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Abstract
We present a new numerical method for solving fractional delay differential equations. The method is based on Taylor wave-
lets. We establish an exact formula to determine the Riemann–Liouville fractional integral of the Taylor wavelets. The exact 
formula is then applied to reduce the problem of solving a fractional delay differential equation to the problem of solving a 
system of algebraic equations. Several numerical examples are presented to show the applicability and the effectiveness of 
this method.
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1  Introduction

Fractional differential equations (FDEs) have a long history. 
It can be traced back to the works of L’Hopital since 1695 
when he raised a question to Leibniz about derivative of 
order 1

2
 . In the last two decades, FDEs have drawn increasing 

attention due to their important applications in various fields 
of mathematics, sciences and engineering, such as electro-
chemistry [1], economic [2], mechanic [3, 4], medicine [5], 
signal processing [6], traffic model [7], and informatics [8].

Delay differential equation is a special kind of differential 
equation in which the derivative of the unknown function at 
a certain time is given in terms of not only the value of the 
unknown function at the same time, but also the values of the 
unknown function at previous times. Delay differential equa-
tions are introduced during various mathematical modelling 
of processes in engineering and sciences, such as economy, 
biology, medicine, chemistry, control, and electrodynamic 

(see for instance, [9, 10] and references therein). In general, 
the solution of some delay differential equations cannot be 
expressed in terms of elementary functions. Therefore, it is 
necessary to develop numerical methods to approximate the 
solution of these equations. Variety of numerical solution 
methods have been proposed, for instance, Adomian decom-
position method [11], One-leg �-method [12], variational 
method [13], Legendre wavelet method [14], Chebyshev 
polynomials [15], and Bernoulli operational matrices [16].

Fractional delay differential equation is a natural gener-
alization of delay differential equations of integer orders. 
However, there were not many works devoted to numeri-
cal methods for solving such kinds of differential equations. 
Some available numerical methods for solving fractional 
delay differential equations are based on finite difference 
method [17], Legendre pseudo-spectral functions [18], spec-
tral collocation method [19], Hermit wavelet functions [20], 
Bernoulli wavelet functions [21], and linear interpolation 
method [22].

In recent years, wavelet theory has received considerable 
attention because of its powerful applications in several 
fields such as system analysis, numerical analysis, and opti-
mal control [23]. Wavelets have several specific properties 
that make them useful [24]. In general, for solving fractional 
calculus using wavelets, the following equation has been 
used:

where I� is the Riemann–Liouville fractional integral of 
order � for different wavelets and P� the operational matrix 
for Riemann–Liouville integration (OMRLI). The elements 

I�Ψ(t) ≈ P�Ψ(t) ,
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of Ψ(t) are the basis functions. Typical examples are the 
applications of Chebyshev, Legendre, Cosine and Sine 
(CAS), or Haar wavelets [25–28]. For obtaining P� , these 
wavelets were first expanded into block-pulse functions, 
then the OMRLI of block-pulse functions was used for cal-
culating P� . In addition, for obtaining P� , using Bernoulli 
wavelets in [29], the Bernoulli wavelets were first expanded 
into Bernoulli polynomials, then the OMRLI of Bernoulli 
polynomials was used for calculating P� for Bernoulli wave-
lets. It is noted that none of these wavelets calculated P� 
directly, and some approximations were involved for calcu-
lating I�Ψ(t).

A fractional delay differential equation can be stated as 
follows:

where y is an unknown function; f and � are known analytic 
functions; �, � , and the initial values �i are given; ⌈�⌉ is the 
smallest integer larger than or equal to � . In this paper, we 
introduce a new numerical method for solving fractional 
delay differential equations in Eq. (1). The method is based 
on the use of Taylor wavelets. We present the exact formula 
for determining the fractional integral of the Taylor wave-
lets. The exact formula will be then applied to solve the 
delay differential equation in Eq. (1). This formula allows 
us to reduce the given delay differential equation to a system 
of algebraic equations, which can be solved by the Newton 
iteration method.

The paper is organized as follows: Basic definitions and 
notations from Fractional Calculus are introduced in Sect. 2. 
Section 3 is devoted to Taylor wavelets and their properties. 
In Sect. 4, we establish the exact formula for determining 
the fractional integral of the Taylor wavelets defined in the 
previous section. A numerical method for solving the frac-
tional delay differential equation based on Taylor wavelets 
is presented in Sect. 5 and error estimations are given in 
Sect. 6. Several examples are presented in Sect. 7 to show 
the applicability and the effectiveness of our method.

2 � Fractional‑order integrals and derivatives

In this section, we recall some definitions and basis proper-
ties of fractional-order integrals and derivatives.

Definition 2.1  (see [30]) The Riemann–Liouville fractional 
integral of order � ≥ 0 of a function f(x) over [0,+∞) is a 
function over [0,+∞) defined as

(1)

⎧
⎪⎨⎪⎩

D𝛼y(x) = f (x, y(x), y(x − 𝜏)), x ∈ [0, 1], 𝛼 > 0, 𝜏 ∈ (0, 1),

y(i)(0) = 𝜆i, i = 0,… , ⌈𝛼⌉,
y(x) = 𝜙(x), x < 0,

where x�−1 ∗ f (x) is the convolution product of x�−1 and f(x).

Definition 2.2  (see [31]) The Caputo fractional derivative 
of order � ≥ 0 of a function f(x) over [0,+∞) is a function 
over [0,+∞) defined as

where n = ⌈�⌉.

Fractional-order integrals and derivatives satisfy the fol-
lowing properties:

Proposition 2.3  For � ≥ 0 , the following hold:

1.	 I� and D� are linear operators, i.e., I�(�f + �g) = 
�I�f + �I�g and D�(�f + �g) = �D�f + �D�g for every 
functions f , g and numbers �, �.

2.	 D�I�f (x) = f (x).

3.	 I�D�f (x) = f (x) −
⌈�⌉∑
j=0

f (j)(0)

j!
xj.

4.	 I�xj =
Γ(j+1)

Γ(j+�+1)
xj+� for j > −1.

5.	 D�xj =
Γ(j+1)

Γ(j−�+1)
xj−� for j > 𝛼 − 1.

3 � Taylor wavelets

3.1 � Wavelets and Taylor wavelets

Wavelets are a family of functions constructed from dila-
tion and translation of a single function called the mother 
wavelet. When the dilation parameter a and the translation 
parameter b vary continuously, we have the following family 
of continuous wavelets [23]:

If we restrict the parameters a and b to discrete values as 
a = ak

0
 , and b = nb0a

k
0
 , where a0 > 1, b0 > 0 , and n and k 

are positive integers, we obtain the family of discrete wave-
lets as:

which form a wavelet basis for L2(ℝ).

Definition 3.1  (See [32]) Let k be a positive integer. For each 
n = 1,… , 2k−1 and m ∈ ℕ , the Taylor wavelet function, say 
�n,m , is defined over [0, 1) by

(2)

(I𝛼f )(x) =

⎧⎪⎨⎪⎩

1

Γ(𝛼) ∫
x

0

f (s)

(x − s)1−𝛼
ds =

1

Γ(𝛼)
x𝛼−1 ∗ f (x), if 𝛼 > 0,

f (x), if 𝛼 = 0,

(D�f )(x) = In−�f (n)(x),

�a,b(t) =∣ a ∣
−1

2 �

(
t − b

a

)
, a ≠ 0, a, b ∈ ℝ

�k,n(t) =∣ a0 ∣
k

2 �
(
ak
0
t − nb0

)
,
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where

is the normal Taylor polynomial of degree m.

The six Taylor wavelets corresponding to k = 2 with the 
order m < 3 are the following:

The following properties of the Taylor wavelets can be veri-
fied by a direct calculation:

Proposition 3.2  Let k, n1, n2,m1, and m2 be positive integers 
such that 1 ≤ n1, n2 ≤ 2k−1 . Then,

𝜓n,m(x) =

⎧⎪⎨⎪⎩

2
k−1

2 ⋅ T̃m
�
2k−1x − n + 1

�
, if

n − 1

2k−1
≤ x <

n

2k−1
,

0, otherwise,

(3)T̃m(x) =
√
2m + 1 ⋅ xm

𝜓1,0(x) =

⎧
⎪⎨⎪⎩

√
2, if 0 ≤ x <

1

2
,

0, if
1

2
≤ x < 1.

𝜓2,0(x) =

⎧⎪⎨⎪⎩

0, if 0 ≤ x <
1

2
,

√
2, if

1

2
≤ x < 1.

𝜓1,1(x) =

⎧⎪⎨⎪⎩

2
√
6x, if 0 ≤ x <

1

2
,

0, if
1

2
≤ x < 1.

𝜓2,1(x) =

⎧⎪⎨⎪⎩

0, if 0 ≤ x <
1

2
,

√
6(2x − 1), if

1

2
≤ x < 1.

𝜓1,2(x) =

⎧⎪⎨⎪⎩

4
√
10x2, if 0 ≤ x <

1

2
,

0, if
1

2
≤ x < 1.

𝜓2,2(x) =

⎧
⎪⎨⎪⎩

0, if 0 ≤ x <
1

2
,

√
10(2x − 1)2, if

1

2
≤ x < 1.

1

�
0

�n1,m1
(x)�n2,m2

(x)dx =

⎧
⎪⎨⎪⎩

��
2m1 + 1

��
2m2 + 1

�

m1 + m2 + 1
, if n1 = n2,

0, if n1 ≠ n2.

3.2 � Function approximation

Recall that a set S ⊂ L2[0, 1] is called a complete set if the 
linear vector space generated by S is dense in L2[0, 1] . For 
each k ∈ ℕ , since the space of polynomials is dense in 
L2[0, 1] , the set

forms a complete set. Therefore, a function f in L2[0, 1] can 
always be expanded as

for some sequence of real numbers {cn,m}n,m.
For each positive numbers k and  M, we set

In the next section, we find a function in the linear vector 
space span(Ok,M) which is the best approximation to a solu-
tion of a given fractional delay differential equation. The 
space span(Ok,M) is a closed finite-dimensional subspace 
of L2[0, 1] . By the Hilbert Projection Theorem (see [33, 
Thm. 2, p. 51]), there exists a unique function in span(Ok,M) 
minimizing the distance to f. The function is obtained by 
truncating the series in Eq. (4) up to order M−1 , i.e.,

where

and

4 � Riemann–Liouville fractional integral 
for Taylor wavelets

An exact formula for the fractional-order integral of Taylor 
wavelets is presented in the following theorem:

Theorem 4.1  The integral of order 𝛼 > 0 of the function �n,m 
is given by

Ok ∶=

∞⋃
m=0

{
�n,m(x) | n = 1,… , 2k−1

}

(4)f (x) =

∞∑
m=0

2k−1∑
n=1

cn,m�n,m(x),

Ok,M ∶=
{
�n,m(x) | 1 ≤ n ≤ 2k−1, 0 ≤ m ≤ M − 1

}
.

f (x) ≃

M−1∑
m=0

2k−1∑
n=1

cn,m�n,m(x) = CT
⋅Ψk,M(x),

(5)
C =

[
c1,0,… , c1,M−1, c2,0,… , c2,M−1,… , c2k−1,0,

… , c2k−1,M−1

]T
,

(6)
Ψk,M =

[
�1,0,… ,�1,M−1,�2,0,… ,�2,M−1,… ,�2k−1,0,

… ,�2k−1,M−1

]T
.
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where

and

Proof  To obtain I��n,m , we use the Laplace transform. Using 
the unit step function defined as

we can rewrite the Taylor wavelet �n,m(x) as follows:

By taking the Laplace transform of I1 and using

we get

By substituting Eq. (3) to the right-hand side of the above 
equation, we obtain

(7)I𝛼𝜓n,m(x) =

⎧
⎪⎨⎪⎩

0,

U(x),

(x) − V(x),

if0 ≤ x <
(n−1)h

2k−1
,

if
(n−1)h

2k−1
≤ x <

nh

2k−1
,

if
nh

2k−1
≤ x < 1,

U(x) =
2

�
m+

1

2

�
(k−1)

Γ(m + 1)
√
2m + 1

Γ(m + � + 1)

⋅

�
x −

(n − 1)h

2k−1

�m+�

,

V(x) =

m�
l=0

�
m

l

�
2

�
l+

1

2

�
(k−1)

Γ(l + 1)
√
2m + 1

Γ(l + � + 1)

⋅

�
x −

nh

2k−1

�l+�

.

𝜇c(x) =

{
1, if x ≥ c,

0, if x < c,

𝜓n,m(x) =𝜇 (n−1)h

2k−1
(x) ⋅ 2

k−1

2 T̃m
(
2k−1x − n + 1

)

− 𝜇 nh

2k−1
(x) ⋅ 2

k−1

2 T̃m
(
2k−1x − n + 1

)

= I1 − I2.

L{�c(x)f (x)} = e−csL{f (x + c)},

L{I1}

= e
−

(n−1)h

2k−1
⋅s
2

k−1

2 L

{
T̃m

(
2k−1

(
x +

(n − 1)h

2k−1

)
− n + 1

)}

= e
−

(n−1)h

2k−1
⋅s
2

k−1

2 L
{
T̃m

(
2k−1x

)}
.

Since L{xm} =
Γ(m+1)

sm+1
 , we have

Similarly, we also have

Using Eq. (2), we have

It is well-known that L{f (x) ∗ g(x)} = L{f (x)} ⋅L{g(x)} . 
Therefore,

By taking the inverse Laplace transformation, we get

The theorem then follows. 	�  ◻

L{I1} = e
−

(n−1)h

2k−1
⋅s
2

k−1

2

√
2m + 1L

�
2m(k−1)xm

�
.

L{I1} = 2

�
m+

1

2

�
(k−1)

Γ(m + 1)
√
2m + 1 ⋅

e
−

(n−1)h

2k−1
⋅s

sm+1
.

L{I2} =

m�
l=0

�
m

l

�
2

�
l+

1

2

�
(k−1)

Γ(l + 1)
√
2m + 1 ⋅

e
−

nh

2k−1
⋅s

sl+1
.

I��n,m(x) =
1

Γ(�)
x�−1 ∗ �n,m(x).

L
�
I��n,m(x)

�

=
1

s�
⋅L

�
�n,m(x)

�

=
1

s�
⋅L

�
I1
�
−

1

s�
⋅L

�
I2
�

= 2

�
m+

1

2

�
(k−1)

Γ(m + 1)
√
2m + 1 ⋅

e
−

(n−1)h

2k−1
⋅s

sm+�+1

−

m�
l=0

�
m

l

�
2

�
l+

1

2

�
(k−1)

Γ(l + 1)
√
2m + 1 ⋅

e
−

nh

2k−1
⋅s

sl+�+1
.

I��n,m(x) =
2

�
m+

1

2

�
(k−1)

Γ(m + 1)
√
2m + 1

Γ(m + � + 1)

⋅

�
x −

(n − 1)h

2k−1

�m+�

⋅ � (n−1)h

2k−1
(x)

−

m�
l=0

�
m

l

�
2

�
l+

1

2

�
(k−1)

Γ(l + 1)
√
2m + 1

Γ(l + � + 1)

⋅

�
x −

nh

2k−1

�l+�

⋅ � nh

2k−1
(x)

.
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5 � Numerical solutions of fractional delay 
differential equations

In this section, we present a new numerical method for solv-
ing the fractional delay differential equation given in Eq. (1).

We fix a positive integer k. The function D�y(x) can be 
expanded over [0, 1) as

where C and Ψk,M are given in Eqs. (5) and (6), respectively. 
By applying the integral operator I� to both sides of Eq. (8) 
and using item 3 in Proposition 2.3 with y(j)(0) = �j for 
j = 0,… , ⌈�⌉ , we obtain

Therefore,

By substituting Eqs. (8), (9) and (10) to the given fractional 
delay differential equation in Eq. (1) and using Eq. (7), we 
obtain an algebraic equation. We collocate this algebraic 
equation at the following 2k−1M Newton–Cotes nodes

we then obtain a system of 2k−1M algebraic equations in 
the 2k−1M unknown constants cn,m . The last system can be 
solved using Newton’s iteration method. The initial guess 
for Newton’s iterative method can be obtained similarly to 
the method given in [34] as follows. To choose the initial 
guesses, in the first stage, we set k = 1 and M = 1 and then 
apply Newton’s iterative method for solving the given sys-
tem of equations. In this stage, we obtain an approximation 
to our problem. Next, we increase the value of M until a sat-
isfactory convergence is achieved. We then set k = 2 and use 
the approximate solution in the first stage as our initial guess 
in this stage. We continue this approach until the results are 
similar up to a required number of decimal places for the 
same k and two consecutive M values.

(8)D�y(x) ≃

M−1∑
m=0

2k−1∑
n=1

cn,m�n,m(x) = CTΨk,M(x),

(9)y(x) ≃

⎧⎪⎨⎪⎩

CTI𝛼Ψk,M(x) +

⌈𝛼⌉�
j=0

𝜆j

j!
xj, if x ∈ [0, 1),

𝜙(x), if x < 0.

(10)

y(x − 𝜏) ≃

⎧⎪⎨⎪⎩

CTI𝛼Ψk,M(x − 𝜏) +

⌈𝛼⌉�
j=0

𝜆j

j!
(x − 𝜏)j, if x ∈ [𝜏, 1),

𝜙(x − 𝜏), if x < 𝜏.

xi =
2i − 1

2kM
, i = 1,… , 2k−1M,

6 � Error estimation

In this section, we estimate the error bound for the best 
approximation based on Taylor wavelets.

Theorem 6.1  Let f ∈ L2[0, 1] such that f is M times differ-
entiable. Let CTΨk,M be the best approximation of f in Ok,M . 
Then,

where N = max
�∈[0,1]

|| f (M)(�)||.

Proof  We divide the closed interval [0, 1] into 2k−1 subinter-
vals In =

[
n−1

2k−1
,

n

2k−1

]
 with n = 1,… , 2k−1 . By the definition 

of Taylor wavelets, for every n = 1,… , 2k−1 , the function 
CTΨk,M is also the best approximation of f over the interval 
In . We denote Pn,M−1(x) to be the interpolating polynomial 
of f at the Chebyshev nodes in the interval In . Due to [35, 
Chp. 20], the interpolation error is

Let PM−1 be the function defined over [0,  1) such that 
PM−1(x) = Pn,M−1(x)  f o r  e v e r y  x ∈

[
n−1

2k−1
,

n

2k−1

)
 , 

n = 1,… , 2k−1 . Then,

Since CTΨk,M is the best approximation of f in Ok,M and that 
PM−1 ∈ Ok,M , we conclude from Eq. (12) that

	�  ◻

(11)|||
||| f − CTΨk,M

|||
|||2 ≤

2N

M! 2M(k+1)
,

|| f (x) − Pn,M−1(x)
|| ≤ 1

2M−1M!

(|In|
2

)M

⋅max
�∈In

||| f
(M)(�)

|||
≤ 2N

2M(k+1)M!
.

(12)

||f (x) − PM−1(x)
|| ≤ 2N

2M(k+1)M!
, for every x ∈ [0, 1).

|||
|||f − CTΨk,M

|||
|||
2

2
≤ |||| f − PM−1

||||22

=

1

�
0

(f (x) − PM−1(x))
2dx

≤
1

�
0

(
2N

2M(k+1)M!

)2

dx =
(

2N

2M(k+1)M!

)2

.
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Theorem 6.2  Let f ∈ L2[0, 1] such that f is M times differ-
entiable. Let CTΨk,M be the best approximation of f in Ok,M . 
Then,

where N = max
�∈[0,1]

||f (M)(�)||.

Proof  Using Eq. (2) and Hölder’s inequality, we can esti-
mate the difference between I�f  and I�CTΨ at x ∈ [0, 1] as 
follows:

Finally, we apply Eq. (11) and obtain

	�  ◻

7 � Illustrative examples

In this section, we compare the efficiency of our method 
with that of some previously known ones.

Example 7.1  Consider the following fractional delay differ-
ential equation (see [21, Example 1]):

���
���I

�f − I�CTΨk,M
���
���2 ≤

2N

Γ(�)
√
2�(2� − 1) 2M(k+1)M!

,

���I
�f (x) − I�CTΨk,M(x)

���

≤ 1

Γ(�)

x

�
0

��f (s) − CTΨk,M(s)
��

(x − s)1−�
ds

≤ 1

Γ(�)

⎛⎜⎜⎝

x

�
0

ds

(x − s)2−2�

⎞⎟⎟⎠

1

2 ⎛⎜⎜⎝

x

�
0

(f (s) − CTΨ(s))2ds

⎞⎟⎟⎠

1

2

≤ x
�−

1

2

Γ(�)
√
2� − 1

���
���f − CTΨk,M

���
���2.

���
���I

�f − I�CTΨk,M
���
���2

≤ 1

Γ(�)
√
2� − 1

���
���x

�−
1

2
���
���2 ⋅

���
���f − CTΨk,M

���
���2

=
2N

Γ(�)
√
2�(2� − 1) 2M(k+1)M!

.

(13)
D�y(x) = y(x − �) − y(x) +

2x2−�

Γ(3 − �)
−

x1−�

Γ(2 − �)

+ 2�x − �2 − �,

where x ∈ [0, 1] , � ∈ (0, 1] and y(x) = x2 − x if x ≤ 0.
We choose k = 2 and M = 3 and approximate D�y(x) as

where C =
[
c1,0, c1,1, c1,2, c2,0, c2,1, c2,2

]T  is the vector of 
unknown constants that we need to determine. Then, we 
have

and

In the above formulas, I�Ψ2,2 are determined explicitly by 
Theorem 4.1. By substituting Eqs. (14) and (15) to Eq. (13), 
we obtain an algebraic equation. By collocating the algebraic 
equation at Newton–Cotes nodes

we get a linear system in the cn,m’s.
In case there is no delay, i.e. � = 0 , the linear system 

becomes

This system admits the unique solution:

By substituting this solution to Eq.  (14), we obtain 
y(x) = x2 − x , which is the exact solution of the given delay 

D�y(x) ≃ c1,0�1,0(x) + c1,1�1,1(x) + c1,2�1,2(x)

+ c2,0�2,0(x) + c2,1�2,1(x) + c2,2�2,2(x)

=CT
⋅Ψ2,2(x),

(14)y(x) =

{
CTI�Ψ2,2(x), if x ∈ [0, 1],

x2 − x, if x ≤ 0,

(15)(x − �) =

{
CTI�Ψ2,2(x − �), if x ∈ [�, � + 1],

(x − �)2 − x + �, if x ≤ �.

xi =
2i − 1

12
, i = 1,… , 6,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

36
√
2c1,0 + 6

√
6c1,1 +

√
10c1,2 = −30,

4
√
2c1,0 + 2

√
6c1,1 +

√
10c1,2 = −2,

36
√
2c1,0 + 30

√
6c1,1 + 25

√
10c1,2 = −6,

36
√
2c2,0 + 6

√
6c2,1 +

√
10c2,2 = 6,

4
√
2c2,0 + 2

√
6c2,1 +

√
10c2,1 = 2,

36
√
2c2,0 + 30

√
6c2,1 + 25

√
10c2,2 = 30.

c1,0 = −
1√
2
, c1,1 =

1√
6
, c1,2 = 0,

c2,0 = 0, c2,1 =
1√
6
, c2,2 = 0.
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differential equation. It is noted that the exact solution was 
not obtained in [21].

In case there is delay, we obtain approximations of the 
solutions depending on � and � . In Table 1, we demonstrate 
the absolute errors for our method by selecting k = 2 and 
M = 3 or with the number of bases m̂ = 2k−1M = 6 ; by the 
Bernoulli wavelet method in [21] by selecting k = 2 and 
M1 = 3 or with the same number of bases. The values in 
Table 1 suggest that numerical solutions produced from our 
method have less absolute errors than numerical solutions 
from the Bernoulli wavelet method in [21]. In Table 1, M1 
is the degree of Bernoulli polynomials. Figure 1 shows the 
graphs of the exact solution and our approximate solution 
when � = 1 and the delay � = 0.01.

Example 7.2  Consider the following fractional-order delay 
differential equation (see [21, Example 2]):

This problem admits the exact solution y(x) = e−x when 
� = 3 . In Table  2, we show some values of the exact 

⎧⎪⎨⎪⎩

D𝛼y(x) = −y(x) − y(x − 0.3) + e−x+0.3, x ∈ [0, 1], 𝛼 ∈ (2, 3],

y(0) = 1, y�(0) = −1, y��(0) = 1,

y(x) = e−x, x < 0.

solution and the numerical solutions obtained by applying 
our method by choosing k = 2,M = 7 or with the number of 
bases m̂ = 14 ; by Bernoulli wavelet method in [21] by select-
ing k = 2,M1 = 7 or with the same number of bases; by Her-
mit wavelet method in [36] by selecting k = 1,M2 = 25 or 
with the number of bases m̂ = 2k−1M2 = 25 . In this table, M2 
is the degree of the Hermit polynomials. Figure 2 represents 
the graph of the absolute error function of the numerical 
solution obtained from our method when � = 3, k = 2, and 
M = 7. In addition, Fig. 3 shows the graphs of the exact solu-
tion and the numerical solutions for different order � . The 
graphical detail of Fig. 3 suggests that the numerical solu-
tions approach the exact solution when the order � tends to 3.

Example 7.3  Consider the following fractional-order delay 
differential equation (see [37, Example 6]):

where � ∈ (0, 1] and the function u(x) is defined by

(16)
{

D�y(x) = y(x − 1) + u(x), x ∈ (0, 2],

y(x) = 1, x ≤ 0,

u(x) =

{
− 2.1 + 1.05x, x ∈ (0, 1],

− 1.05, x ∈ (1, 2].

Table 1   The absolute errors 
for numerical solutions of 
Example 7.1 when � = 1 from 
our method and the Bernoulli 
wavelet method in [21]

x Our method with k = 2 and M = 3 Method in [21] with k = 2 and M1 = 3

� = 0.0001 � = 0.001 � = 0.01 � = 0.0001 � = 0.001 � = 0.01

0.2 0 8.33 × 10−17 2.78 × 10−17 8.33 × 10−17 1.94 × 10−16 0
0.4 5.55 × 10−17 1.11 × 10−16 5.55 × 10−17 2.22 × 10−16 3.33 × 10−16 1.11 × 10−16

0.6 1.67 × 10−16 1.11 × 10−16 1.11 × 10−16 1.47 × 10−14 8.60 × 10−14 3.15 × 10−14

0.8 1.11 × 10−16 2.22 × 10−16 2.22 × 10−16 1.57 × 10−14 8.57 × 10−14 3.23 × 10−14

Fig. 1   The left-hand side is 
the graph of the exact solu-
tion (line) and the approxi-
mation solution (dashed) for 
Example 7.1 from our method 
when k = 2,M = 3 , � = 1, and 
� = 0.01 . The right-hand side is 
the graph of the absolute error 
function

0.2 0.4 0.6 0.8 1.0

−0.25

−0.20

−0.15

−0.10

−0.05

0.2 0.4 0.6 0.8 1.0

5.×10−17
1.×10−16

1.5×10−16
2.×10−16

Table 2   The exact solution for 
Example 7.2 with � = 3 and 
numerical solutions obtained 
from our method, Hermit 
wavelet method in [36], and 
Bernoulli wavelet method in 
[21]

x Exact solution Hermit wavelets [36] Bernoulli wavelets [21] Present method
k = 1,M2 = 25 k = 2,M1 = 7 k = 2,M = 7

0.0 1 1 1 1
0.2 0.8187307531 0.8187 0.8187 0.8187307531
0.4 0.6703200460 0.6703 0.6703 0.6703200460
0.6 0.5488116361 0.5488 0.5488 0.5488116361
0.8 0.4493289641 0.4493 0.4494 0.4493289641



238	 Engineering with Computers (2021) 37:231–240

1 3

In case � = 1 , this problem admits the exact solution

To apply our method, we make a transformation of unknown 
functions g(x) = y(2x) , and set t = x

2
 with t ∈ (0, 1] . We then 

have

and

By substituting Eqs. (17)–(19) to (16), the given differential 
equation is transformed to the following equivalent one:

where � ∈ (0, 1] . In case � = 1 , by applying our method, we 
obtain the exact solution.

y(x) =

{
1 − 1.1x + 0.525x2, x ∈ (0, 1],

− 0.25 + 1.575x − 1.075x2 + 0.175x3, x ∈ (1, 2].

(17)y(x) = g
(
x

2

)
= g(t),

(18)y(x − 1) = g
(
x − 1

2

)
= g

(
t −

1

2

)
,

(19)D�y(x) = 2−�D�g
(
x

2

)
= 2−�D�g(t).

{
2−�D�g(t) = g

(
t −

1

2

)
+ u(2t), t ∈ (0, 1],

g(t) = 1, t ≤ 0,

In case � ≠ 1 , the exact solution is not known. In this 
case, to show the efficiency of the present method, we con-
sider the residual error

In Table 3, we compare the residual errors of numerical 
solutions obtained from our method and Legendre multi-
wavelet collocation method in [37] with � = 0.95 . For com-
puting the numerical solution by applying our method, we 
select k = 2 with M = 7 or with the number of bases m̂ = 14 
and by selecting k = 2 with M = 10 or with the number of 
bases m̂ = 20 ; together with the Legendre multiwavelet col-
location method in [37] using k = 2 with M3 = 7 and k = 2 
with M3 = 10 (hence with the same number of bases). In this 
table, M3 stand for the degrees of the Legendre wavelets. The 
left-hand side of Fig. 4 demonstrates the graph of the exact 
solution with � = 1 and the numerical solution from our 
method with k = 2 and M = 3 , while the right-hand side is 
the graph of the absolute error function. Figure 5 represents 
the graphs of different numerical solutions with different 
values of � with k = 2 and M = 3 . From Fig. 5, we see that 
as � approaches to 1, the numerical solutions approach to 
the exact solution of the given differential equation with the 
integer order.

D�y(x) − y(x − 1) − u(x) = 2−�D�g(t)

− g
(
t −

1

2

)
− u(2t).

Fig. 2   The left-hand side is 
the graph of the exact solu-
tion (line) and the numerical 
solution (dashed) for Exam-
ple 7.2 from our method. The 
right-hand side is the graph 
of the absolute error function. 
Here, we choose k = 2, M = 7, 
and � = 3

0.2 0.4 0.6 0.8 1.0

0.5
0.6
0.7
0.8
0.9
1.0

0.2 0.4 0.6 0.8 1.0

2.×10−12

4.×10−12

6.×10−12

0.2 0.4 0.6 0.8 1.0

0.4

0.5

0.6

0.7

0.8

0.9

1.0

α = 2.7
α = 2.8
α = 2.9
Exact Solution

Fig. 3   The graphs of the exact solutions and the numerical solutions 
for Example 7.2 when k = 2, M = 4, and � = 2.7, 2.8, 2.9

Table 3   The residue errors for numerical solutions of Example  7.3 
from our method and the Legendre multiwavelet collocation method 
in [37] when � = 0.95

t Our method with k = 2 Method in [37] with k = 2

M = 7 M = 10 M3 = 7 M3 = 10

0.2 1.77 × 10−15 1.11 × 10−14 1.92 × 10−4 1.49 ⋅ 10−5

0.4 9.77 × 10−15 2.76 × 10−13 1.36 × 10−5 1.61 ⋅ 10−6

0.6 2.73 × 10−14 2.89 × 10−12 9.72 × 10−6 1.13 ⋅ 10−6

0.8 4.13 × 10−14 1.83 × 10−11 6.10 × 10−5 4.47 ⋅ 10−6

1.2 8.31 × 10−6 2.50 × 10−6 3.11 × 10−5 1.56 ⋅ 10−6

1.4 4.00 × 10−6 2.57 × 10−7 2.85 × 10−6 2.17 ⋅ 10−7

1.6 2.90 × 10−6 0.81 × 10−7 2.40 × 10−6 1.81 ⋅ 10−7

1.8 2.88 × 10−6 7.79 × 10−7 1.72 × 10−5 8.23 ⋅ 10−7
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8 � Conclusion

In this paper, we propose an exact formula for the Rie-
mann–Liouville fractional integral of a Taylor wavelet. A 
new numerical method for delay fractional differential equa-
tions is presented. Using the exact formula and collocation 
method, we reduce the problem of computing a numerical 
solution of a delay fractional differential equation to the 
problem of solving an algebraic system. Several examples 
are demonstrated to show the applicability and the efficiency 
of the present method.
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