T TI-D
00+HdEE'€ T0+H6LT CO+HES'L €O+HHIST €O0+HITT +O+dSy'T CTO+HIS'S +vO+der'T CTO+HLO8 YO+HLY'T €O+HCCT €0+dSy'T C0+dI6’'S +0+H0S'T CO+HTIST €O+d8Y' T CTOHHIST TO+HASH'T 11D
C0+ALYE €o+AVI'E 90+dY8’T PO+HCSE P0+HE6'8 +vO+HIO6 HO+HS88' T €O0+HACL'T SO+HTICT vO+d6v's v0+dv6’l €0+dLEE vO0+HT6'T $O+HOIY $0+HES8T €0+d01'CT SO+HI9T €O0+AEET 01D
00+H00°0 00+H00°0 T0+HEY'S HO+HOI'T TO—H68'6 €O+HOI'T €0—H6E'S €O+HOI'T T0—HOET PO+HOI'T TO—HEE'L €O+HOI'T CTO—H8ET $O+HOI'T TO—HEST +O+HOI'T CTO+HIOT €O0+HOT'T 6D
00+dPT'E TO+HOL'T 80+HI6Y PO+HLI9 YO+HOP'E €0+HER9 PO+HILT $0+H89T SO+HYS8 €O+HED'6 +vO+HL8'T €O+HESE PO+HYIT $0+H6SE vO+HSO'T €0+H96'T $0+HYY'T TO+HULS'T 8D
00+dLr'e TO+HHS9'9 T0+HCH'T CO0+d8I'L TO—HLI'6 TO+H9I'L TO0—HOS'6 ¢€O+dCI'L T0+H0TT CTO+HACI'L CTO—HS8'L ¢€O0+dCI'L CTO—HLI'L TO+HCI'L TO0—H98'9 <TO+HCI'L TO—H09'S CTO+dCI'L LD
90—dT9'CT 90—H60'T LO+HO8'T SO+HIOE SO+HIST VvO+HOY'T +O+HYPST YO+HC6'E PO+HCO'c €O+HSY'L $O+HEO'T €0+HI6'T SO+HSST €0+HIET SO+HSTT $0+d6¢ T SO+HSI'T €O+dSIT 9-0
00+H9%°€ T10+dY9'T €0+H68C €O+HS8'T €O+HOY'T €0+H98T €O+HI6T +vO+H6I'T +0+HSS'E YO+HEY'T €0+H9TT CTO+HSL'8 €0+HS88'T TOHHOL'6 €O+HS6'T CTO+HET6 €0+HIT'T TO+HIF'T 159
10+3A88'Y T10+HC9'S <O+HSEL TO+H6Yy TO+HHC8'L CTO+HHCSY TO+HET'T CTO+H8CTY CTO+HLTT TO+HHOCY T0+H90'€ TO+HH6I'Y TOHHEI'T CTO+H9THY TO+HIST CTO+HHITY CTO+HHIL'S TO+ASHE -0
00+d00°0 00+H00'0 90—HITT TO+HOL'E €0—HEY'L TO+HOC'E €0—H6TE TO+HOEC'E €0—dPC’6 C0+HOc'€ €0—HIL8 TO+HOC'E ¢€0—d8I'L TO+HOLE ¢€0—H98'¢ ¢C0+d0c’c +0—HIT'T TO+HOE'€ €0
00+H00°0 00+H00°0 PO+HGI'T €O+H89Y 60+HEY'T LO+HEY'L SO+HEI'T +O+HEST SO+HIS'T €O+HLOT SO+H8I'T €O+HIS6 LOHHET'9 SO+HSL'S 90+H6CTH PO+HETE 60+dby'T SO+HO8'9 o
00+H00°0 00+H00°0 LO+HLY'8 90+HOE'E LO+HLI'E SO+HSLL 90+HCT'S +0+HIT'9 LO+HELT SO+HLST 90+HE®Y PO+HLY'Y LO+HAST'T SO+HCI'C LO+HS8CTT SO+H8ET LOHHIET +O+HO9'T 1-0
IS AAY pPIS Ay pIs Ay pPIs oAy PIs AV PIsS Ay PIs AV pIs oAy pIs Ay
osf VSS VSD VOS OAIN OSd OoMD OHS vsd A

suonouNy 389 IRWYIUL] /[0Z-DHD Uo suni juapuadapur (¢ 10} uonnjos ewndo 1saq JO UOTIBIAD PIEPUER)S pUe UBAJA / d|qe]

pringer

Qs

Engineering with Computers (2021) 37:323-353

335

F1 F3 F7 F12
« 104 Objective space % 10° Objective space %108 Objective space « 108 Objective space
8 v : v T
g ESA ESA 25 ESA — ESA
7 SHO 25 SHO SHO SHO
awo GWO 6 GWO
oh binlit PSC PSO PSO
o MV o 7 MVOo 9 o5 Mvo
2 SCA 2 \ SCA 2 2 e SCA
] GSA ® \ GSA ® ® GSA
8 1= - —ssa 8 8 S 4 - - —8sA
o = = = EPO o o o = = = EPO
3 3] 3
@ N @ 2] » 3
? ? B D
jo () Q Q)
i} o i} o
2
1
102 10° 10° 10 102 103 10° 10' 102 10° 10° 10 102 10°
Iterations Iterations Iterations Iterations
F15 F19 F21 F23
Objective space Objective space Objective space Objective space
1 ! -2.6f
ESA ESA
SHO SHO
GWO 28 GWO| |
PSO pso|| | Nl 9% 4 I TF-r=-=-=-=
o MvVO o MVO < -
2 SCA 2 SCA 2 2
s GSA s GSA s s
| = = = §8A 3 ~ = = SsA 8 g
o = = = EPO o = = = EPO | 4] 4]
Q Q Q Q
O O O o
2} 12} 12} 12}
D » » ki
O Q- Q Q
o o o o0
| i | I
102 10° 10° 10" 102 10° 10° 10 10? 10° 102 10°

Iterations Iterations

Iterations Iterations

Fig.3 Convergence analysis of the proposed ESA and other competitor algorithms on benchmark test problems

2. Number of search agents: ESA algorithm was run for
different values of search agent (i.e., 30, 50, 80, 100).
Table 3 shows the effect of number of search agents
on benchmark test functions. It is observed from table
that the value of objective function decreases with the
increase in number of search agents.

4.6 Scalability study

This subsection describes the effect of scalability on various
test functions by using proposed ESA and other competitive
algorithms. The dimensionality of the test functions is made
to vary between the different ranges. Figure 4 shows the per-
formance of ESA and other algorithms on scalable bench-
mark test functions. It is observed that the performance of
ESA is not too much degraded when the dimensionality of
search space is increased. The results reveal that the perfor-
mance of ESA is least affected with the increase in dimen-
sionality of search space. This is due to better capability of
the proposed ESA for balancing between exploration and
exploitation.

4.7 Statistical testing

Apart from standard statistical analysis such as mean and
standard deviation, ANOVA test has been conducted.
ANOVA test is used to determine whether the results
obtained from proposed algorithm are different from other
competitor algorithms in a statistically significant way. The
sample size for ANOVA test is 30 with 95% confidence of
interval. A p value determines whether the given algorithm
is statistically significant or not. If the p value of the given
algorithm is less than 0.05, then the corresponding algo-
rithm is statistically significant. Table 8 shows the analy-
sis of ANOVA test on the benchmark test functions. It is
observed from Table 8 that the p value obtained from ESA is
much smaller than 0.05 for all the benchmark test functions.
Therefore, the proposed ESA is statistically different from
the other competitor algorithms.

@ Springer

336 Engineering with Computers (2021) 37:323-353
F1
10°
o o o
e} e} e}
(8] (8] O
< 2 < 2 o 2
v 3 w3 a 810
o “w n W n
10740
200 400 600 800 1000 200 400 600 800 1000 200 400 600 800 1000
Iterations Iterations Iterations
F12 F12
30
50
80
© 105 100 o ol © 405
5 10 5 10 5 10
& 2 g 5 o g
w ‘g A *8' a ‘8.
m m m
10710
10° L 10°
\:{k‘\
200 400 600 800 1000 200 400 600 800 1000 200 400 600 800 1000
Iterations Iterations Iterations
F19 F19 F19
3
5
7
o o 9 o
Q Q Q
b ? <] 8 ?
Wz w 7 T
m m m
102
Iterations
F23 F23
\ S —— ;\:J_\“‘ _‘¥:
-2 i% -2 -2 *H
o -4 o -4 o -4
e} e} e}
g o s < 8 - o & |
w g -6 6 17, % -6 6 w % -6
m 8 m 8 m 4
8 10 8 1 -8 6 ‘
8 l
| 1o |
-10 b -10 -10
10° 102 10° 102 10° 102
lterations lterations lterations

Fig.4 Effect of scalability on the performance of ESA, SSA, and EPO algorithms

@ Springer

337

Engineering with Computers (2021) 37:323-353

Odd OdH VD 0dd VD
VD ‘VSD VIS VOS 0dd VO VOS VO ‘'OAIN 0dd VD ‘'VSD VSO 0dd VO ‘VSD ‘VSD VIS ‘VSD ‘VOS
‘OAN ‘OSd ‘0Sd ‘OMHD ‘OAN ‘OSd ‘0Sd ‘OMD ‘VOS ‘0sd ‘OAIN ‘OMD ‘VOS ‘OAIN ‘OAIN ‘OSd ‘OAIN ‘OSd
‘OMD ‘OHS ‘Vsd ‘OHS ‘vsd ‘OMD ‘vSd ‘OHS ‘vsd ‘OMD ‘vSd ‘OHS ‘vSd ‘OSd ‘OHS ‘vSd ‘OMD ‘vSH ‘OMD ‘OHS 08-aIT'T 4
Oodd
‘VSO'VOS Odd 0dH VD
vD ‘OAN ‘OSd ‘VO‘OAIN Odd VD ‘VSD 0dd ‘'vD 0dd ‘VD ‘'VSD 0dd ‘VD VSD ‘VSD ‘VOS
‘VSD VIS ‘0Sd ‘OMD ‘0Sd ‘OmMD ‘0Sd ‘OMD ‘VSD VDS 0dd VD ‘VSD VIS ‘OAIN ‘OAIN ‘OSd ‘OAIN ‘OSd
‘OMD ‘OHS VsH ‘OHS ‘vVsH ‘OHS ‘vSsd ‘OHS ‘VSH ‘OSd ‘OHS ‘VSd ‘VOS ‘OHS 'VSd ‘OSd ‘OHS ‘VSd ‘OMD VSd ‘OMD ‘OHS S9-HIv'T Od
0dd VSO 0dH VD
‘VOS ‘OAIN 0dd ‘VSD ‘VSD VIS VD ‘VSD 0dd ‘v 0Odd VSO 0dd VD VIS
VOS ‘OAN ‘0OSd ‘'OMD 0dd VD YOS ‘0Sd ‘OMD ‘0Sd ‘OMD ‘VOS ‘OAN VOIS ‘OAIN ‘VOS ‘OAN ‘OAIN ‘OSd
‘OSd ‘OHS ‘vSsd ‘OHS ‘VSH ‘OSd ‘OHS ‘vSd ‘OHS ‘vSd ‘OHS ‘vSd ‘OHS ‘VSd ‘0OSd ‘OHS ‘vsd ‘OMD vSd ‘OMD ‘OHS 61-HTS'S B4
VSO 0OdH VD 0dd ‘'vD Odd
vD ‘VOS ‘OAIN ‘VOS ‘OAIN 0dd VD ‘VSD 0dd VD Odd VD ‘VSD 0dd ‘v ‘VSD ‘VOS ‘VSD ‘VOS
‘VSD VIS ‘0Sd ‘0Sd ‘OMD ‘0Sd ‘OMD ‘OAIN ‘OMD ‘VSD VIS ‘VOS ‘OAIN ‘VOS ‘OAIN ‘OAIN ‘OSd ‘OAIN ‘OSd
‘OMD ‘OHS VsH ‘OHS ‘vsH ‘OHS ‘vSd ‘OHS ‘VSd ‘OSd ‘OHS VSd ‘OHS ‘VSd ‘0OSd ‘OHS ‘vsd ‘OMD VSd ‘OMD ‘OHS SL-HTIy ‘A
Odd 0dd ‘'vD
VD ‘'VSD ‘VSD ‘VOS Odd VO 'VSD Odd ‘VO'VSD Odd VO 'VSD 0dd ‘VD‘VSD Odd VD ‘'VOS ‘VSD ‘VOS
‘OAIN ‘OSd ‘0OSd ‘'OMD 0dd VO VIS ‘OAIN ‘OMD ‘0Sd ‘OMD ‘VOS ‘OAN ‘VOS ‘OAIN ‘OAIN ‘OSd ‘OAIN ‘OSd
‘OMD ‘OHS VsH ‘OHS ‘VSH ‘OSd ‘OHS ‘vSsd ‘OHS ‘vSd ‘OHS ‘vSd ‘OHS ‘VSd ‘0OSd ‘OHS ‘vsd ‘OMD VSd ‘OMD ‘OHS ¥I-H06'8 °d
Odd 0OdH VD 0dd VO 0dd ‘v
VD ‘VSD VOIS ‘VSD ‘VOS ‘VOS‘OAIN Odd VD ‘VSD Odd ‘VD ‘VSD ‘VSD VDS Odd VD ‘'VSD 0ddv9D ‘VSH ‘VSD ‘VOS
‘OAIN ‘OSd ‘OAIN ‘OSd ‘0Sd ‘OMD ‘0Sd ‘OMD ‘VOS ‘OMD ‘OAIN ‘OMD ‘VOS ‘OAN ‘VOS ‘OAN ‘OAIN ‘OSd
‘OMD ‘OHS VSsH ‘OMD ‘vsd ‘OHS ‘vVSd ‘OHS ‘vSd ‘OHS ‘vSd ‘OHS ‘VSd ‘0OSd ‘OHS ‘vsd ‘0Sd ‘vsH ‘OMD ‘OHS TI-H81'T °d
0dd VSO 0OdH VD 0dd ‘'vD 0dd ‘'vD 0dd ‘'vD
VD ‘VSD VDS ‘VOS ‘OAIN ‘VOS ‘OAIN 0dd VD ‘VSD ‘VSD VDS 0dd VD VSO OdH VD ‘VSD ‘VSD ‘VOS ‘VSD ‘VOS
‘OAN ‘OSd ‘0Sd ‘OMD ‘0Sd ‘OMD ‘OAIN ‘OMD ‘0Sd ‘OMD ‘VOS ‘OMD ‘VOS ‘OAIN ‘OAIN ‘OSd ‘OAIN ‘OSd
‘OMD ‘OHS VSsH ‘OHS ‘VsH ‘OHS ‘vVSd ‘OHS ‘vVSd ‘OHS ‘vSd ‘OHS ‘VSH ‘0OSd ‘OHS ‘vsd ‘OMD ‘VSsd ‘OMD ‘OHS 0L-HT8Y 'd
0dd VSO Odd 0dd VO
VO VDS ‘VOS ‘OAIN ‘VOS ‘OAIN 0dd‘'VD 0dd ‘'VD ‘VSD ‘VSD ‘VOS Odd VD ‘'VSD VD VSO Odd VD ‘VSD
‘OAIN ‘OSd ‘0Sd ‘OMD ‘0Sd ‘OMD ‘OAIN ‘OMD ‘VOS ‘0Sd ‘OAIN ‘OMD ‘VOS ‘OAN ‘VOS ‘0Sd ‘VOS ‘0Sd
‘OMD ‘OHS VSsH ‘OHS ‘vsH ‘OHS ‘vVSd ‘OHS ‘vVSd ‘OMD ‘vSsd ‘OHS ‘VSd ‘0OSd ‘OHS ‘vsd ‘OMD ‘VSsd ‘OMD ‘OHS SE-HIST %A
Odd 0dd ‘'vD 0dd ‘'vD 0dd VO 0dd ‘'vD
VSD ‘VOS ‘VSD ‘VOS ‘VOS ‘OAIN ‘VSD VIS ‘VSD VDS 0dd ‘'vD ‘VSD VIS 0dd ‘VOVIS
‘OAIN ‘OSd ‘0Sd ‘OMD ‘0OSd ‘'OMD 0dd VD VSD ‘0Sd ‘OMD ‘OAIN ‘OMD ‘VSD VIS ‘OAIN ‘OSd ‘OAIN ‘OSd
‘OMD ‘OHS VSsd ‘OHS VsH ‘OHS ‘VSd ‘OSd ‘OHS VSsd ‘OHS ‘vSd ‘OHS ‘VSd ‘0OSd ‘OHS ‘vsd ‘OMD ‘VSsd ‘OMD ‘OHS €C-HI9T %
0dd VSO 0dH VD 0dd ‘'vD 0dd ‘'vD Odd
VD ‘VSD VOIS ‘VOS ‘OAIN ‘VOS ‘OAIN 0dd VD ‘VSD 0dd ‘'vD ‘VSD VDS 0dd ‘'vD ‘VSD VDS ‘VO'VSD ‘VOS
‘OAIN ‘OSd ‘0Sd ‘OMD ‘0Sd ‘OMD ‘OAIN ‘OMD ‘VSD VIS ‘OAIN ‘OMD ‘VSD VIS ‘OAIN ‘OSd ‘OAIN ‘OSd
‘OMD ‘OHS VSsd ‘OHS vVsH ‘OHS ‘vVSd ‘OHS ‘VSH ‘OSd ‘OHS ‘VSd ‘OHS ‘VSd ‘0OSd ‘OHS ‘vVsd ‘OMD ‘VSsd ‘OMD ‘OHS TT-HILT 4
0dda VSS VSD VoS OAN OSd OoMD OHS vSd onead

SINSATISAN VAONV 823|qel

pringer

A's

Engineering with Computers (2021) 37:323-353

338

0dH VD 0dd VD OdH VD

VD VSO ‘VOS 0dd VSO 0dd ‘VD VIS ‘VSD VIS ‘VSD VDS ‘VSD ‘VSD VIS VSO ‘VOS

‘OAN ‘OSd ‘VOS ‘OAIN ‘OAIN ‘OMD VD ‘VSD ‘0Sd ‘OMD ‘OAN ‘OMD VIS ‘OAIN ‘OAIN ‘OSd ‘OAIN ‘OSd
‘OMD ‘OHS ‘VS3 ‘0OSd ‘OHS ‘vSd ‘OHS ‘vSd ‘0OSd ‘OHS ‘vSsd ‘OHS ‘vsd ‘OHS ‘vSd ‘0Sd ‘vsd ‘OMD ‘VSH ‘OMD ‘OHS 08-H0L'L “d

Odd 0dH VD

VD VSO Odd ‘VOS ‘OAN 0dd VO 0dd VD ‘VSD 0dd‘'vD 0dd ‘VD VSD ‘VSD ‘VOS

‘VOS ‘OAIN ‘VSD ‘VOS ‘0Sd ‘OMD ‘VSO ‘OAIN OdH VD ‘VOS ‘VOS ‘OMD VIS ‘OAIN ‘YOS ‘0Sd ‘OAIN ‘OSd
‘0OSd ‘OMD ‘VSH ‘OSd ‘OHS ‘vVSd ‘OHS ‘VSd ‘0OSd ‘OHS ‘VSd ‘OSd ‘OHS ‘VSd ‘OHS ‘vSd ‘OSd ‘OHS ‘vSd ‘OMD ‘VSH ‘OMD ‘OHS 9¢—HIty 4

0OdH VD 0OdH VD

VD VSO ‘VOS 0dd'vOS ‘VOS ‘OAIN 0dd VD ‘VSD Odd 0dd ‘'vVD ‘VSD ‘VSO VDS Odd VD ‘VSD

‘OAN ‘OSd ‘OAN ‘OSd ‘0Sd ‘OMD ‘0Sd ‘OMD ‘VSD VIS 0dd VD ‘VOS ‘OAIN ‘OAIN ‘OSd ‘OAIN ‘OSd
‘OMD ‘OHS ‘VsH ‘OHS ‘vsd ‘OHS ‘vsd ‘OHS ‘vSH ‘0OSd ‘OHS ‘VSH VSD ‘OHS ‘VSH ‘OHS ‘vSd ‘OMD ‘VSH ‘OMD ‘OHS Tr—H09'6 ®'4

0dd VSO 0dd VD OdH VD 0dd VD

VD VSO ‘VOS ‘OAIN 0dd VD VIS ‘VSD VDS 0dd ‘'vD ‘VSD VDS ‘VSD ‘VOS

VIS ‘OAIN ‘0Sd ‘OMD ‘OAIN ‘'OMD Odd VD 'VSD Odd VD ‘VOS ‘OAIN ‘OMD ‘VSD ‘OAIN ‘OAIN ‘OSd ‘OAIN ‘OSd
‘OMD ‘OHS ‘VsH ‘OHS ‘vVsd ‘OHS ‘VSH ‘0OSd ‘OHS ‘VSd ‘0Sd ‘OHS ‘VSd ‘OHS ‘vSd ‘OSd ‘OHS ‘vSd ‘OMD ‘VSH ‘OMD ‘OHS 87—H0S'S *“'d

Odd 0dd VD 0dH VD

VD VIS ‘VSD VIS VOIS ‘OAN VSD 0Odd VD ‘VSD ‘VSD VDS Odd VO 'VSD 0dd ‘VD ‘VSD ‘VSOD ‘VOS

‘OAIN ‘OSd ‘OAN ‘OMD ‘0Sd ‘OMD ‘OAIN ‘OMD ‘YOS ‘0Sd ‘OAIN ‘OMD ‘VOS ‘OAIN ‘VOS ‘OAN ‘OAIN ‘OSd
‘OMD ‘OHS ‘VsH ‘OHS ‘vsd ‘OHS ‘vsd ‘OHS ‘vSd ‘OMD ‘vSH ‘OHS ‘vSd ‘OSd ‘OHS ‘vSd ‘OMD ‘VSH ‘OMD ‘OHS 8¢—HLTY °'d

Odd 0dd VD 0dd VD

VOS VSO ‘VOS ‘VD ‘OAIN VD ‘VSD ‘VSD VDS 0dd ‘'vD 0dd ‘VSD ‘VSD ‘VOS

‘OAIN ‘OSd ‘OAIN ‘OMD Odd VD ‘VOS ‘0Sd ‘OMD ‘YOS ‘OMD ‘OAIN ‘OMD ‘VSD VIS ‘OAIN ‘OSd ‘OAIN ‘OSd
‘OMD ‘OHS ‘VsH ‘OHS ‘VS3 ‘OSd ‘OHS ‘vSd ‘OHS ‘vSd ‘OHS ‘vSsd ‘OHS ‘vSd ‘OSd ‘OHS ‘vSd ‘OMD ‘VSH ‘OMD ‘OHS €I-HS1'L °'d

Odd 0dH VD Oodd

VOS ‘VSD‘OAIN OdH VD 'VOS Odd ‘VD ‘VSD 0dd VD ‘VSD VSD ‘VSD VIS ‘VSD ‘VOS

‘OAIN ‘OSd ‘0Sd ‘OMD ‘OAIN ‘OSd ‘0OSd ‘'OMD 0dd VD VSD ‘VOS ‘OAN ‘VOS ‘OAIN ‘OAIN ‘OSd ‘OAIN ‘OSd
‘OMD ‘OHS ‘VsH ‘OHS ‘vVsH ‘OMD ‘vSd ‘OHS ‘vSd ‘0OSd ‘OHS ‘vsd ‘OHS ‘vSd ‘OSd ‘OHS ‘vSd ‘OMD ‘VSH ‘OMD ‘OHS 1y-avce "'d

Odd 0OdH VD 0dH VD

‘VSD ‘OAIN ‘VOS ‘OAIN 0dd VD ‘VSD Odd'VD Odd VO VSD 0dd ‘VOVSD Odd VD ‘VOS ‘VSD ‘VOS

VD VIS ‘OAN ‘0Sd ‘OMD ‘0Sd ‘OmMD ‘0Sd ‘OMD ‘VSD VIS ‘VOS ‘OMD ‘VOS ‘OAIN ‘OAIN ‘OSd ‘OAIN ‘OSd
‘OSd ‘OHS ‘vsd ‘OHS ‘vsd ‘OHS ‘vsd ‘OHS ‘vSd ‘0OSd ‘OHS ‘VSsd ‘OHS ‘vSd ‘OSd ‘OHS ‘vVSd ‘OMD ‘VSH ‘OMD ‘OHS 81-H0TT *'4

0dH VD 0dH VD 0dH VD

VD VIS 0dd VSO ‘VOS'OAIN Odd ‘VO VSO Odd ‘VO'VSD Odd VD VSO Odd ‘VD ‘'VSD ‘VSD VDS ‘VSD ‘VOS

‘OAIN ‘OSd ‘VOS ‘OAN ‘0Sd ‘OMD ‘0Sd ‘OMD ‘VOS ‘OMD ‘OAIN ‘OMD ‘VOS ‘OAIN ‘OAIN ‘OSd ‘OAIN ‘OSd
‘OMD ‘OHS ‘VSH ‘0OSd ‘OHS ‘vSd ‘OHS ‘vSsd ‘OHS ‘vSd ‘OHS ‘VSdH ‘OHS ‘vSd ‘OHS ‘vSsd ‘OMD ‘VSH ‘OMD ‘OHS 1$-H06C 4

Odd Odd 0dd VD 0dH VD Odd

VD ‘'VSD ‘VOS ‘OAIN 0dd VD VIS ‘VSD ‘OAIN Odd ‘VD ‘VSD ‘VSD ‘VOS Odd VD ‘'VSD ‘VSD VDS ‘VSD ‘VOS

‘OAIN ‘OSd ‘0Sd ‘OMD ‘OAIN ‘OMD ‘0Sd ‘OMD ‘0Sd ‘OMD ‘OAIN ‘OMD ‘VOS ‘OAIN ‘OAIN ‘OSd ‘OAIN ‘OSd
‘OMD ‘OHS ‘VSsH ‘OHS ‘vsH ‘OHS ‘vsd ‘OHS ‘vSd ‘OHS ‘vSsd ‘OHS ‘vSd ‘OHS ‘vSd ‘OMD ‘VSH ‘OMD ‘OHS Ly—H9Tt ''d
Odd VSS VSD VOS OAN OSd OMD OHS vSd onead

(ponunuoo) gsjqey

pringer

fH's

Engineering with Computers (2021) 37:323-353

339

Table 8 (continued)

SHO GWO PSO MVO SCA GSA SSA EPO

ESA

F pvalue

ESA, SHO, PSO, ESA, SHO, ESA, SHO, ESA, SHO, ESA, SHO, PSO, ESA, SHO, ESA, SHO, GWO,

MVO, GSA,

ESA, GWO,

6.16E—-68 SHO, GWO,

FZI

PSO, MVO,
SCA, GSA, GA

GWO, PSO,
MVO, SCA,

SCA, GA

GWO, PSO,
MVO, GSA,
GA, EPO

GWO, PSO,

SCA, GSA,

GA, EPO
ESA, SHO,

GWO, MVO,
SCA, GA, EPO

GA, EPO

PSO, MVO,
GSA, GA, EPO

SCA, GSA,
GA, EPO

PSO, MVO,
F,, 2.10E-73 SHO, GWO,

GSA, EPO
ESA, GWO,

MVO, SCA,

ESA, SHO, PSO,
GSA, GA

PSO, SCA,
GSA, EPO

ESA, SHO,
MVO, SCA,
GA, EPO

ESA, SHO,

GSA, GA,EPO GWO, PSO,

ESA, SHO, PSO,

GWO, PSO,
SCA, GSA,
GA, EPO

ESA, MVO,
SCA, GA, EPO

ESA, SHO, PSO,
MVO, SCA,
GSA, GA, EPO

ESA, GWO,
PSO, MVO,
GSA, GA, EPO

SCA, GSA,
GA, EPO

PSO, MVO,
F,, 3.15E-30 SHO, GWO,

SCA, GSA, GA

ESA, SHO, GWO,
PSO, MVO,

ESA, SHO,
GWO, PSO,
MVO, SCA,
GSA

MVO, SCA,
GA, EPO

MVO, GSA,

ESA, SHO,
GA

GSA, GA,EPO GWO, PSO,

ESA, SHO, PSO,

ESA, SHO,
GWO, MVO,
SCA, GSA,
GA, EPO

ESA, SHO, PSO,
MVO, SCA,
GSA, GA, EPO

ESA, GWO,
MVO, SCA,
GSA, EPO

SCA, GSA,

PSO, MVO,
GA, EPO

Fig.5 Schematic view of pressure vessel problem
5 ESA for engineering problems

The proposed ESA algorithm has been tested and validated
on six constrained and one unconstrained engineering
problems. These are pressure vessel, speed reducer, welded
beam, tension/compression spring, 25-bar truss, rolling ele-
ment bearing, and displacement of loaded structure design
problems [78, 79]. These optimization design problems have
different constraints with different nature. Different types of
penalty functions are used to handle these problems such as
static penalty, dynamic penalty, annealing penalty, adaptive
penalty, co-evolutionary penalty, and death penalty [80].

However, death penalty function handles the solution
which can violate the constraints. This function assigns the
fitness value as zero to discard the infeasible solutions dur-
ing optimization, i.e., it does not employ any information
about infeasible solutions. Due to its low computational
complexity and simplicity, ESA algorithm is equipped
with death penalty function to handle both constrained and
unconstrained engineering design problems.

5.1 Constrained engineering problems

This subsection describes six constrained engineering prob-
lems and compared it with other competitor approaches. The
statistical analysis of these problems is also done to validate
the efficiency and effectiveness of proposed algorithm.

5.1.1 Pressure vessel design problem

This problem was first proposed by Kannan and Kramer [81]
to minimize the total cost consisting of material, forming,
and welding of a cylindrical vessel. The schematic view of
pressure vessel problem is shown in Fig. 5 which is capped
at both ends by hemispherical heads. There are four design
variables of this problem:

T, (z,, thickness of the shell).

T}, (z,, thickness of the head).

R (z3, inner radius).

L (z4, length of the cylindrical section without consider-
ing the head).

@ Springer

340

Engineering with Computers (2021) 37:323-353

<104 Objective space

4.5

Pressure Vessel Design

Best score obtained

1.5+ 1

0.5

100 102 103

Iterations

10"

Fig.6 Convergence analysis of ESA for pressure vessel design prob-
lem

Among these four design variables, R and L are continuous
variables. T and 7}, are integer values which are multiples
of 0.0625 in. The mathematical formulation of this problem
is given below:
ConsiderZ = [z, 25 23 241 = [T, T, R L],
Minimize fZ) = 0.6224z,2324 + 1.77812,23

+3.1661z77, + 19.84z775,
Subject to:
2,@) = —z; +0.0193z; <0,

8,@) = —z3 +0.00954z, < 0, (15)

gzzzg + 1,296,000 < 0,
83) =2, —240 <0,

where

1 X 0.0625 <z, 2, <99 x0.0625, 10.0 < z3, z4 < 200.0.

2
@) = —nz324 —

Table 10 Statistical results obtained from different algorithms for
pressure vessel design problem

Algorithms Best Mean Worst

ESA 5879.9558 5882.5248 5885.6581
EPO 5880.0700 5884.1401 5891.3099
SHO 5885.5773 5887.4441 5892.3207
GWO 5889.3689 5891.5247 5894.6238
PSO 5891.3879 6531.5032 7394.5879
MVO 6011.5148 6477.3050 7250.9170
SCA 6137.3724 6326.7606 6512.3541
GSA 11550.2976 23342.2909 33226.2526
SSA 5890.3279 6264.0053 7005.7500

The best-obtained results are in bold

Table 9 reveals the obtained best comparison
between ESA and other competitor algorithms such
as EPO, SHO, GWO, PSO, MVO, SCA, GSA, and
SSA. The proposed ESA provides optimal solution at
214 = (0.778092, 0.383236,40.315052,200.00000) with
corresponding fitness value as f(z;_,) = 5879.9558. From
this table, it can be seen that, ESA algorithm is able to find
best optimal design with minimum cost.

The statistical results of pressure vessel design problem
are tabulated in Table 10. It can be seen from Table 10 that
ESA surpassed other algorithms for providing the best solu-
tion in terms of best, mean, and median. The convergence
behavior obtained by proposed ESA for best optimal design
is shown in Fig. 6.

5.1.2 Speed reducer design problem

The speed reducer design problem is a challenging bench-
mark problem due to its seven design variables [82] as
shown in Fig. 7. The objective of this problem is to mini-
mize the weight of speed reducer subject to constraints [83]:

Table 9 Comparison of best

i ; . Algorithms Optimum variables Optimum
solution obtained from different cost
algorithms for pressure vessel T, T, R L
design problem

ESA 0.778092 0.383236 40.315052 200.00000 5879.9558
EPO 0.778099 0.383241 40.315121 200.00000 5880.0700
SHO 0.778210 0.384889 40.315040 200.00000 5885.5773
GWO 0.779035 0.384660 40.327793 199.65029 5889.3689
PSO 0.778961 0.384683 40.320913 200.00000 5891.3879
MVO 0.845719 0.418564 43.816270 156.38164 6011.5148
SCA 0.817577 0.417932 41.74939 183.57270 6137.3724
GSA 1.085800 0.949614 49.345231 169.48741 11550.2976
SSA 0.752362 0.399540 40.452514 198.00268 5890.3279

The best-obtained result is in bold

@ Springer

Engineering with Computers (2021) 37:323-353

341

Table 11 Comparison of best

- . . Algorithms ~ Optimum variables Optimum cost

solution obtained from different

algorithms for speed reducer b m p Iy d, d,

design problem
ESA 3.50120 07 17 173 7.8 3.33415 5.26531 2993.9584
EPO 3.50123 07 17 173 7.8 3.33421 5.26536 2994.2472
SHO 3.50159 07 17 173 7.8 3.35127 5.28874 2998.5507
GWO 3506690 0.7 17 7.380933 7.815726 3.357847 5.286768 3001.288
PSO 3.500019 0.7 17 83 7.8 3352412 5.286715 3005.763
MVO 3.508502 0.7 17 7.392843 7.816034 3.358073 5.286777 3002.928
SCA 3.508755 0.7 17 73 7.8 3.461020 5.289213 3030.563
GSA 3.600000 0.7 17 83 7.8 3.369658 5.289224 3051.120
SSA 3510253 0.7 17 835 7.8 3.362201 5.287723 3067.561
The best-obtained result is in bold

Table 12 Statistical results obtained from different algorithms for Objective space

speed reducer design problem 5000 ' T

Algorithms Best Mean Worst ‘ Speed Reducer Design

ESA 2993.9584 2996.002 2999.569 - 4500 | |

EPO 2994.2472 2997.482 2999.092 g

SHO 2998.5507 2999.640 3003.889 '_S_E

GWO 3001.288 3005.845 3008.752 '8

PSO 3005.763 3105.252 3211.174 “,5’ 4000 ¢ 1

MVO 3002.928 3028.841 3060.958 2

SCA 3030.563 3065.917 3104.779 >

GSA 3051.120 3170.334 3363.873 g 3500 -

SSA 3067.561 3186.523 3313.199

The best-obtained results are in bold

3000 :
10° 10" 102 103
~fo~ ~~H7~ 7 Iterations
z z, A
‘ i I i ‘ Fig.8 Convergence analysis of ESA for speed reducer design prob-
) ‘ Il d’T r] ‘ lem
—>|— d[

Fig.7 Schematic view of speed reducer problem

Bending stress of the gear teeth.
Surface stress.

Transverse deflections of the shafts.
Stresses in the shafts.

There are seven design variables (z,—z;) such as face width
(b), module of teeth (), number of teeth in the pinion (p),
length of the first shaft between bearings (/,), length of the
second shaft between bearings ([,), diameter of first (d;)
shafts, and diameter of second shafts (d,). The mathemati-
cal formulation of this problem is formulated as follows:

@ Springer

342

Engineering with Computers (2021) 37:323-353

Fig.9 Schematic view of welded beam problem

ConsiderZ =[z; 2,23 24 25 26 27) = [bmp |, I, d; d5],
Minimize f(Z) = 0.7854z,25(3.33332; + 14.9334z; — 43.0934)
— 1.5082,(22 + 22) + 7.4777(z} + 23) + 0.7854(2,2% + 2522),

Subject to:
27
g](z) = B - 1 S Os
214,23
397.5
g2(2) = B -1 S O’
212525
1.937
80 = —— - 1<0,
2323
1,937
2,@) = — —1<0,
28,33
745 2 +16.9 x 10°]'/2
2s@) = [(745(z4/2523))" + = 1 <o,
110z}
745(z 2 +157.5 x 10°]1/2
g(,(Z) _ [((25/22Z3))] —1<o0,
852
2733
=—-1<0,
87(2) 20 <
5z
8@ =—"-1<0,
4
2
=——-1<0,
89(2) 122, <
1.5z, + 1.9
8100 = 27 1 <0,
24
1.1z, + 1.9
811(2):7——130,
<5
where

26<z <36, 07<z, <08, 17<z,<28, 7.3 <z, <83,

73<25<83,29<2,<39,50<z, <55.

@ Springer

Objective space

T

3.5 ‘

Welded Beam Design

25

Best score obtained

z»L_I]

0 200 400

600

Iterations

800

1000

Fig. 10 Convergence analysis of ESA for welded beam design prob-

lem

Table 13 Comparison of best solution obtained from different algo-
rithms for welded beam design problem

Algo- Optimum variables Optimum
rithms cost
h l t b

ESA 0.203296 3.471148 9.035107 0.201150 1.721026
EPO 0.205411 3.472341 9.035215 0.201153 1.723589
SHO 0.205563 3.474846 9.035799 0.205811 1.725661
GWO 0.205678 3.475403 9.036964 0.206229 1.726995
PSO 0.197411 3.315061 10.00000 0.201395 1.820395
MVO 0.205611 3.472103 9.040931 0.205709 1.725472
SCA 0.204695 3.536291 9.004290 0.210025 1.759173
GSA 0.147098 5.490744 10.00000 0.217725 2.172858
SSA 0.164171 4.032541 10.00000 0.223647 1.873971

The best-obtained result is in bold

Table 14 Statistical results obtained from different algorithms for

welded beam design problem

Algorithms Best Mean Worst

ESA 1.721026 1.725023 1.727208
EPO 1.723589 1.725124 1.727211
SHO 1.725661 1.725828 1.726064
GWO 1.726995 1.727128 1.727564
PSO 1.820395 2.230310 3.048231
MVO 1.725472 1.729680 1.741651
SCA 1.759173 1.817657 1.873408
GSA 2.172858 2.544239 3.003657
SSA 1.873971 2.119240 2.320125

The best-obtained results are in bold

Engineering with Computers (2021) 37:323-353

343

Table 15 Comparison of best solution obtained from different algo-
rithms for tension/compression spring design problem

Algorithms ~ Optimum variables Optimum cost
d D P
ESA 0.051080 0.342895 12.0895 0.012655526
EPO 0.051087 0.342908 12.0898 0.012656987
SHO 0.051144 0.343751 12.0955 0.012674000
GWO 0.050178 0.341541 12.07349 0.012678321
PSO 0.05000 0.310414 15.0000 0.013192580
MVO 0.05000 0.315956 1422623 0.012816930
SCA 0.050780 0.334779 12.72269 0.012709667
GSA 0.05000 0317312 14.22867 0.012873881
SSA 0.05010 0310111 14.0000 0.013036251

The best-obtained result is in bold

Table 16 Statistical results obtained from different algorithms for
tension/compression spring design problem

Algorithms Best Mean Worst

ESA 0.012655526 0.012677562 0.012667896
EPO 0.012656987 0.012678903 0.012667902
SHO 0.012674000 0.012684106 0.012715185
GWO 0.012678321 0.012697116 0.012720757
PSO 0.013192580 0.014817181 0.017862507
MVO 0.012816930 0.014464372 0.017839737
SCA 0.012709667 0.012839637 0.012998448
GSA 0.012873881 0.013438871 0.014211731
SSA 0.013036251 0.014036254 0.016251423
The best-obtained results are in bold

P P
«— E D

o

Fig. 11 Schematic view of tension/compression spring problem

Table 11 shows the comparison of the best obtained opti-
mal solution with various optimization algorithms. The
proposed ESA algorithm provides optimal solution at
Z,_7 = (3.50120,0.7,17,7.3,7.8,3.33415, 5.26531) with cor-
responding fitness value as f(z;_;) = 2993.9584. The statis-
tical results of ESA and competitor optimization algorithms
are given in Table 12.

Objective space
0.04 T :

Tension/compression Spring

0.035

0.03

0.025

0.02 |

Best score obtained

0.015

0.01 : :
100 10" 102 103
Iterations

Fig. 12 Convergence analysis of ESA for tension/compression spring
design problem

The results show that ESA outperforms than other
metaheuristic optimization algorithms. Figure 8 shows
the convergence behavior of ESA on speed reducer design
problem.

5.1.3 Welded beam design problem

The main objective of this design problem is to minimize
the fabrication cost of welded beam as shown in Fig. 9. The
optimization constraints of welded beam are shear stress (7),
bending stress () in the beam, buckling load (P,) on the bar,
and end deflection (6) of the beam. There are four design
variables (z,—z,) of this problem.

h (z,, thickness of weld)

[(z,, length of the clamped bar)
t (z3, height of the bar)

b (z4, thickness of the bar)

The mathematical formulation is described as follows:

@ Springer

344

Engineering with Computers (2021) 37:323-353

Table 17 Member stress limitations for 25-bar truss design problem

Element group Compressive stress limita- Tensile stress limi-

Table 19 Statistical results obtained from different algorithms for
25-bar truss design problem

tions Ksi (MPa) tations Ksi (MPa) Groups ESA ACO[86] PSO[87] CSS[88] BB-BC [89]
Group 1 35.092 (241.96) 40.0 (275.80) Al 0.01 0.01 0.01 0.01 0.01
Group 2 11.590 (79.913) 40.0 (275.80) A2-AS 2.007 2.042 2.052 2.003 1.993
Group 3 17.305 (119.31) 40.0 (275.80) A6-A9 3.001 3.001 3.001 3.007 3.056
Group 4 35.092 (241.96) 40.0 (275.80) Al10-All 0.01 0.01 0.01 0.01 0.01
Group 5 35.092 (241.96) 40.0 (275.80) Al12-A13 0.01 0.01 0.01 0.01 0.01
Group 6 6.759 (46.603) 40.0 (275.80) Al4-A17 0.661 0.684 0.684 0.687 0.665
Group 7 6.959 (47.982) 40.0 (275.80) A18-A21 1.620 1.625 1.616 1.655 1.642
Group 8 11.082 (76.410) 40.0 (275.80) A22-A25 2.668 2.672 2.673 2.66 2.679
Best weight 544.92 545.03 545.21 545.10 545.16
Average 54513 54574 54684 54558 545.66
weight
Consider 7 = 2y 25 23 2] = [h [1 b], Std. dev. 0.401 0.94 1.478 0.412 0.491
Minimize f(Z) = 1.10471 Z% 7, +0.048112;7,(14.0 + z,), The best-obtained results are in bold
Subject to: Obiecti
ectlive space
£ = 7G) — 13,600 <0, 580 > P
8, @) = o) — 30,000 <0, 575 25-bar Truss Desigr{
@) =8@) - 025 <0,
o
8@ =12-2 <0, ® 5707]
= - < ®
gs(z) 6000 Pc(z) = Ov 5 565 L i
8@ =0.125-2, <0, o)
) i]
2,3 = 11047122 + 0.048112,2,(14.0 + 2,) = 5.0 < 0, S 560
where ff 555+ 1
N
0.1 <z, 0.1 <z, z3 £10.0, z, £2.0, o
1 20 43 4 @ 550} |
@) = \/(1”)2 + ()2 + (I T")/V0.25(2 + (h + 1)), 545!]
+ 6000 504,000 65,856,000
T =— 0@) = ——. 8@) = —————,
\/Ehl 2b (30 x 10%)b13 540 ' -
10° 10" 102 103

s 6000014 + 0.50)1/0.25(2 + (h + 1)?)
T =

2[0.707h1(2 /12 + 0.25(h + 1)2)]
P.@) = 64,746.022(1 — 0.02823461)h°.

s

an

The obtained best comparison between proposed ESA and
other metaheuristics is presented in Table 13. Among other
algorithms, the proposed ESA provides optimal solution at
214 = (0.203296, 3.471148,9.035107, 0.201150) with corre-
sponding fitness value equal to f(z,_,) = 1.721026. Table 14

Iterations

Fig. 13 Convergence analysis of ESA for 25-bar truss design problem

shows the statistical comparison of the proposed algorithm
and other competitor algorithms. ESA shows superiority to
other algorithms in terms of best, mean, and median.

Table 18 Two loading

conditions for the 25-bar truss Node Case 1 Case 2

design problem P.Kips (kN) P/Kips (kN) PKips (kN) P.Kips (kN) P Kips (kN) P_Kips (kN)
1 0.0 20.0 (89) —5.0(22.25) 1.0 (4.45) 10.0 (44.5) =5.0(22.25)
2 0.0 —20.0 (89) -5.0(2225) 0.0 10.0 (44.5) =5.0(22.25)
3 0.0 0.0 0.0 0.5 (2.22) 0.0 0.0
6 0.0 0.0 0.0 0.5(2.22) 0.0 0.0

@ Springer

Engineering with Computers (2021) 37:323-353 345
Fig. 14 Schematic view of 25-bar truss problem
Table 20 Comparison of best solution obtained from different algorithms for rolling element bearing design problem
Algorithms ~ Optimum variables Opt. cost
D, m D b z f: fu KDmin KDmax € € C
ESA 125 21.41750 10.94109 0.510 0.515 0.4 0.7 0.3 0.02 0.6 85070.085
EPO 125 21.41890 1094113 0515 0.515 0.4 0.7 0.3 0.02 0.6 85,067.983
SHO 125 21.40732 1093268 0.515 0.515 0.4 0.7 0.3 0.02 0.6 85,054.532
GWO 125.6199 21.35129 1098781 0.515 0515 0.5 0.68807 0.300151 0.03254 0.62701 84,807.111
PSO 125 20.75388 11.17342 0.515 0.515000 0.5 0.61503 0.300000 0.05161 0.60000 81,691.202
MVO 125.6002 21.32250 10.97338 0.515 0.515000 0.5 0.68782 0.301348 0.03617 0.61061 84,491.266
SCA 125 21.14834 1096928 0.515 0.515 0.5 0.7 0.3 0.02778 0.62912 83,431.117
GSA 125 20.85417 11.14989 0515 0517746 0.5 0.61827 0.304068 0.02000 0.624638 82,276.941
SSA 125 20.77562 11.01247 0.515 0.515000 0.5 0.61397 0.300000 0.05004 0.610001 82,773.982

The best-obtained result is in bold

Figure 10 shows the convergence analysis of best opti-
mal solution obtained from ESA for welded beam design

problem.

5.1.4 Tension/compression spring design problem

The objective of this design problem is to minimize the ten-
sion/ compression spring weight (see Fig. 11). The optimi-
zation constraints of this problem are described as follows:

e Shear stress.
e Surge frequency.

e Minimum deflection.

Table 21 Statistical results obtained from different algorithms for
rolling element bearing design problem

Algorithms Best Mean Worst

ESA 85,070.085 85,045.953 86,553.485
EPO 85,067.983 85,042.352 86,551.599
SHO 85,054.532 85,024.858 85,853.876
GWO 84,807.111 84,791.613 84,517.923
PSO 81,691.202 50,435.017 32,761.546
MVO 84,491.266 84,353.685 84,100.834
SCA 83,431.117 81,005.232 77,992.482
GSA 82,276.941 78,002.107 71,043.110
SSA 82,773.982 81,198.753 80,687.239

The best-obtained results are in bold

@ Springer

Engineering with Computers (2021) 37:323-353

346
Bw Db
[}
%, |
d{)
1T - D
A
y |
S
R
\,
10
Fig. 15 Schematic view of rolling element bearing problem
14 1018 Objective space
Rolling Element Bearing Design
1.3
o
(]
£
@ 127
o
o
S 1f
o
»n
e
m
0.9r1
0.8 : :
100 10 102 103

Iterations

Fig. 16 Convergence analysis of ESA for rolling element bearing
design problem

There are three design variables such as wire diameter (d),
mean coil diameter (D), and the number of active coils (P).
The mathematical formulation of this problem is given below:

Table 22 Comparison of best

. . . Algorithms
solution obtained from different

Optimum cost ()

algorithms for displacement of ESA 167.2635
loaded structure problem EPO 168.8231
SHO 168.8889
GWO 170.3645
PSO 170.5960
MVO 169.3023
SCA 169.0032
GSA 176.3697
SSA 171.3674

The best-obtained result is in
bold

@ Springer

Consider Z = [z, z, z3]1 = [d D P],
Minimize f3) = (z; + 2)2,2°,

Subject to:
3
ZZZ3
7)=1-———<0
8@ 717857}
413 -2 1
2) = + <0,
) 12566(z,20 — 21 510822 (18)
140.457
83(2) =1- 2—1 <0,
Z2Z3
el + Vo)
= -1<0,
84(3) 15 <
where

0.05<z, <20, 025<7z, <13, 20<z; < 150.

Table 15 shows the comparison for the best solution
obtained from the proposed ESA and other competi-
tor algorithms in terms of design variables and objective
values. ESA obtained best solution at design variables
713 = (0.051080, 0.342895, 12.0895) with an objective
function value of f(z,_3) = 0.012655526. The results reveal
that ESA performs better than the other competitor algo-
rithms. The statistical results of tension/compression spring
design problem for the reported algorithms are compared
and tabulated in Table 16. It can be seen from Table 16 that
ESA provides better statistical results than the other optimi-
zation algorithms in terms of best, mean, and median.

Figure 12 shows the convergence behavior of best optimal
solution obtained from proposed ESA.

5.1.5 25-bar truss design problem

The truss design problem is a popular optimization prob-
lem [84, 85] (see Fig. 14). There are 10 nodes and 25 bars

K ,;=8N/cm
10 cm
SN |
E -5N
10 cm

K>,=IN/cm

Fig. 17 Schematic view of displacement of loaded structure

Engineering with Computers (2021) 37:323-353

347

Objective space

200

Loaded Structure

195

19071

1851

1807

Best score obtained

1751

17071

165 ; .
10° 10" 102 103
Iterations

Fig. 18 Convergence analysis of ESA for displacement of loaded
structure problem

Table 23 Statistical results obtained from different algorithms for dis-
placement of loaded structure problem

cross-sectional members. These are grouped into eight
categories.

Group 1: A,

Group 2: A,,A3,A,,As
Group 3: Ag, A7, Ag, Ag
Group 4: A}y, A,

Group 5: A5, A3

Group 6: A4, A 5,44
Group 7: Az, A 9, A5, Ay
Group 8: Ay, Az, Ay, Ass

The other variables which affects on this problem are as
follows:

p = 0.0272 N/cm? (0.1 Ib/in.?)

E = 68947 MPa (10,000 Ksi)

Displacement limitation = 0.35 in.

Maximum displacement = 0.3504 in.

Design variable set = {0.1,0.2,0.3,0.4,0.5,0.6,0.7,
0.8,09,1.0,1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,2.0,2.1,
22,2.3,2.4,2.6,2.8,3.0,3.2,3.4}

Table 17 shows the member stress limitations for this prob-

Algorithms Best Mean Worst) .)
em. The loading conditions for 25-bar truss are presented in
lem. The loading conditions for 25-bar t p ted
ESA 167.2635 169.5362 176.1128 Table 18. The comparison of best obtained solutions among
EPO 168.8231 170.1309 230.9721 geveral algorithms is tabulated in Table 19. It can be seen that
SHO 168.8889 170.3659 173.6357 the proposed ESA is better than other algorithms in terms of
GWO 170.3645 171.3694 1743970 best, average, and standard deviation. ESA converges very
PSO 170.5960 174.6354 1753602 efficiently towards optimal solution as shown in Fig. 13.
MVO 169.3023 171.0034 174.3047
SCA 169.0032 171.7530 174.4527 5,1.6 Rolling element bearing design problem
GSA 176.3697 178.7521 179.5637
SSA 171.3674 172.0374 174.0098 The main objective of this problem is to maximize the
The best-obtained results are in bold dynamic load carrying capacity of a rolling element bearing
as depicted in Fig. 15. There are ten decision variables such
as pitch diameter (D,,), ball diameter (D,), number of balls
(2), inner (f;) and outer (f,) raceway curvature coefficients,
Kpmins Kpmax» €» € and { (see Fig. 15). The mathematical
representation of this problem is given below:
Table 24 Shekel’s Foxholes (@,i=12andj=1,2 25)
function F, v ’ i o
i\j 1 2 3 4 5 6 25
1 —32 -16 0 16 32 —32 32
2 —32 —32 —32 —32 —32 -16 32
Table 25 Hartman function F'g ; (@ = 1,2,3) c (prj = 1,2,3)
i = L4 i ijs] = 14
1 3 10 30 1 0.3689 0.1170 0.2673
2 0.1 10 35 1.2 0.4699 0.4387 0.7470
3 3 10 30 3 0.1091 0.8732 0.5547
4 0.1 10 35 32 0.038150 0.5743 0.8828

@ Springer

348 Engineering with Computers (2021) 37:323-353

Table 26 Shekel’s Foxholes P (@j=1,2.3.4) Table 20 shows the performance comparison of best
functions Fyy, Fpy, Fi3 i obtained optimal solution. The proposed ESA provides

I 4 4 4 4 01 optimal solution at z;_;, = (125,21.41750, 10.94109,
2 1 1 11 02 0.510,0.515,0.4,0.7,0.3,0.02, 0.6) with corresponding fit-
38 8 8 8 02 pess value equal to f(z;_,0) = 85070.085. The statistical
4 6 6 6 6 04 reqults obtained for rolling element bearing design problem
537 3.7 04 are compared and tabulated in Table 21. The results reveal
6 2 9 29 0.6 that the proposed ESA gives the best solution with consider-
755 33 0.3 able improvement.
§ 8 1 8 1 0.7 Figure 16 shows the convergence analysis of ESA algo-
9 6 2 6 2 05 rithm and reveals that ESA is able to achieve best optimal
10 7 36 7 36 05 solution.
L 122D}, if D <25.4mm 5.2 Unconstrained engineering problem
Maximize C; =
C, =3.6471.2°/°D}*, if D> 25.4mm
Subject to: This subsection describes the displacement of loaded struc-
o ture design problem to minimize the potential energy.
gl@)=m—z+1S0, . ‘
2G) = 2Dy — Koy (D—d) 20, 5.2.1 Displacement of loaded structure design problem
830 = Kpmax(D =) = 2D;, 2.0, A displacement is a vector which defines the shortest dis-
84(@) =¢B, - D, <0, tance between initial and final position of a given point.
gs@ =D,, —0.5(D +d) >0, The objective of this problem is to minimize the potential
2@ = (0.5+eD+d)-D,, >0, energy for reducing the exce§s.load of strucFure. The loaded
_ structure that should have minimum potential energy (f(Z))
870 = 0.5(D =Dy, = D;) ~ €D, 2 0, is shown in Fig. 17. The problem can be stated as follows:
8@ =f; 2 0.515,
2@ =/, > 0515, f@ = Minimize, . x
where where
172, . 041§ 10/37-03 1 1 2
_ 11—y fiCfo =1 n==-Ku +=-Ku,-F_z —Fz,
f”_37'91[1+{1'04<1+r> <f0(2ﬁ-—1>> }] (19) A
0.41 K, =8N/em, K, = I N/em, Fy =5N,F, =5N

» [y0'3(1 _ y)l,SK)] [2](1
A+pt =1 = 2 +10=2) =10, uy=1/22+(10+22) - 10.
x=[{(D—d)/2-3(T/4)Y +{D/2 - T/4 - Dy}*> — {d/2+ T/4}*] (20)
y=26{(D-d)/2=-3(T/H{D/2-T/4 - Dy}
Table 22 reveals the comparison of best optimal solution
¢, =27 — 2cos™! <;—C> obtained from ESA and other metaheuristics including EPO,
SHO, GWO, PSO, MVO, SCA, GSA, and SSA. The pro-
posed ESA generates best optimum cost at # = 167.2635.
It can be seen that ESA is able to minimize the potential
energy for loaded structure problem.
The statistical results for the reported algorithms are tabu-
<045(D-d), 4<Z<50, 0515<f;andf, <0.6, lated in Table 23. From Table 23, it is noticed that the results
0.4 < Kpmin 0.5, 0.6 < Kppax <07, 03<e<04, obtained from ESA are far better than the other competitor

D,
Dm
D=160, d=90, B, =30, r,=r,=11.033

T "o
r=p0 =g fo=gr T=D-d-2D,
b

D,’

05(D+d)<D, <06(D+d), 0.15D-d)<D,

002<e<0.1, 06<¢<0.85.

Table 27 Hartman function F,, i (a.j=12 6) c (pj=12 6)
(/R A At A [/R0 Rt

10 3 17 35 1.7 8 1 0.1312 0.1696 0.5569 0.0124 0.8283 0.5886
005 10 17 0.1 8 14 12 02329 04135 0.8307 0.3736 0.1004 0.9991
3 35 1.7 10 17 8 3 0.2348 0.1415 0.3522 0.2883 0.3047 0.6650
17 8 005 10 0.1 14 32 04047 0.8828 0.8732 0.5743 0.1091 0.0381

AW O =

@ Springer

Engineering with Computers (2021) 37:323-353

349

algorithms in terms of best, mean, and median. Figure 18
shows the convergence analysis of best solution obtained
from proposed ESA algorithm (Tables 24, 25, 26, 27).

In summary, ESA is an effective optimizer for solving both
constrained and unconstrained engineering design problems
with low computational cost and fast convergence speed.

6 Conclusion and future works

This paper presents a hybrid swarm-based bio-inspired
metaheuristic algorithm called emperor penguin and salp
swarm algorithm (ESA). The fundamental concepts behind
this algorithm are the huddling and swarm behaviors of EPO
and SSA algorithms, respectively. The proposed ESA algo-
rithm has been tested on fifty-three benchmark test func-
tions. It is observed from statistical analysis that ESA attains
global optimal solution with better convergence as compared
to other competitive algorithms.

For CEC-2017 benchmark test functions, the performance
of ESA is found accurate and consistent. The effect of scal-
ability has also been investigated on the performance of
ESA. The results reveal that the performance of ESA is less
susceptible to scalability as compared to other algorithms.
The sensitivity analysis has also been investigated on ESA.

Moreover, ESA is applied on six constrained and one
unconstrained engineering design problems to show its
effectiveness and efficacy. On the basis of results, it can be
concluded that the proposed ESA is applicable to engineer-
ing design problems. In future, ESA may be extended for
solving multi-objective optimization problems. The binary
and many objective versions of ESA can be valuable contri-
butions. ESA may also be extended for solving online large
scale optimization and engineering applications.

Compliance with ethical standards

Conflict of interest The author declares that he has no conflict of interest.

Appendix: Unimodal, multimodal,

and fixed-dimension multimodal benchmark
test functions

Unimodal benchmark test functions

Sphere model

30
F@=)%
i=1

~100 <z, <100, f,, =0, Dim=30

Schwefel’s problem 2.22
30 30

F,@ =Y lal+]]
i=1 i=1

-10<z <10, f,,=0, Dim=30
Schwefel’s problem 1.2

30 i

F3(2) = Z (Z_,-)z
=

i=1

~100 <z, <100, f, =0, Dim=30

Schwefel’s problem 2.21
Fy(z) = max{|z;], 1 <i <30}

—100 <z, <100, f,, =0, Dim=30

Generalized Rosenbrock’s function

29
FS(Z) = 2[100(254_1 - Ziz)z + (Z[‘ - 1)2]

i=1

—30<z7,<30, fu, =0, Dim=30

Step function

30
FG(Z) = Z(LZ,’ + 05J)2
i=1

~100 <z <100, fy, =0, Dim=30

Quartic function

30
F,z) = Z iz? + random|[O0, 1]

i=1

—1.28<7<128, f,,=0, Dim=30
Multimodal benchmark test functions

Generalized Schwefel’s problem 2.26

Fg(2) = v?fl — z;sin(v/|z;])

—500 <z; <500, f,=-12569.5, Dim =30
Generalized Rastrigin’s function
30
Fo(z) = Z[Z? — 10cos(27z;) + 10]
i=1
-512<7<5.12, f,,=0, Dim=30

@ Springer

350

Engineering with Computers (2021) 37:323-353

Table 28 IEEE CEC-2017 benchmark test functions

No. Functions Srnin

C-1 Shifted and rotated bent cigar function 100
C-2 Shifted and rotated sum of different power function 200
C-3 Shifted and rotated Zakharov function 300
C-4 Shifted and rotated Rosenbrock’s function 400
C-5 Shifted and rotated Rastrigin’s function 500
C-6 Shifted and rotated expanded Scaffer’s function 600
C-7 Shifted and rotated Lunacek Bi_Rastrigin function 700
C-8 Shifted and rotated non-continuous Rastrigin’s function 800
C-9 Shifted and rotated Levy function 900
C-10 Shifted and rotated Schwefel’s function 1000
C-11 Hybrid functionl (N = 3) 1100
C-12 Hybrid function2 (N = 3) 1200
C-13 Hybrid function3 (N = 3) 1300
C-14 Hybrid function4 (N = 4) 1400
C-15 Hybrid function5 (N = 4) 1500
C-16 Hybrid function6 (N = 4) 1600
C-17 Hybrid function6 (N = 5) 1700
C-18 Hybrid function6 (N = 5) 1800
C-19 Hybrid function6 (N = 5) 1900
C-20 Hybrid function6 (N = 6) 2000
C-21 Composition functionl (N = 3) 2100
C-22 Composition function2 (N = 3) 2200
C-23 Composition function3 (N = 4) 2300
C-24 Composition function4 (N = 4) 2400
C-25 Composition function5 (N = 5) 2500
C-26 Composition function6 (N = 5) 2600
C-27 Composition function7 (N = 6) 2700
C-28 Composition function8 (N = 6) 2800
C-29 Composition function9 (N = 3) 2900
C-30 Composition function10 (N = 3) 3000

Ackley’s function

1 30
%ZZ?)

i=1

Fiy(2) = —206Xp< -02

30
- exp<31—0 Z cos(27rzl-)) +20+e

i=1

-32<7<32, fun=0, Dim=30

Generalized Griewank function

30 30
1 4
F () = 7000 Zzlz - Hcos(—) +1
i=1
0

i=1
- 600 <z, <600, f.,=

@ Springer

Generalized penalized functions

29
Fi,(@) = %{IOSin(mgl) + Z(xi _ 1)2
i=1

X [1 4 10sin®(zx;,)] + (x, — 1)*}
30
+ u(z;, 10,100, 4)

i=1

-50<z,<50, fu,=0, Dim=30

29
Fia(2) = 0.1{sin’Grz) +) (g, = 1)?
i=1

x [1 4 sin?(3xz; + D] + (z, = D?[1 + sin*(27z3)]}

N
+ Y u(z;,5,100,4)

i=1

~50<7 <50, fu, =0, Dim =230,
z+1
where x; = 1 + =
k(z; — a)” z;>a
M(Ziaa7k7m)= 0 —(1<Zi<a
k(=z; —a)" ;< —a

Fixed-dimension multimodal benchmark test
functions

Shekel’s Foxholes function

{ 25 q -1
Fi4(@) = <% + Z —)6>

2
j=1J]+ Zi=1(zi —4a;

—65.536 < z; £65.536, fon=~1, Dim=2
Kowalik’s function
11 2 2
2,07 + b;zy)
F..(z) = [ai -
15 ; blz + biZ3 + 2y
—-5<2z <5, fun=0.0003075, Dim=4

Engineering with Computers (2021) 37:323-353

351

Six-hump camel-back function

1
Fi(2) = 41% - 2.1z‘]‘ + 52? +z12 — 415 + 4Z3

—5<7,<5, fo,. =-1.0316285 Dim="2

Branin function

5.1 5

2
-) 1
F17(Z) = <Z2 - 471:211 + ;Zl - 6) + 10(1 - g)COSZl + 10

—5<7, <10, 0<z <15 f,, =0398, Dim=2

Goldstein-Price function

Fig(@) = [1+(z + 2+ D19 - 14z, + 33
— 14z, + 62,2, + 31%)]
X [30 + (2z; — 3z,)*
X (18 —32z; + 1227 + 48z, — 3622, + 2722)]
-2<7<2, fu, =3, Dim=2

Hartman’s family

° 4 3

Fig(2) = = Z c;exp| — Z ay(z; = py)’

i=1 =1
Dim =3

Shekel’s Foxholes function

° 5
F@) == Y IX —a)X —a)' +c]”
i=1
0<7 <10, fu,=-10.1532, Dim=4
[]

,
Fp@=- QX -a)X —a)" +c]”!
i=1

0<z <10, f,, =-104028 Dim=4

10
Fp3@) == X —a)X —a)' +c]”
i=1

0<z <10, f,,=-10536 Dim=4

CEC-2017 benchmark test functions

The detailed descriptions of 15 well-known CEC-2017
benchmark test functions (C1-C30) are mentioned in
Table 28.

References

10.

11.

12.

13.

Kaveh A, Shahrouzi M (2007) A hybrid ant strategy and genetic
algorithm to tune the population size for efficient structural opti-
mization. Eng Comput 24(3):237-254

Kaveh A, Shahrouzi M (2008) Dynamic selective pressure using
hybrid evolutionary and ant system strategies for structural opti-
mization. Int J Numer Methods Eng 73(4):544-563

Singh P, Rabadiya K, Dhiman G (2018) A four-way decision-
making system for the indian summer monsoon rainfall. Mod Phys
Lett B 32(25):1850304

Singh P, Dhiman G (2018) A hybrid fuzzy time series forecasting
model based on granular computing and bio-inspired optimization
approaches.] Comput Sci 27:370-385 [Online]. http://www.scien
cedirect.com/science/article/pii/S1877750317300923

Singh P, Dhiman G, Kaur A (2018) A quantum approach for time
series data based on graph and Schrodinger equations methods.
Mod Phys Lett A 33(35):1850208

Kaur A, Kaur S, Dhiman G (2018) A quantum method for
dynamic nonlinear programming technique using Schrodinger
equation and Monte Carlo approach. Mod Phys Lett B 1850374
Dhiman G, Kaur A (2019) A hybrid algorithm based on particle
swarm and spotted hyena optimizer for global optimization. Soft
computing for problem solving. Springer, Berlin, pp 599-615
Dhiman G, Kumar V (2019) Spotted hyena optimizer for solv-
ing complex and non-linear constrained engineering problems.
Harmony search and nature inspired optimization algorithms.
Springer, Berlin, pp 857-867

Kaur A, Dhiman G (2019) A review on search-based tools and
techniques to identify bad code smells in object-oriented systems.
Harmony search and nature inspired optimization algorithms.
Springer, Berlin, pp 909-921

Dhiman G, Kaur A (2017) Spotted hyena optimizer for solving
engineering design problems. In: Machine learning and data
science (MLDS), 2017 international conference on IEEE, pp
114-119

Dhiman G, Kumar V (2018) Multi-objective spotted hyena opti-
mizer: a multi-objective optimization algorithm for engineering
problems. Knowl Based Syst 150:175-197 [Online]. http://www.
sciencedirect.com/science/article/pii/S0950705118301357
Dhiman G, Kaur A (2018) Optimizing the design of airfoil and
optical buffer problems using spotted hyena optimizer. Designs
2(3):28

Dhiman G, Kumar V (2018) Knrvea: a hybrid evolutionary algo-
rithm based on knee points and reference vector adaptation strate-
gies for many-objective optimization. Appl Intell 1-27

@ Springer

http://www.sciencedirect.com/science/article/pii/S1877750317300923
http://www.sciencedirect.com/science/article/pii/S1877750317300923
http://www.sciencedirect.com/science/article/pii/S0950705118301357
http://www.sciencedirect.com/science/article/pii/S0950705118301357

352

Engineering with Computers (2021) 37:323-353

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Dhiman G, Guo S, Kaur S (2018) Ed-sho: a framework for solving
nonlinear economic load power dispatch problem using spotted
hyena optimizer. Mod Phys Lett A 33(40):1850239

Dhiman G, Kumar V (2018) Emperor penguin optimizer: a bio-
inspired algorithm for engineering problems. Knowl Based Syst
159:20-50

Dhiman G, Kumar V (2017) Spotted hyena optimizer: a novel
bio-inspired based metaheuristic technique for engineering appli-
cations. Adv Eng Softw 114:48-70

Verma S, Kaur S, Dhiman G, Kaur A (2019) Design of a novel
energy efficient routing framework for wireless nanosensor net-
works. In: 2018 first international conference on secure cyber
computing and communication (ICSCCC). IEEE, pp 532-536
Dhiman G, Singh P, Kaur H, Maini R (2019) DHIMAN: a novel
algorithm for economic dispatch problem based on optimization
method using Monte Carlo simulation and a strophysics concepts.
Mod Phys Lett A 34(04):1950032

Dhiman G, Kaur A (2019) STOA: a bio-inspired based optimiza-
tion algorithm for industrial engineering problems. Eng Appl Artif
Intell 82:148-174

Singh P, Dhiman G, Guo S, Maini R, Kaur H, Kaur A, Kaur H,
Singh J, Singh N (2019) A hybrid fuzzy quantum time series and
linear programming model: special application on Taiex index
dataset. Mode Phys Lett A 1950201

Dhiman G (2019) MOSHEPO: a hybrid multi-objective approach
to solve economic load dispatch and micro grid problems. Appl
Intell

Chandrawat RK, Kumar R, Garg B, Dhiman G, Kumar S (2017)
An analysis of modeling and optimization production cost
through fuzzy linear programming problem with symmetric and
right angle triangular fuzzy number. In: Proceedings of sixth
international conference on soft computing for problem solving.
Springer, pp 197-211

Singh P, Dhiman G (2017) A fuzzy-LP approach in time series
forecasting. In: International conference on pattern recognition
and machine intelligence, Springer, pp 243-253

Dhiman G, Kumar V (2018) Astrophysics inspired multi-objective
approach for automatic clustering and feature selection in real-life
environment. Mod Phys Lett B 32(31):1850385

Dhiman G, Kumar V (2019) Seagull optimization algorithm:
theory and its applications for large-scale industrial engineering
problems. Knowl Based Syst 165:169-196

Singh P, Dhiman G (2018) Uncertainty representation using
fuzzy-entropy approach: special application in remotely sensed
high-resolution satellite images (RSHRSIs). Appl Soft Comput
72:121-139 [Online]. http://www.sciencedirect.com/science/artic
1e/pii/S1568494618304265

Kaveh A, Rad SM (2010) Hybrid genetic algorithm and parti-
cle swarm optimization for the force method-based simultaneous
analysis and design. Iran J Sci Technol 34(B1):15

Kaveh A, Zolghadr A (2012) Truss optimization with natural fre-
quency constraints using a hybridized CSS-BBBC algorithm with
trap recognition capability. Comput Struct 102:14-27

Kaveh A, Javadi SM (2014) An efficient hybrid particle swarm
strategy, ray optimizer, and harmony search algorithm for optimal
design of truss structures. Period Polytech Civ Eng 58(2):155-171
Dhiman G, Kumar V (2018) Emperor penguin optimizer: a bio-
inspired algorithm for engineering problems. Knowl Based Syst
159:20-50 [Online]. http://www.sciencedirect.com/science/artic
1e/pii/S095070511830296X

Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H, Mir-
jalili SM (2017) Salp swarm algorithm: a bio-inspired optimizer
for engineering design problems. Adv Eng Softw 114:163-191
Waters A, Blanchette F, Kim AD (2012) Modeling huddling pen-
guins. PLoS One 7(11):e50277

Holland JH (1992) Genetic algorithms. Sci Am 267(1):66-72

@ Springer

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

Storn R, Price K (1997) Differential evolution—a simple and effi-
cient heuristic for global optimization over continuous spaces.
J Glob Optim 11(4):341-359. https://doi.org/10.1023/A:10082
02821328 [Online]

Koza JR (1992) Genetic programming: on the programming of
computers by means of natural selection. MIT Press, New York
Beyer H-G, Schwefel H-P (2002) Evolution strategies—a com-
prehensive introduction. Nat Comput 1(1):3-52. https://doi.
org/10.1023/A:1015059928466 [Online]

Simon D (2008) Biogeography-based optimization. IEEE Trans
Evol Comput 12(6):702-713

Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by
simulated annealing. Science 220(4598):671-680

Rashedi E, Nezamabadi-pour H, Saryazdi S (2009) GSA: a grav-
itational search algorithm. Inf Sci 179(13):2232-2248. http://
www.sciencedirect.com/science/article/pii/S00200255090012
00 [Online]

Erol OK, Eksin I (2006) A new optimization method: Big bang-
big crunch. Adv Eng Softw 37(2):106-111. http://www.sciencedir
ect.com/science/article/pii/S0965997805000827 [Online]
Kaveh A, Talatahari S (2010) A novel heuristic optimization
method: charged system search. Acta Mech 213(3-4):267-289
Hatamlou A (2013) Black hole: a new heuristic optimization
approach for data clustering. Inf Sci 222:175-184. http://www.
sciencedirect.com/science/article/pii/S0020025512005762
[Online]

Formato RA (2009) Central force optimization: a new determinis-
tic gradient-like optimization metaheuristic. Opsearch 46(1):25-
51. https://doi.org/10.1007/s12597-009-0003-4 [Online]

Du H, Wu X, Zhuang J (2006) Small-world optimization algo-
rithm for function optimization. Springer, Berlin, pp 264-273
Alatas B (2011) ACROA: artificial chemical reaction optimization
algorithm for global optimization. Expert Syst Appl 38(10):13
170-13 180. http://www.sciencedirect.com/science/article/pii/
S0957417411006531 [Online]

Kaveh A, Khayatazad M (2012) A new meta-heuristic method:
ray optimization. Comput Struct 112:283-294

Shah Hosseini H (2011) Principal components analysis by the
galaxy-based search algorithm: a novel metaheuristic for continu-
ous optimisation. Int J Comput Sci Eng 6:132-140

Moghaddam FF, Moghaddam RF, Cheriet M (2012) Curved space
optimization: a random search based on general relativity theory.
Neural Evol Comput

Kennedy J, Eberhart RC (1995) Particle swarm optimization. In:
Proceedings of IEEE international conference on neural networks,
pp 1942-1948

Slowik A, Kwasnicka H (2017) Nature inspired methods and their
industry applications—swarm intelligence algorithms. IEEE Trans
Ind Inf 99:1-1

Dorigo M, Birattari M, Stutzle T (2006) Ant colony optimiza-
tion—artificial ants as a computational intelligence technique.
IEEE Comput Intell Mag 1:28-39

Yang X-S (2010) A new metaheuristic bat-inspired algorithm.
Springer, Berlin, pp 65-74

Karaboga D, Basturk B (2007) Artificial Bee Colony (ABC) opti-
mization algorithm for solving constrained optimization problems.
Springer, Berlin, pp 789-798

Yang XS, Deb S (2009) Cuckoo search via levy flights. In: World
congress on nature biologically inspired computing, pp 210-214
Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer.
Adv Eng Softw 69:46-61. http://www.sciencedirect.com/science/
article/pii/S0965997813001853 [Online]

Mirjalili S, Mirjalili SM, Hatamlou A (2016) Multi-verse opti-
mizer: a nature-inspired algorithm for global optimization. Neu-
ral Comput Appl 27(2):495-513. https://doi.org/10.1007/s0052
1-015-1870-7 [Online]

http://www.sciencedirect.com/science/article/pii/S1568494618304265
http://www.sciencedirect.com/science/article/pii/S1568494618304265
http://www.sciencedirect.com/science/article/pii/S095070511830296X
http://www.sciencedirect.com/science/article/pii/S095070511830296X
https://doi.org/10.1023/A:1008202821328
https://doi.org/10.1023/A:1008202821328
https://doi.org/10.1023/A:1015059928466
https://doi.org/10.1023/A:1015059928466
http://www.sciencedirect.com/science/article/pii/S0020025509001200
http://www.sciencedirect.com/science/article/pii/S0020025509001200
http://www.sciencedirect.com/science/article/pii/S0020025509001200
http://www.sciencedirect.com/science/article/pii/S0965997805000827
http://www.sciencedirect.com/science/article/pii/S0965997805000827
http://www.sciencedirect.com/science/article/pii/S0020025512005762
http://www.sciencedirect.com/science/article/pii/S0020025512005762
https://doi.org/10.1007/s12597-009-0003-4
http://www.sciencedirect.com/science/article/pii/S0957417411006531
http://www.sciencedirect.com/science/article/pii/S0957417411006531
http://www.sciencedirect.com/science/article/pii/S0965997813001853
http://www.sciencedirect.com/science/article/pii/S0965997813001853
https://doi.org/10.1007/s00521-015-1870-7
https://doi.org/10.1007/s00521-015-1870-7

Engineering with Computers (2021) 37:323-353

353

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

Mirjalili S (2016) SCA: a sine cosine algorithm for solving
optimization problems. Knowl Based Syst 96:120-133. http://
www.sciencedirect.com/science/article/pii/S09507051150050
43 [Online]

Tan Y, Zhu Y (2010) Fireworks algorithm for optimization. In:
International conference in swarm intelligence. Springer, pp
355-364

Zheng S, Janecek A, Tan Y (2013) Enhanced fireworks algorithm.
In: Evolutionary computation (CEC), 2013 IEEE congress on
IEEE, pp 2069-2077

Ding K, Zheng S, Tan Y (2013) A GPU-based parallel fireworks
algorithm for optimization. In: Proceedings of the 15th annual
conference on genetic and evolutionary computation. ACM, pp
9-16

Zheng S, Janecek A, LiJ, Tan Y (2014) Dynamic search in fire-
works algorithm. In: Evolutionary computation (CEC), 2014
IEEE congress on IEEE, pp 3222-3229

Mucherino A, Seref O (2007) Monkey search: a novel metaheuris-
tic search for global optimization. AIP conference proceedings
953(1)

Das S, Biswas A, Dasgupta S, Abraham A (2009) Bacterial forag-
ing optimization algorithm: theoretical foundations, analysis, and
applications. Springer, Berlin, pp 23-55

Yang X-S (2010) Firefly algorithm, stochastic test functions and
design optimisation. Int J Bio-Inspired Comput 2(2):78-84. https
://doi.org/10.1504/1JBIC.2010.032124

Pan W-T (2012) A new fruit fly optimization algorithm: taking
the financial distress model as an example. Knowl Based Syst
26:69-74

Wang Y, Wu S, Li D, Mehrabi S, Liu H (2016) A part-of-speech
term weighting scheme for biomedical information retrieval. J
Biomed Inf 63:379-389. http://www.sciencedirect.com/science/
article/pii/S1532046416301125 [Online]

Orozco-Henao C, Bretas A, Chouhy-Leborgne R, Herrera-Orozco
A, Marin-Quintero J (2017) Active distribution network fault loca-
tion methodology: a minimum fault reactance and fibonacci search
approach. Int J Electr Power Energy Syst 84:232-241. http://
www.sciencedirect.com/science/article/pii/S01420615163023
07 [Online]

Askarzadeh A (2014) Bird mating optimizer: an optimization
algorithm inspired by bird mating strategies. Commun Nonlinear
Sci Numer Simul 19(4):1213-1228

Gandomi AH, Alavi AH (2012) Krill herd: a new bio-inspired
optimization algorithm. Commun Nonlinear Sci Numer Simul
17(12):4831-4845

Neshat M, Sepidnam G, Sargolzaei M, Toosi AN (2014) Artificial
fish swarm algorithm: a survey of the state-of-the-art, hybridiza-
tion, combinatorial and indicative applications. Artif Intell Rev
42(4):965-997

Shigin Y, Jianjun J, Guangxing Y (2009) A dolphin partner opti-
mization. In: Proceedings of the WRI global congress on intel-
ligent systems, pp 124-128

Lu X, Zhou Y (2008) A novel global convergence algorithm: bee
collecting pollen algorithm. In: 4th international conference on
intelligent computing, Springer, pp 518-525

Oftadeh R, Mahjoob M, Shariatpanahi M (2010) A novel meta-
heuristic optimization algorithm inspired by group hunting of

74.

75.

76.

7.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

animals: hunting search. Comput Math Appl 60(7):2087-2098.
http://www.sciencedirect.com/science/article/pii/S089812211
0005419 [Online]

Wolpert DH, Macready WG (1997) No free lunch theorems for
optimization. IEEE Trans Evol Comput 1(1):67-82

Digalakis J, Margaritis K (2001) On benchmarking functions for
genetic algorithms. Int] Comput Math 77(4):481-506

Awad N, Ali M, Liang J, Qu B, Suganthan P (2016) Problem
definitions and evaluation criteria for the CEC 2017 special ses-
sion and competition on single objective bound constrained real-
parameter numerical optimization. In: Technical report, Nanyang
Technological University Singapore

Brest J, Maucec MS, Boskovi¢ B (2017) Single objective real-
parameter optimization: algorithm JSO. In: Evolutionary com-
putation (CEC), 2017 IEEE congress on IEEE, pp 1311-1318
Kaveh A (2014) Advances in metaheuristic algorithms for optimal
design of structures. Springer, Berlin

Kaveh A, Ghazaan MI (2018) Meta-heuristic algorithms for opti-
mal design of real-size structures. Springer, Berlin

Coello CAC (2002) Theoretical and numerical constraint-han-
dling techniques used with evolutionary algorithms: a survey of
the state of the art. Comput Methods Appl Mech Eng 191(11—
12):1245-1287. http://www.sciencedirect.com/science/article/pii/
S0045782501003231 [Online]

Kannan B, Kramer SN (1994) An augmented lagrange multi-
plier based method for mixed integer discrete continuous opti-
mization and its applications to mechanical design. J Mech Des
116(2):405-411

Gandomi AH, Yang X-S (2011) Benchmark problems in structural
optimization. Springer, Berlin, pp 259-281

Mezura-Montes E, Coello CAC (2005) Useful infeasible solu-
tions in engineering optimization with evolutionary algorithms.
Springer, Berlin, pp 652-662

Kaveh A, Talatahari S (2009) A particle swarm ant colony opti-
mization for truss structures with discrete variables. J Construct
Steel Res 65(8-9):1558-1568

Kaveh A, Talatahari S (2009) Particle swarm optimizer, ant colony
strategy and harmony search scheme hybridized for optimization
of truss structures. Comput Struct 87(5-6):267-283

Bichon CVCBJ (2004) Design of space trusses using ant colony
optimization. J Struct Eng 130(5):741-751

Schutte J, Groenwold A (2003) Sizing design of truss structures
using particle swarms. Struct Multidiscip Optim 25(4):261-269.
https://doi.org/10.1007/s00158-003-0316-5 [Online]

Kaveh A, Talatahari S (2010) Optimal design of skeletal structures
via the charged system search algorithm. Struct Multidiscip Optim
41(6):893-911

Kaveh A, Talatahari S (2009) Size optimization of space
trusses using big bang-big crunch algorithm. Comput Struct
87(17-18):1129-1140

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

@ Springer

http://www.sciencedirect.com/science/article/pii/S0950705115005043
http://www.sciencedirect.com/science/article/pii/S0950705115005043
http://www.sciencedirect.com/science/article/pii/S0950705115005043
https://doi.org/10.1504/IJBIC.2010.032124
https://doi.org/10.1504/IJBIC.2010.032124
http://www.sciencedirect.com/science/article/pii/S1532046416301125
http://www.sciencedirect.com/science/article/pii/S1532046416301125
http://www.sciencedirect.com/science/article/pii/S0142061516302307
http://www.sciencedirect.com/science/article/pii/S0142061516302307
http://www.sciencedirect.com/science/article/pii/S0142061516302307
http://www.sciencedirect.com/science/article/pii/S0898122110005419
http://www.sciencedirect.com/science/article/pii/S0898122110005419
http://www.sciencedirect.com/science/article/pii/S0045782501003231
http://www.sciencedirect.com/science/article/pii/S0045782501003231
https://doi.org/10.1007/s00158-003-0316-5

	ESA: a hybrid bio-inspired metaheuristic optimization approach for engineering problems
	Abstract
	1 Introduction
	2 Background and related works
	2.1 Emperor penguin optimizer (EPO)
	2.1.1 Mathematical modeling
	2.1.1.1 Generate and determine the huddle boundary
	2.1.1.2 Temperature profile around the huddle
	2.1.1.3 Distance between emperor penguins
	2.1.1.4 Relocate the mover

	2.2 Salp swarm algorithm (SSA)
	2.3 Related works

	3 Proposed algorithm
	3.1 Motivation
	3.2 Hybrid emperor penguin and salp swarm algorithm (ESA)
	3.3 Computational complexity
	3.3.1 Time complexity
	3.3.2 Space complexity

	4 Experimental results and discussion
	4.1 Benchmark test functions
	4.2 Experimental setup
	4.3 Performance comparison
	4.3.1 Evaluation of test functions –
	4.3.2 Evaluation of test functions –
	4.3.3 Evaluation of IEEE CEC-2017 test functions ( –)

	4.4 Convergence analysis
	4.5 Sensitivity analysis
	4.6 Scalability study
	4.7 Statistical testing

	5 ESA for engineering problems
	5.1 Constrained engineering problems
	5.1.1 Pressure vessel design problem
	5.1.2 Speed reducer design problem
	5.1.3 Welded beam design problem
	5.1.4 Tensioncompression spring design problem
	5.1.5 25-bar truss design problem
	5.1.6 Rolling element bearing design problem

	5.2 Unconstrained engineering problem
	5.2.1 Displacement of loaded structure design problem

	6 Conclusion and future works
	References

