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Abstract
The type of materials used in designing and constructing structures significantly affects the way the structures behave. The 
performance of concrete and steel, which are used as a composite in columns, has a considerable effect upon the structure 
behavior under different loading conditions. In this paper, several advanced methods were applied and developed to predict 
the bearing capacity of the concrete-filled steel tube (CFST) columns in two phases of prediction and optimization. In the 
prediction phase, bearing capacity values of CFST columns were estimated through developing gene expression programming 
(GEP)-based tree equation; then, the results were compared with the results obtained from a hybrid model of artificial neural 
network (ANN) and particle swarm optimization (PSO). In the modeling process, the outer diameter, concrete compressive 
strength, tensile yield stress of the steel column, thickness of steel cover, and the length of the samples were considered as 
the model inputs. After a series of analyses, the best predictive models were selected based on the coefficient of determi-
nation (R2) results. R2 values of 0.928 and 0.939 for training and testing datasets of the selected GEP-based tree equation, 
respectively, demonstrated that GEP was able to provide higher performance capacity compared to PSO–ANN model with 
R2 values of 0.910 and 0.904 and ANN with R2 values of 0.895 and 0.881. In the optimization phase, whale optimization 
algorithm (WOA), which has not yet been applied in structural engineering, was selected and developed to maximize the 
results of the bearing capacity. Based on the obtained results, WOA, by increasing bearing capacity to 23436.63 kN, was 
able to maximize significantly the bearing capacity of CFST columns.

Keywords  The concrete-filled steel tube columns · Bearing capacity · GEP-based tree · Neuro-swarm · WOA · 
Optimization

1  Introduction

In the area of structural performance, one of the key issues 
is how to use the available materials in an optimized way. 
In current construction processes, the two most widely used 
materials are steel and concrete. They can be used together 
in such a way that each one of them can improve the oth-
er’s performance, which finally results in a better overall 
behavior of the structure under various loads. As a result, 
when concrete and steel are combined appropriately, their 

performance will be more improved compared to the cases 
where they are utilized separately. Recently, composite 
material has been widely applied to different construction 
projects [1, 2] as well as to retrofitting and rehabilitation 
purposes [3, 4] across the world. Composite columns offer 
many benefits; they can be easily produced, they enjoy some 
improved features compared to other columns such as steel 
structures, and they reduce the construction expenses [1].

Accordingly, several researchers have attempted to test 
how the concrete-filled hollow steel columns behave in dif-
ferent conditions [5–8]. Based on the findings of the study 
conducted by He et al. [9], among different types of compos-
ite columns, the concrete-filled steel tube (CFST) can out-
perform the other types of columns. The concrete in CFST 
is employed inside, while the steel’s hollow sections are in 
the surrounding periphery. It helps the steel column not to be 
suddenly buckled, improves the way it performs, and delays 
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the settlement because of the external loads. When these 
columns are being designed, a key issue is to examine the 
interactive impacts that occur between steel and concrete. 
This issue has not been investigated adequately in literature. 
Although there are some studies carried out into composite 
columns on the basis of experiments and theories, in most 
of the cases (e.g., [8]), the authors have not sufficiently 
described the columns’ behaviors under a variety of load-
ing conditions.

In recent years, the civil engineering field has witnessed 
the advance of numerous methods. One of the most sig-
nificant methods is soft computing and intelligent technique 
[10–30]. Such techniques are presented in a variety of mod-
els in various sections of engineering [31]. For example, 
artificial intelligence is used in civil engineering for predic-
tion and optimization purposes, e.g., the prediction of the 
concrete’s compressive strength [20, 29–40], the identifica-
tion of the risk areas of regional transportation corridors 
[41], the prediction of final strength of reinforce concrete 
beams with fiber-reinforced plastic (FRP) strengthened in 
shear [8], the determination of damage in skeletal structure 
[42], and the optimization of the arch dam forms [43].

To improve the precision level in the computation of 
the parameters, the artificial neural network (ANN) can be 
effectively used [12–15, 27, 41]. Even though ANNs have 
dynamic research realms in science and engineering, directly 
map the input to output patterns, and are able to use all effec-
tive prediction characteristics, they have limitations such as 
slow learning rate and entrapment in local minima [44]. The 
use of optimization techniques such as particle swarm opti-
mization (PSO) in different engineering optimized affairs 
can address the shortcomings of ANN. In fact, PSO is able 
to optimize weights and biases of ANN to get better perfor-
mance prediction.

In the engineering field, a recently introduced technique 
called gene expression programming (GEP) has been found 
successful in enhancing the accuracy level. It is actually a 
combined form of genetic algorithm (GA) and genetic pro-
gramming (GP). It has shown a high capability of intro-
ducing mathematical equations to do the predictions with 
a higher quality and solving problems of a high complexity 
[45, 46]. Lots of studies have reported the success of GEP 
in different fields of civil engineering, including the envi-
ronmental issues of blasting [47, 48], piling [49], tunneling 
and rock mechanics [50, 51], concrete technology [52, 53], 
highway construction [54], and river engineering [55, 56].

The present study is aimed to propose efficient models 
based on these artificial intelligence approaches in order 
to predict the axial load bearing capacity of the composite 
columns. To this end, experimental data are gathered and 
required tests are carried out on parameters that affect the 
bearing capacity of columns. Next, the gathered data are 
applied to the formation and development of various models 

of GEP. Then, a comparison is made between the results 
of the proposed model and those of hybrid PSO–ANN 
(or neuro-swarm) and ANN networks. At the final step, to 
achieve the optimum cross-sections, a whale optimization 
algorithm (WOA), which is considered as a novel optimiza-
tion algorithm, is proposed. In the following, the theoretical 
underpinning of the models used in this study is explained 
first, the datasets are described, and the prediction phase of 
the study is then discussed. To achieve the optimum values 
of the variables, the best predictive model will be selected 
and then it will be utilized as an input model in the WOA 
optimization technique.

2 � Predictive model background

2.1 � Artificial neural network (ANN)

The concept of neural networks was first introduced in 1950s 
by Donald Hebb [57] with the introduction of a simple learn-
ing mechanism. He developed this method by investigating 
human brain neurons and the effect of learning on them. In 
each neuron of ANN, dendrites receive information from 
the previous neuron, and axons transfer the results to the 
next section (i.e., next neuron) after an initial processing. 
Chemical signaling is done through synopses between the 
cells. The performance of a computational neuron, which 
is used in neural networks, is similar (assuming sigmoid 
activation function) to that of a biological neuron with 
inputs and outputs. An ANN contains two or more layers, 
and each layer has a series of neurons. The strength of the 
links between the layers is associated with the weights con-
stituting a network. The weights associated with each neu-
ron linearly transform the input vectors, which become the 
arguments of each neuron’s non-linear activation function 
(transfer function). Two main algorithms, i.e., feed-forward 
multilayer and back-propagation (BP), are used in neural 
networks. BP is more common and recommended by differ-
ent researchers [58–60]. This algorithm updates the weights 
in order for the loss functions to reach the minimum error 
(loss) in the system. This training process is repeated for a 
few times so that it can reach the termination criterion. The 
BP phrase is associated with conditions in which gradient is 
calculated for non-linear multilayer networks (the networks 
that are used to solve most of the engineering problems). 
The sigmoid transfer function receives the input values and 
presents them as an interval of 0–1, regardless of the initial 
input interval [61–64].

2.2 � Particle swarm optimization (PSO)

Kennedy and Eberhart [65] introduced a solution for opti-
mal continuous problems called particle swarm optimization 
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(PSO). PSO is a non-linear procedure inspired by social sys-
tems such as fish shoals. Indeed, PSO has been formed based 
on the number of particles, which is established randomly. 
Seeking an optimal value goal is another PSO stage as an 
iterative process. In this stage, the particles are adjusted to 
their positions based on their own experience and that of 
other particles. To gain the best position, each particle fol-
lows its own best position (PBEST) and global best position 
(GBEST) among other particles. Moreover, each particle tends 
to move toward its own PBEST and GBEST during the training 
process based on a new velocity term and distance of its 
best positions in the learning stage. Respectively, the new 
position of each particle depends on the new velocity value 
in next iteration [66, 67]. In PSO, Eqs. (1) and (2) are used 
to gain the velocity updated and movement. Equation (1) 
calculates the particle’s real movement through its velocity 
vector and Eq. (2) adjusts the vector to the PBEST and GBEST.

where ������⃗vnew is the new particle velocity, v⃗ the current par-
ticle velocity, ������⃗pnew the new particle position, p⃗ the current 
particle position, C1 and C2 are the coefficients, and ��������⃗pbest 
and ��������⃗gbest are the personal and global positions of particles, 
respectively.

The flowchart of PSO is shown in Fig. 1. More details 
about PSO and its structure are available in the literature 
[68].

2.3 � Gene expression programming (GEP)

To explain more, GEP is known as one of the innovative 
methods developed in the field of artificial intelligence. It is 
actually a developed version of GA and GP. GEP, compris-
ing various parts, suggests appropriate solutions to a variety 
of problems [69]. It uses two main chromosomes, and the 
expression tree used in this algorithm shows capacity for 
removal of the limitations of the two antecedents (GA and 
GP). In GEP, codifications are normally presented in the 
shape of a string attained from the Karva programming lan-
guage; it is able to behave similar to ETs. Interestingly, GEP 
is capable of presenting its own models by means of math-
ematical equations that, in turn, form relationships between 
dependent and independent parameters. In the context of the 
engineering field, it is of a high importance and practicality 
to create models with the capacity of providing equations. 
Such methods are efficient substitutes for the ANN models 
in solving the problems. These issues have led the scholars 
in this field to further develop such methods.

In GP, a variety of mathematical functions, including − , 
+, × , sin, etc., are noted and applied to the variables; thus, a 

(1)������⃗vnew = v⃗ + C1 ×

(

��������⃗pbest − p⃗
)

+ C2 ×

(

��������⃗gbest − p⃗
)

(2)������⃗pnew = p⃗ + ������⃗vnew

mathematical set is obtainable through combining them for 
the purpose of problem examination. In chromosomes with 
more than one gene, each gene denotes a sub-ET comprising 
a head and a tail. Such symbolic chromosomes need to be 
defined as trees of various forms and sizes (expression trees). 
According to Fig. 2, the GEP modeling process begins with 
the random creation of chromosomes for determined num-
bers, which follows Karva language (Karva is a symbolic 
language to introduce chromosomes). These points are 
tested considering the functions that control the models and 

Fig. 1   The flowchart of PSO algorithm [65]
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their adaptability level. Such functions are of various types 
each of which can be defined using a variety of criteria. The 
functions include root relative squared error (RRSE), mean 
absolute error (MAE), and root mean square error (RMSE). 
In the next step, in case of not satisfying the termination 
criterion (that is the achievement of the maximum iteration 
or the proper fitness value), the best chromosomes chosen 
by means of the Roulette Wheel method for the first pro-
cess will enter the next structure. Then, the most important 
genetic operators, namely mutation, transfer (RIS, IS, and 
gene transfer), and reconstruction (one point, two points, 
and gene reconstruction), will be applied to existing chro-
mosomes in accordance with their proportions, which can be 
defined using the codes and the experts’ opinions of the GP 
method. This way, new chromosomes replace the remains, 
and the process continues until the termination criteria are 
fully satisfied [70–72]. Literature consists of more detailed 
information regarding GEP and the way it can be imple-
mented initially [73].

2.4 � Whale optimization algorithm (WOA)

The whale optimization algorithm (WOA) was proposed 
in 2016, mimicking the hunting mechanism of humpback 
whales in nature [74]. The most interesting thing about the 
humpback whales is their special hunting method. This for-
aging behavior is called bubble-net feeding method [75]. 
Humpback whales prefer to hunt school of krill or small fish 
close to the surface. It has been observed that this foraging 
is done by creating distinctive bubbles along a circle or a 
‘9’-shaped path as shown in Fig. 3. The three-dimensional 
hunting behavior was studied in 2011; before that, the hunt-
ing behavior was studied based on observation from the sea 
surface. Nevertheless, Goldbogen et al. [76] conducted a 
different investigation based on the use of tag sensors. In this 
new method of study, they captured 300 tag-derived bubble-
net feeding events of 9 individual humpback whales and 
introduced two new bubble movement plans, i.e., upward 
spirals and double loops. In the previous movement plan, 
humpback whales create bubble from depth of around 12 m 

in a spiral shape around the prey and swim up toward the 
surface. However, the new movement plan found by Gold-
bogen et al. [76] consisted of three different stages: coral 
loop, lobtail, and capture loop [76]. It is important to note 
that bubble-net feeding is a unique behavior that can only be 
observed in humpback whales. More details regarding WOA 
can be found in the original reference [74].

3 � Established database

The CFST columns/structures, as noted earlier, have been 
implemented in the main lateral resistance systems of both 
braced and unbraced building constructions. Moreover, 
this type of columns has been widely recommended for the 
retrofitting projects to improve the columns bearing capac-
ity, particularly when situated in dynamic conditions. As a 
result, it is of a high importance to appropriately predict the 
CFST bearing capacity. To this end, a database containing 
totally 303 test results was taken into consideration for the 
purpose of this study. The data, which were on the basis of 
wide-ranging laboratory experiments, were gathered from 

Fig. 2   A view of GEP system

Fig. 3   The behavior of humpback whales in WOA designing process 
[74]
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the literature [9, 77–83]. In the following, the testing proce-
dure used in this study is simply explained.

During the concrete casting process carried out in labora-
tory using formworks, a support system was created, which 
included steel bars, wooden plates, European pallet, and 
bottom steel blocks. It was used for the purpose of ensuring 
the steel tube stability in the course of casting the concrete. 
The top surface of the outer steel tube was approximately 
25 mm higher than the top surface of the inner concrete core. 
Following the casting operation, all of the composite col-
umns and cylinder specimens for reference tests were cured 
at room temperature within the laboratory conditions. Prior 
to the start of testing process, the steel tube (L) and overall 
length of the concrete core (Lc) were precisely determined. 
At both ends of the concrete core, two steel blocks were 
positioned in a way to apply the axial load upon the con-
crete core. After that, we made use of the servo-controlled 
hydraulic testing system to compress concentrically the pre-
pared specimens. A load cell was employed to record the 
applied force. Then, with the rate of 0.01 mm/s, the axial 
load was amplified upon the columns in a gradual manner, 
and simultaneously, the axial displacement was measured 
using the linear varying displacement transducers (LVDTs). 
This process went on until the measured axial displacements 
were roughly 20 mm. Next, the maximum axial compres-
sive strength of the columns, i.e., their bearing capacity, was 
obtained as output of the study.

In case of all gathered datasets, to predict the bearing 
capacity of CFST columns (Pexp), five parameters were 
taken into account as input parameters; they were the con-
crete compressive strength (fc), the column length (L), 
outer diameter (D), tensile yield stress of the steel column 
(fy), and steel cover thickness (t). This is worth noting that 
ranges of (23.2–188.1 MPa), (60–450 mm), (180–4000 mm), 
(0.86–10.37 mm), (185.7–853 MPa), and (215–13,776 kN) 
were considered for concrete compressive strength, outer 
diameter, length of column, steel cover thickness, tensile 
yield stress of the steel column, and bearing capacity of 
CFST columns, respectively. Table 1 shows 100 items of 
data (as examples) out of 303 data used in the modeling of 
this study. In addition, distributions of the data are displayed 
in Figs. 4, 5, 6, 7, 8, and 9. In addition, the flowchart of this 
paper with details is shown in Fig. 10.

4 � Prediction modeling

4.1 � ANN modeling

As the previous sections mentioned, ANN is capable of sug-
gesting proper solutions to both linear and non-linear engi-
neering problems. This section presents the neural network 
models in such a way that their obtained results could be 

compared with those of the PSO–ANN and the new GEP 
models discussed in the following subsections. For the pur-
pose of designing the required networks, 80% of all data 
(i.e., 242 cases) were allocated to the training section in 
order to be applied to the development process of the models 
and the remaining 20% were assigned to the testing section 
to make required evaluations on the model developments 
[84–88]. Such categorization helps to effectively assess the 
performance of artificial models regarding the prediction of 
the CFST columns bearing capacity.

Generally, a key criterion applied to designing of ANN is 
RMSE; it is considered as the initial termination criterion of 
the network training process. The RMSE value is obtainable 
using the values coming from the system (network) and the 
measured values. Remember that when RMSE = 0, the most 
appropriate model is achieved.

The parameters Est, t, Δ, and k stand for the measured val-
ues, predicted values, error, and number of network outputs, 
respectively. Furthermore, the determination coefficient (R2) 
value was also employed; it was responsible for determin-
ing the correlation between the measured value and the pre-
dicted one. When R2 = 1, it is in its best condition. The two 
criteria of R2 and RMSE were applied to the evaluation of 
the prediction models proposed in the present study. We took 
into consideration different explanations provided in the 
related literature; then, various ANN models were designed 
and configured in a way to be effectively used for the predic-
tion of the CFST columns bearing capacity. Figures 11 and 
12 present the models of this method for training and testing 
sections, respectively. As it is clearly observable, the most 
proper performance of the model was achieved when the 
iteration value was fixed at 250 and the number of neuron 
was set to 8. More required details in regard to the most 
appropriate ANN model for the prediction of bearing capac-
ity of the CFST columns will be presented later.

4.2 � PSO–ANN modeling

ANNs have been developed through applying optimiza-
tion algorithms like GA and PSO for solving engineering 
problems [26, 61, 89–92]. Regarding BP as a local seeking 
learning algorithm, the optimal seeking procedure of ANN 
might be failed with unfavorable solution. Therefore, PSO 
could be used to adjust the biases and weights of ANN in 
its performance developing. Considering the local minimal 
of ANN, there would be occasionally high possibility of 
convergence; however, PSO has the capability of finding a 

(3)Δ = t − Est,

(4)RMSE =

√

√

√

√Average

[

NT
∑

k=1

Δ2
k

]

.
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Table 1   100 data out of 303 
data used in this research

Dataset number f ′
C
 (MPa) D (mm) L (mm) t (mm) fy (MPa) Pexp (kN)

1 77.1 165 571 2.82 363.3 2608
2 77.1 190 656 1.94 256.4 3083
3 77.1 190 658 1.52 306.1 2830
4 77.1 190 662.5 1.13 185.7 2630
5 108 190 661.5 1.13 185.7 3220
6 77.1 190 664 0.86 210.7 2553
7 40 160.1 2000 4.98 280 1261
8 41 160.2 2500 4.96 281 1244
9 43 160.3 3000 5 270 1236
10 41 160.2 3500 4.97 273 1193
11 45 159.9 4000 4.98 281 1091
12 70 159.8 2000 5.01 283 1650
13 71 159.7 2500 5.2 281 1562
14 73 159.8 3000 5.1 276 1468
15 74 160.1 3500 4.98 276 1326
16 71 160.2 4000 5.02 281 1231
17 99 160.3 2000 5.03 281 2000
18 100 159.8 2500 5.01 275 1818
19 101 159.7 3000 4.97 275 1636
20 106 159.6 3500 4.98 270 1454
21 102 159.8 4000 4.97 270 1333
22 42.2 133 1862 4.5 325 882
23 42.2 133 1862 4.5 325 715
24 42.2 133 2793 4.5 325 784
25 42.2 133 2730 4.5 325 282
26 42.2 133 2730 4.5 325 268
27 31.4 114.43 300 3.98 343 948
28 93.6 114.57 300 3.99 343 1308
29 34.7 114.43 300 3.82 343 929
30 97.2 114.26 300 3.93 343 1359
31 34.7 114.88 300.5 4.91 365 1380
32 104.9 115.04 300 4.92 365 1787
33 57.6 115.02 300.5 5.02 365 1413
34 57.6 114.49 299.3 3.75 343 1038
35 57.6 114.29 300 3.75 343 1067
36 31.9 114.3 300 3.85 343 998
37 31.9 114.09 300.5 3.85 343 948
38 98.9 114.54 300 3.84 343 1359
39 98.9 114.37 299.5 3.85 343 1182
40 48.3 165 562.5 2.82 363.3 1759
41 38.2 165 571 2.82 363.3 1649
42 38.2 190 659.5 1.94 256.4 1652
43 48.3 190 658 1.52 306.1 1841
44 38.2 190 657 1.13 185.7 1308
45 38.2 190 657.5 0.86 210.7 1240
46 56.4 165 581 2.82 363.3 2040
47 56.4 190 655.5 1.94 256.4 2338
48 80.2 190 658.5 1.52 306.1 2870
49 56.4 190 661.5 1.13 185.7 1862
50 158.46 189 756 3 398 4837
51 165.49 168.6 648 3.9 363 4216
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Table 1   (continued) Dataset number f ′
C
 (MPa) D (mm) L (mm) t (mm) fy (MPa) Pexp (kN)

52 167.87 169 645 4.8 399 4330
53 158.75 168.7 645 5.2 405 4751
54 151.91 168.8 650 5.7 452 4930
55 158.75 168.1 645 8.1 409 5254
56 67.94 165 500 2.81 350 2160
57 67.94 165 500 2.76 350 2250
58 31.75 114.3 342.9 3.35 287.33 816.2
59 56.99 114.3 342.9 3.35 287.33 995.7
60 86.21 114.3 342.9 3.35 287.33 1242.2
61 102.43 114.3 342.9 3.35 287.33 1610.6
62 31.75 114.3 342.9 6 342.95 1380
63 56.99 114.3 342.9 6 342.95 1425.3
64 86.21 114.3 342.9 6 342.95 1673.9
65 102.43 114.3 342.9 6 342.95 1943.4
66 43.92 108 324 4 336 1235
67 164.35 114.3 200 6.3 428 2866
68 164.35 114.3 200 6.3 428 2595
69 29.5 165.2 200 3.7 366 1428.32
70 43.5 165.2 200 3.7 366 1676.42
71 58 165.2 200 3.7 366 2094.15
72 81.6 165.2 200 3.7 366 2511.3
73 29.5 165.2 200 3.7 366 1630.56
74 43.5 165.2 200 3.7 366 1737.94
75 42.2 133 465 4.5 325 576
76 37.5 240 720 1.48 307 2300
77 37.5 240 720 1.48 307 2150
78 31.7 114.3 342.9 3.35 287.3 816.2
79 57 114.3 342.9 3.35 287.3 995.7
80 31.7 114.3 342.9 6 343 1380
81 57 114.3 342.9 6 343 1425.3
82 23.2 101.6 304.8 3.03 371 635
83 23.2 101.8 305.4 3.03 371 679
84 23.2 101.8 305.4 3.03 371 632
85 24.3 216.5 649.5 6.61 452 3568
86 24.2 318.5 955.5 10.37 335 6901
87 40.2 101.6 304.8 3.03 371 864
88 40.2 101.7 305.1 3.03 371 803
89 38.2 216.5 649.5 6.61 452 4200
90 39.2 318.4 955.2 10.37 335 7742
91 51.3 101.5 304.5 3.03 371 859
92 51.3 101.9 305.7 3.03 371 926
93 46.7 216.4 649.2 6.61 452 4283
94 52.2 318.3 954.9 10.37 335 9297
95 36.2 168.6 645 3.9 363 1771
96 80.2 190 658.5 1.52 306.1 2870
97 74.7 190 657.5 0.86 210.7 2433
98 77.1 165 571 2.82 363.3 2608
99 77.1 190 656 1.94 256.4 3083
100 77.1 190 658 1.52 306.1 2830
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Fig. 4   Statistical distribution of concrete compressive strength

Fig. 5   Statistical distribution of outer diameter

Fig. 6   Statistical distribution of length of column
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Fig. 7   Statistical distribution of steel cover thickness

Fig. 8   Statistical distribution of tensile yield stress of the steel column

Fig. 9   Statistical distribution of bearing capacity of CFST columns
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global minimum. Thus, PSO–ANN would enjoy the search 
characteristics of their technique. Regarding the search 
space, PSO searches the global minimum and the ANN will 
use them to find the best performance with lowest system 
error.

As previously mentioned, there would be few effec-
tive parameters on performance of PSO–ANN like swarm 
size, inertia weight, and coefficient velocity. According to 
Armaghani et al. [93], in this study, inertia weight, which 
is equal to 1 (among the other proposed values of 0.25, 0.5, 
and 0.75), was selected and applied in PSO–ANN model. 
Through a parametric research, different combinations 
of C1 and C2 were regarded to make PSO–ANN models. 
While, the best model based on the lowest system error was 
assigned to the combination of C1 = C2 = 2. Therefore, the 
variables are set as the best C1 and C2 in the PSO system. To 
determine the swarm size (SS) and the maximum number of 
iteration (IMax), different SS values ranging from 50 to 400 
with incremental step of 50 were taken into account with a 
total number of iteration = 500. Thus, eight PSO–ANN mod-
els were built to predict bearing capacity of CFST columns. 
Figure 13 displays the effects of SS and IMax on performance 
prediction of PSO–ANN models. According to this figure, 
the lowest system error was gained by blue line or SS = 300, 
showing that a PSO–ANN model with SS = 300 is able to 
provide the highest performance capacity in predicting bear-
ing capacity of CFST columns. On the other hand, RMSE 
values of SS were gradually reduced from iteration number 
1 until iteration number 400. After iteration number 400, the 
RMSE results are constant with no alteration. As a result, 
in this paper, 400 was selected as IMax to predict bearing 
capacity of CFST columns.

To sum up, inertia weight of 1, C1 = C2 = 2, IMax = 400, 
SS = 300, and the number of hidden nodes = 8 were opti-
mized as PSO and ANN parameters. It is important to men-
tion that in modeling of PSO–ANN, the same architecture 

Fig. 10   Flowchart of this study

Fig. 11   Performance of ANN model for training datasets

Fig. 12   Performance of ANN model for testing datasets
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obtained from ANN section was used. More discussion 
regarding the best PSO–ANN model in estimating bearing 
capacity of CFST columns will be given later.

4.2.1 � GEP‑based tree modeling

After obtaining the results of ANN and PSO–ANN net-
works, GEP predictive models are implemented in this stage, 
aiming at developing equation for predicting bearing capac-
ity of CFST columns. The values and way of implementing 
them until obtaining the results of GEP models as well as 
presenting the relations will be all presented in the math-
ematical way. The process used in this research for imple-
menting GEP is as follows:

1.	 In the first step, the fitness function was selected as a cri-
terion for each chromosome’s merit occurrence. RMSE 
is the common fitness function that is used in modeling 
process of GEP. However, based on the problem’s condi-
tions, different modes can be used for investigating the 
models’ performance more accurately. Therefore, each 
chromosomes’ fitness was determined as follows:

2.	 The second step was to allocate two important sec-
tions called the set of terminals (T) and functions (F) 
to the chromosomes’ structure, which created a mixture 
of them. The independent variables are considered as 
the terminal set, and the function set is usually defined 
according to the main core of the problem. In the current 

(5)RMSE� =
1

1 + RMSE
× 1000.

study, trigonometry and mathematical functions were 
used as follows:

3.	 In the third step, structural parameters of GEP were 
introduced and applied to the system. The number of 
genes parameter was introduced for ET subsections 
specified for each chromosome. According to Ferreira’s 
investigation [72, 73, 94] and some other researchers 
[79–83], the best way to obtain proper values for struc-
tural parameters of GEP is the method of trial and error. 
The analysis process started with the increasing values 
of the above-mentioned parameters of GEP, and then the 
predictive performance of the GEP model was checked. 
Several GEP models are designed and implemented 
with different parameters for predicting compressive 
strength of composite columns. Finally, after executing 
these processes for several times, values of the number 

(6)F = {+, −, ×, ⋅, Sin, Cos,ArcTan, tanh, sqrt}

Fig. 13   The effect of IMax and SS on performance of PSO–ANN model

Table 2   GEP model parameters

Description of parameters Value

Mutation rate 0.035
Inversion rate 0.1
IS transposition rate 0.1
RIS transposition rate 0.1
Gene transposition rate 0.3
One-point recombination rate 0.3
Two-point recombination rate 0.1
Gene recombination rate 0.1



12	 Engineering with Computers (2021) 37:1–19

1 3

of chromosomes, head size, and number of genes were 
found to be 40, 5, and 3, respectively, for this section.

4.	 Step 4 was to select the rates of genetic operators. In 
this step, assuming the proposed values by previous 
researchers [64, 65, 84], some other GEP models were 
created using the trial and error method. The obtained 
values of GEP parameters are tabulated in Table 2.

5.	 In the final step, the linking function for connecting the 
created genes was defined. There are various linking 
functions like addition ( + ), subtraction ( − ), division 
( ÷ ), and multiplication ( × ). In this research, addition of 
different sections was used to connect sub-ETs because 
it provides a better connection in comparison with other 
functions.

To evaluate the predictive performance of the GEP mod-
els, R2 and RMSE were used as performance indices. Sev-
eral parameters of the GEP model were examined in this 
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Fig. 14   Effects of the most influential parameters on GEP results: a 
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section to determine its impact on the performance of mod-
els. Figure 14 displays the effects of the most influential 
parameters on GEP results including the number of gen-
erations, the number of genes, and size of head. Therefore, 
based on Fig. 14, generation, gene, and size of head were 
considered as 3000, 3, and 5, respectively. Eventually, after 
the aforementioned implementation, the results of some dif-
ferent models (as equations) are presented in Table 3. This 
way, different mathematical equations can be compared and 
their performance can be evaluated for prediction of uniaxial 
compressive strength in composite columns. In the end, the 
model No. 4 was chosen as the selected model based on the 
R2 results.

According to Fig. 15, the expression tree of each gene 
of model/Eq. (4) was presented. All functions and terminal 
sets were illustrated in the circles. To extract mathematical 
equations, reading the circles from left to right and top to 

bottom is recommended (models of 1–5). After extracting 
the equation of each gene, the final predictive model of GEP 
was obtained by subtracting of Eq. (4). All statistical data of 
model No. 4 are presented in Table 4 for both training and 
testing sections. More discussions regarding the best GEP 
model will be presented later.

5 � Results

Three intelligent systems, i.e., ANN, PSO–ANN, and GEP 
were developed in this study to predict the bearing capacity 
of CFST columns. As discussed earlier, many parametric 
studies were constructed and the best one for each method 
(ANN, PSO–ANN, and GEP-based tree) was selected. The 
selection of the best predictive models was based on the 
results of R2. The mentioned results for training and test-
ing datasets of the best predictive models are tabulated in 
Table 5. According to the obtained results, 0.895 and 0.881 
as R2 of training and testing sections, respectively, are 

Fig. 15   The tree expression of 
Eq. (4)

Table 4   Statistical data of Eq. (4)

Description Training Testing

Fitness 1.624019 1.646688
MSE 377,925.6 367,575.1
RMSE 614.7565 606.2797
MAE 456.511 457.9939
RSE 8.32E−02 0.145098
RRSE 0.28853 0.380917
RAE 0.310341 0.35956
Correlation coefficient 0.963159 0.968997
R-square 0.927675 0.938955

Table 5   Coefficient of 
determination results in 
predicting bearing capacity of 
CFST columns

Predictive model R2

Train Test

ANN 0.895 0.881
PSO–ANN 0.910 0.904
GEP-based Tree 0.928 0.939

Fig. 16   The three-dimensional graph of Eq. (7)
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considered as acceptable finding to estimate bearing capac-
ity of CFST columns. However, if more accurate predic-
tive result is of interest, PSO–ANN can be applied herein. 
When PSO–ANN model is developed, R2 results of 0.910 
and 0.904 for training and testing datasets can be achieved 
to estimate bearing capacity of CFST columns. However, if 
a perfect predictive model (among the applied ones) is of 
interest, GEP-based tree equation with R2 values of 0.928 
and 0.939 for training and testing datasets has shown its 
capability. Actually, this technique can provide higher per-
formance capacity compared to other predictive models in 
estimating bearing capacity of CFST columns. The GEP-
based tree can be introduced as a new model that is able 
to propose new equation for solving problems in structural 

engineering fields. In the next section, GEP equation will be 
used as a cost function for optimizing purposes.

6 � Optimization modeling

In this section, the whale optimization algorithm (WOA) 
is developed to optimize the results of bearing capacity 
of CFST columns. To examine the WOA algorithm, the 
selected functions (Eqs. 7, 8) were employed. The mini-
mum values of these functions in the mentioned intervals 
are 3 and − 1.9133, respectively. Figures 16 and 17 illustrate 
the three-dimensional graph of these two functions in the 
specific interval. Figures 18 and 19 demonstrate the results 
obtained by WOA, which are based on these two equations. 
As it can be seen, the written code of this algorithm can 
identify the minimums well. That is why this code can be 
run for the research conditions obtained in the previous 
section.

To optimize bearing capacity of CFST columns, the 
selected predictive model (GEP-based tree) was used. In 
fact, the GEP equation is considered as a cost function 
in WOA technique. Different models of WOA algorithm 
(using various parameters) were designed, each of which 
was executed by adjusting the parameters of the optimization 

(7)

F1(x) =
[

1 + (x1 + x2 + 1)2(19 − 14x1

+3x2
1
− 14x2 + 6x1x2 + 3x

2

2
)
]

×
[

30 + (2x1 − 3x2)
2(18 − 32x1 + 12x

2

1

+48x2 − 36x1x2 + 27x
2

2
)
]

,

(8)F2(x) = sin(x1 + x2) +
(

x1 + x2
)2

− 1.5x1 + 2.5x2 + 1.

Fig. 17   The three-dimensional graph of Eq. (8)

Fig. 18   The result of WOA 
algorithm for Eq. (7)
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algorithm. After a set of conducted analyses, the most appro-
priate parameters of WOA algorithm were obtained. The 
best parameters that can deliver well the performance of 
WOA algorithm for optimizing this problem are presented 
in Table 6.

With the use of the best model results, the optimum 
parameters that can provide bearing capacity of CFST col-
umns were determined. The best cost function is presented 

in Fig. 20 for this problem. The proposed parameters are 
given in Table 7. It should be noted that the changes in these 
parameters are assumed to be the values considered for mod-
eling (Table 1). As it can be seen, in cases where optimiza-
tion was done, appropriate enhancements were gained in 
performance of bearing capacity of CFST columns. For 
example, optimum values of 186.31  MPa, 416.09  mm, 
364.31 mm, 6.79 mm, and 823.88 MPa increased the bear-
ing capacity by 23,436.63 kN in comparison with the ini-
tial sample. Therefore, different patterns of designing can 
be applied under various conditions and the best perfor-
mance can be reached. As a result, WOA is able to optimize 
the model inputs in a way that maximum amount can be 
obtained for bearing capacity of CFST columns. As a result, 

Fig. 19   The result of WOA 
algorithm for Eq. (8)

Table 6   The effective 
parameters of WOA for 
optimization of the problem

Parameter Value

Iteration 500
Amounts of search 

agents
40

Fig. 20   The best cost of WOA 
for optimization of the problem
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WOA can be introduced as a powerful optimization algo-
rithm in maximizing bearing capacity of CFST columns.

7 � Conclusions

The specification of the bearing capacity of CFST columns 
made up of hollow steel cylinders filled with concrete is 
among important issues in constructing different structures. 
To this end, this paper presented a novel intelligent method to 
predict and optimize the bearing capacity of such structures. 
The data used in this research were collected from conducted 
experimental frameworks. The data comprise parameters of 
the outer diameter, concrete compressive strength, tensile 
yield stress of the steel column, steel cover thickness, and 
length of the used samples. The ANN and neuro-swarm 
methods were used for prediction purposes. The GEP-based 
tree model was implemented and developed under different 
conditions to predict the bearing capacity of CFST columns 
and finally, an equation was proposed to estimate bearing 
capacity of CFST columns. Based on the obtained results, 
the GEP-based tree equation with R2 values of 0.928 and 
0.939 for training and testing datasets, respectively, indicates 
higher performance capacity compared to ANN and neuro-
swarm predictive models. On the other hand, neuro-swarm 
provided higher performance capacity compared to ANN. 
Therefore, the GEP-based tree technique was selected as the 
best predictive model for estimating the bearing capacity of 
CFST columns. A GEP-based tree equation was used as a 
cost function in the WOA optimization algorithm. Different 
WOA models were constructed to obtain higher values of 
the bearing capacity. According to the obtained results, it 
was found that WOA (with increasing bearing capacity to 
23436.63 kN) was able to maximize significantly the bearing 
capacity of the CFST columns. The optimum values obtained 
in this study allow engineers and researchers to reach the best 
performance in designing and constructing CFST columns.
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