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Abstract
The present study aims to assess the superiority of the metaheuristic evolutionary when compared to the conventional 
machine learning classification techniques for landslide occurrence estimation. To evaluate and compare the applicability of 
these metaheuristic algorithms, a real-world problem of landslide assessment (i.e., including 266 records and fifteen landslide 
conditioning factors) is selected. In the first step, seven of the most common traditional classification techniques are applied. 
Then, after introducing the elite model, it is optimized using six state-of-the-art metaheuristic evolutionary techniques. The 
results show that applying the proposed evolutionary algorithms effectively increases the prediction accuracy from 81.6 to 
the range (87.8–98.3%) and the classification ratio from 58.3% to the range (60.1–85.0%).

Keywords  Metaheuristic evolutionary · Classification · Landslide perdition

1  Introduction

Traditional approaches of natural slope failure analysis 
employed various engineering-designed tools [1, 2]. Present-
ing more progressive designed tools, such as the machine 
learning-based predictive algorithms, draw attention to a lot 
of researchers [3, 4]. Most studies have exposed that the 
machine learning-based techniques are dependable meth-
ods to approximate the engineering complex explanations 
and solutions [5]. The stability of the local slopes against 
failure is a critical matter that has to be investigated meticu-
lously [6, 7], because of their high impacts on the adjacent 
engineering buildings (e.g., projects that include excavation 
and transmission roads, etc.). Also, slope failures cause a 
lot of damages (e.g., the loss of property and human life) 

worldwide every year. There are many factors that need to be 
considered during the stability of such slopes. As an exam-
ple, the saturation degree, along with other intrinsic of the 
soil properties, mostly affects the chances of slope failure 
[8, 9]. Up to now, many scientists intend to provide effective 
modeling for the stability of slopes [10, 11]. Some disad-
vantages of traditional approaches such as the necessity of 
utilizing laboratory equipment [12–14] along with the high 
level of complexity make them a difficult solution [15–18]. 
Additionally, they cannot be utilized as a certain solution, 
because of their limitation to investigate a specific slope 
condition (e.g., slope height, the angle of the slope, soil 
properties, depth of the groundwater level, etc.). Because of 
the criticality of slope steadiness evaluation, many types of 
research have been concentrating on tackling this problem 
of attention. At this time, machine learning, analytical meth-
ods, and expert assessment are usually employed to analyze 
slope conditions [19]. The very first approach is based on 
experts’ knowledge and experiences [20–24]. Using slope 
stability specialists’ judgments, considering the key factors 
that possibility have higher influences on the further slope 
failure could be recognized [25]. Though the main disad-
vantage of the expert evaluation approach is that it mostly 
relies on judging subjectively and it is infeasible to make 
sure the consistency of the prediction results [26]. Recently, 
complexity of landslide failures has caused plenty of losses 
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in both financial and psychological aspects around the world. 
Varnes and Radbruch-Hall [27] introduced the landslide as 
the whole sort of gravity-made downward mass (i.e., soil, 
natural cliffs, and artificial deposits) movements at slopes. 
Landslide may occur on these masses. Scholars [28] have 
stated that developing countries are more exposed to land-
slides and more than around 90% of the landslides occurred 
in these countries. Analyze of the landslide susceptibility 
of a zone is an effective task for reducing upper mentioned 
losses [29]. According to a set of geological and environ-
mental states, landslide susceptibility is defined as the spa-
tial possibility of landslide incidents. For various landslide-
prone zones worldwide, there are different methods in the 
case of landslide hazard mapping [30, 31].

Researchers compared the performance of different land-
slide predictive evaluative methods. For predicting the land-
slide hazard in Longhai zone (China), He et al. [32] used 
Naïve Bayes (NB), RBF neural, radial basis function (RBF) 
and classifier and compared obtained results. They used FR 
and SVM approaches for predicting the performance of land-
slide conditioning factors and showed that RBF classifier has 
better performance in comparison to NB and RBF network 
with the precision of 88.1%. Chen et al. [33] used differ-
ent new predictive approaches in the landslide probability 
prediction including generalized additive model (GAM), 
ANFIS-FR (adaptive neuro-fuzzy inference system synthe-
sized with FR), and SVM for a specific zone in China. They 
showed that the SVM has better performance than ANFIS-
FR as well as GAM with precisions around 87.5, 85.1, and 
84.6%, respectively. In this regard, other scholars used LR 
and ANFIS predictive methods and planned the unstable 
rockfall of Firooz Abad-Kojour earthquake, which occurred 
in 2004, and indicated that ANFIS has better performance. 
In addition, many researchers have defined and made dif-
ferent hybrid evolutionary approaches with enhancing arti-
ficial neural network (ANN) and ANFIS in landslide sus-
ceptibility mapping [34–38] as well as flood susceptibility 
mapping [39–41] for enhancing the performance of usual 
approaches. To design the ensembles of Random Subspace-
based Reduced Error Pruning Trees (RSREPT), MultiBoost 
according to Reduced Error Pruning Trees (MBREPT), 
Bagging-based Reduced Error Pruning Trees (BREPT), 
and Rotation Forest-based Reduced Error Pruning Trees 
(RFREPT) for landslide hazard prediction, Pham et al. [42] 
utilized a hybrid technique of Reduced Error Pruning Trees 
(REPT). The findings of this research revealed the superior-
ity of the BREPT method. Also, Moayedi et al. [37] coupled 
an MLP neural network with particle swarm optimization 
(PSO) in the case of spatial landslide hazard modeling at 
Kermanshah province, western Iran. They concluded that 
using PSO can facilitate obtaining more precise outputs. 
Chen et al. [43] also studied the robustness of PSO differen-
tial evolution (DE) and genetic algorithm (GA) techniques 

to enhance the ANFIS efficiency. Their results showed that 
ANFIS-DE method outperformed ANFIS-GA, and ANFIS-
PSO with respect to the calculated area under the curve 
(AUCs) of 0.844, 0.821, and 0.780, respectively. For assess-
ment of rainfall-triggered landslide risk, Tien Bui et al. [44] 
enhanced and used the model of Least-Squares Support 
Vector Machines (LSSVM) utilizing differential evolution 
(DE) method and proposed LSSVM model which has better 
performance than MLP, J48, and SVM algorithms with the 
accuracy of 82%. The required approximation is commonly 
performed using a spatial dataset that consists of various 
landslide conditioning parameters such as stream power 
index (SPI), altitude, soil, rainfall, climate, lithology, aspect, 
lithology, and the distance for linear phenomena. Many 
scholars have selected predictive techniques such as statis-
tical index (SI), certainty factor (CF), index of entropy (IOE) 
and frequency ratio (FR), and also regression-based methods 
and evaluated the risk of a landslide by these approaches 
[45–48]. In this regard, Yang et al. [49] conducted a spe-
cific case study for investigating the efficiency of a spatial 
logistic regression (SLR) method for modeling the land-
slide hazard in Duwen Highway Basin at Sichuan Province 
located China. Moreover, many researchers have expanded 
and proposed a GeoDetector-based approach for selecting 
the landslide-related factors, properly. The occurred estima-
tion of their proposed model was around 11.9% enhanced 
compared to the usual logistic regression (LR) model. Addi-
tionally, a case study has been conducted for analyzing the 
landslide occurrence risk of a specific location in China. 
In this way, IOE as well as certainty factor (CF) methods 
by utilizing conditioning factors of the slope angle, dis-
tance to rivers, plan curvature, profile curvature, distance to 
faults, geomorphology, distance to roads, topographic wet-
ness index (TWI), slope aspect, general curvature, rainfall, 
lithology and altitude and also the sediment transport index 
(STI) as well as the stream power index (SPI) [50]. Based 
on the respective accuracy of 82.32% and 80.88%. It has 
been determined that CF calculated the landslide susceptibil-
ity map with more validity in comparison to IOE. In terms 
of making an efficient, fast, and inexpensive prediction of 
landslide hazard, soft computing (SC) approaches have been 
highly suggested by scholars because of its computational 
advances [36, 48, 51–54]. In this way, researchers have per-
formed different studies. Lee et al. [55] have used a support 
vector machine (SVM) method for specific zones in Korea 
(Pyeong Chang and Inje). They have employed the SVM 
method as a reliable tool for analyzing landslide hazard and 
found that this method had proper results with accuracy by 
around 81.36% and 77.49% for the Pyeong Chang and Inje 
zones, respectively. Pradhan and Lee [56] utilized a back-
propagation neural network in producing the landslide haz-
ard map in a specific area in Malaysia with 83% precision.
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This paper addresses a comprehensive optimization 
for landslide hazard analysis using six state-of-the-art 
metaheuristic algorithms. To this end, we first evaluate the 
capability of seven traditional classification techniques. Var-
ious statistical indices are used to distinguish the most capa-
ble model. Then the proposed elite model is coupled with 
six evolutionary algorithms to enhance its performance. As 
well as the statistical indices, area under the AUROC and the 
classification rate are considered to compare the efficiency 
of the used ensembles.

2 � Methodology and data collection

2.1 � Data collection

Referring to the previous researches in the context of 
landslide hazard assessment, fifteen key factors including 
altitude, slope, total curvature, profile curvature, plan cur-
vature, SPI, TRI, TWI, fault river, road, aspect, soil, land 
use, and geology are considered as the independent vari-
ables in this paper. The response variable is also considered 
the landslide occurrence index consisting of two values of 
1 (i.e., 133 rows indicating nonlandslide) and 2 (i.e., 133 

rows indicating landslide occurrence). In overall, out of 266 
samples, 212 data (i.e., 80%) were randomly selected for 
training the proposed models. Then the accuracy of them 
is evaluated by means of the remaining 54 data (i.e., 20%). 
The mentioned landslide independent factors were produced 
in the geographic information system (GIS). In fact, some 
pre-processing actions were carried out for each layer to be 
created from its basic formats such as contours, polygons, 
and tabular data. In the next step, the values of each GIS ras-
ter were extracted for each landslide and nonlandslide point. 
Table 1 denotes an example of the dataset used in this study.

2.2 � Conventional machine learning classification 
techniques

Learning algorithms have gained a huge attraction in many 
fields of research [57]. The machine learning models that are 
utilized in this work are introduced as follows:

The idea of logistic regression (LR) is drawn on deter-
mining a target with dichotomous variables such as true and 
false or 0 and 1 influenced by some independent factors [58]. 
For every classification usage, it aims to find a reasonable fit 
to establish a relationship between the presence or absence 
of the proposed target event and its key factors. Finally, it 

Table 1   An example of the provided dataset for perdition of actual landslide target

Aspect Curvature Elevation Distance to 
faults (m)

Land use Lithology Distance to 
river (m)

Distance to 
road (m)

Slope Soil TWI SPI Target

61.3 − 0.1 1744.0 2093.4 3.0 3.0 1870.4 1555.4 10.0 5.0 7.5 58.7 Nonlandslide
9.1 0.3 1367.0 2979.9 3.0 5.0 364.0 398.1 11.6 6.0 1.6 0.2 Nonlandslide
152.2 1.2 1692.0 2729.0 3.0 5.0 531.5 444.2 12.1 5.0 − 5.4 0.0 Nonlandslide
173.7 0.2 1483.0 4895.7 3.0 3.0 1456.0 250.0 2.6 5.0 − 3.8 0.0 Nonlandslide
28.9 1.8 1475.0 2398.7 2.0 3.0 872.8 1447.0 25.9 5.0 − 6.2 0.0 Nonlandslide
139.1 − 0.1 2079.0 6848.6 3.0 3.0 1560.6 2130.1 19.2 5.0 − 5.9 0.0 Nonlandslide
133.3 0.0 1355.0 1100.2 3.0 5.0 374.4 255.0 6.9 5.0 − 4.8 0.0 Landslide
271.2 1.9 1961.0 2185.2 3.0 3.0 3480.4 3228.8 19.7 5.0 − 5.9 0.0 Landslide
249.8 0.1 1343.0 31.6 3.0 5.0 190.3 120.0 5.8 5.0 5.3 2.1 Landslide
184.4 0.9 1780.0 1166.2 3.0 9.0 1354.2 147.6 14.6 5.0 − 5.6 0.0 Landslide
18.4 0.3 1548.0 2193.6 2.0 5.0 379.5 212.6 9.0 5.0 5.4 5.7 Landslide
226.8 1.3 1263.0 1115.0 3.0 5.0 538.5 353.4 12.8 5.0 3.3 1.4 Landslide
51.4 1.7 1747.0 6395.8 3.0 3.0 878.0 1483.0 24.0 5.0 − 6.1 0.0 Landslide
295.3 0.0 1560.0 1894.9 3.0 1.0 90.0 734.1 3.0 6.0 − 4.0 0.0 Landslide
119.1 − 2.6 1474.0 487.5 3.0 3.0 1077.1 1918.5 27.2 5.0 3.2 6.7 Landslide
270.0 0.5 1851.0 10,066.0 3.0 3.0 1356.9 4890.7 6.8 5.0 − 4.8 0.0 Nonlandslide
312.4 − 1.3 1539.0 4570.5 3.0 3.0 1592.5 819.3 47.7 5.0 1.5 5.5 Nonlandslide
78.9 0.6 1356.0 954.1 3.0 5.0 338.4 400.0 13.9 5.0 − 5.5 0.0 Nonlandslide
56.2 1.3 1774.0 7437.8 3.0 3.0 2088.9 2231.4 30.3 5.0 − 6.4 0.0 Nonlandslide
317.9 − 0.3 1354.0 1775.5 3.0 5.0 113.1 250.0 8.1 5.0 4.3 1.4 Nonlandslide
229.2 − 1.3 1735.0 2992.0 3.0 3.0 1810.4 1674.9 18.8 5.0 1.8 0.7 Nonlandslide
332.0 0.2 1312.0 828.6 3.0 5.0 313.0 76.2 7.6 5.0 − 4.9 0.0 Landslide
135.7 − 3.6 1494.0 1049.6 3.0 3.0 228.5 860.1 28.9 5.0 3.9 15.5 Landslide
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calculates the results through developing a linear equation 
in which a weight is multiplied by each conditioning fac-
tor [59]. Multi-layer perceptron (MLP) is the most common 
notion of ANNs which its idea was first designed in 1943 
[60]. The MLP is capable to discover the non-linear relation-
ship between the proposed variables. An MLP is composed 
of some layers including one input layer, one or more hidden 
layer(s), and one output layer containing several computa-
tional units called neurons. Each neuron receives the input 
vectors and assigns some weights and biases to establish a 
mathematical equation. The name SGD implies stochastic 
gradient descent learning method [61] which is a common 
iteration-based optimizer. The SGD breaks a set of samples 
into mini batches for calculating the gradient on each batch 
separately, instead of computing the gradient of the cost 
entirely. In other words, it optimizes a pre-defined cost func-
tion to achieve the most accurate parameters of the problem 
[62]. The name decision table (DT) indicates a tabular clas-
sification model in which the data are sorted to find an exact 
match in the table. In this sense, two responses are likely to 
appear: (1) if the desired value is met it will be considered 
as the response, (2) otherwise, the answer is no match found 
[63]. Generally, four major sections that construct the DT are 
condition stubs, condition entries, action stubs, and action 
entries. During the validation stage, the DT checks cases 
like incompleteness and contradiction [64]. Self-organizing 
maps (SOM) denote a special notion of ANNs, devoid of the 
hidden layer [65]. In this model, the input vector is mapped 
into a lower dimensional map. Considering two inputs, if 
they are closely related in the reference dataset, they remain 
closely related in the mentioned lower dimensional map. In 
such cases, they are mapped into a similar map-unit [65]. 
Locally weighted learning (LWL) [66] is a well-known lazy 
learning model. Lazy LWL responses the queries by creating 
a so-called local model “Naive Bayes (BS)”. The training 
samples that are similar to the query data are used to develop 
this model. Regarding the distance between the proposed 
training point and the prediction point, a weight is assigned 
to each training sample. In other words, training data which 
are located closer to the estimation point receive a larger 
weight [67]. This model is well detailed in [66]. REP tree 
is a fast notion of decision tree learners. In this model, with 
respect to the type of the problem, a regression tree or a 
decision tree is build using the information gain as a splitting 
criterion. Remarkably, it is pruned using the reduced error 
pruning. There is only one chance for numeric attributes to 
be sorted, and the missing ones are dealt with by splitting 
the related instances into pieces [68].

2.3 � Metaheuristic evolutionary techniques

Due to the advances in soft computing, diverse optimiza-
tion techniques have been successfully used for different 

applications [69]. For the prediction of the landslide occur-
rence, many natural-inspired algorithms have been employed 
by researchers. These algorithms are utilized to pre-defined 
objective function (OF). OF function is commonly used 
for optimizing algorithms and calculating the precision of 
different algorithms. Minimizing the results of the OF can 
enhance the accuracy of estimation including regression or 
classification. First, in the evolutionary approaches, a ran-
dom population should be defined as the involved relations. 
The advantages of a determined solution can be evaluated 
during a repetitive procedure. If the next solution has high 
accuracy, it is deserted and this should be continuing up to 
one of the stopping criteria occurred. In the case of the pro-
ductive tasks, MLP neural network can be used that consists 
of a general function. In the case of the MLP, the foundation 
of the MLP optimization is its activation functions and also 
the weights and biases of the MLP. For achieving a proper 
performance, enough number of iterations is needed in a 
defined approach. In the process of the MLP optimization, 
the computational error reduces in each iteration and also the 
enhanced weights and biases of the MLP can be utilized for 
generating new outputs. In addition to the MLP algorithm, 
there are various evolutionary algorithms that are used in 
the lecture as follows.

Ant Colony Optimization (ACO) is first introduced in Ref. 
[70]. It is known as a novel branch of the hybrid evolution-
ary. This algorithm can mime the foraging life approaches of 
ant herds. The observed relations are extremely in touch to 
collaborate. Each ant chooses the path by predicting a possi-
bility. They leave a chemical pheromone trail on the way for 
the other ants and they guided using this smell and it assis-
tances them to choose the more promising path. This relation 
helps ants to discover the shortest path among the nectars, 
for example, the food sources as well as the nest. In Ref. 
[71], according to the geographical dispensation of a species, 
biogeography-based optimization (BBO) algorithm has been 
suggested. In this regard, two different factors of this model 
are a habitat as well as a habitat suitability indicator which, 
respectively, produce the possible solution of the suggested 
issue and its advantage. In this regard, a possible solution is 
introduced (for example, habitat), which includes some fea-
tures (decision variables). This method is based on sharing 
the features among the possible solutions and can enhance 
the advantage of the possible solutions. This method is based 
on the migration operators for mutating the calculated habi-
tat suitability index and is properly detailed in Refs. [72, 
73]. This method operates via enhancing the diversity of the 
population for preventing trapping I the local minima [74]. 
For the first one, the algorithm named evolutionary strategy 
(ES), which points a stochastic metaheuristic approach has 
been proposed in Ref. [75]. This method was developed in 
Ref. [76]. The algorithm of ES uses two different selection 
and mutation operators and is based on two approaches of 
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evolution and adaption. The canonical version consists of six 
major steps with distinct notions of this method. The popula-
tion is initialized and it will be analyzed. Then a population 
is produced with offspring variables. For selecting the elite 
population, the modality of the offspring is compared to the 
parents. Holland [77] first designed genetic algorithm (GA) 
that is known as a robust search approach. This method has 
been widely utilized for different optimization issues [78, 
79]. The GA method proposes an initial group of number 
strings that each one might be a possible solution. This 
method is similar to other metaheuristic algorithms. The 
modality of these parameters is then analyzed and the algo-
rithm distributes to change these groups to a more promising 
string set. For producing a new population and achieving the 
excellent generation, a reproduction method can be consid-
ered. More details about this method are presented in Refs. 
[80, 81]. In the lecture, there are different special types of 
the GA method like probability-based incremental learning 
(PBIL). This algorithm is proper to conclude the genotype of 
a probability vector rather than relation. It is introduced as a 
combination of evolutionary calculation as well as reinforce-
ment learning. The learning method of the PBIL is similar 
to the algorithm of GA. It gets initiated using a possibility 
initialization. Next, the instances are produced by the present 
possibility matrix and the best instance is recognized. After 
that, the expanded probability matrix is enhanced by the elite 
sample. In addition, a mutation operator operates probabil-
istically. Lastly, a termination criterion ends the algorithm 
[82]. Particle swarm optimization (PSO) is first proposed in 
Ref. [83], which is based on mimicking the social behav-
ior along with herd lifestyle of the animal. This method is 
utilized for increasing different typical intelligent methods 
[84, 85]. Higher learning speed and using less memory are 
the considerable merits of this algorithm compared to other 
optimization methods of Imperialist Competition Algorithm 
(ICA), Artificial Bee Colony (ABC), GA, etc. [37]. In the 
PSO algorithm, the candidate solution and also population 
take the name of “particle” and “swarm”. In addition, these 
particles have the position and velocity, which are known as 
the determinative factors. Each particle is analyzed against 
the total population in the case of its position, for enhancing 
its change. More details about this method are presented in 
[86, 87].

3 � Results and discussion

As stated supra, this study outlines the optimization of a typ-
ical machine learning model for landslide occurrence predic-
tion. Two major steps form the body of this paper. First, the 
performance of seven conventional machine learning clas-
sification techniques including LR, MLP, SGD, DT, SOM, 
LWL, and REP tree is evaluated. Then the elite model is 

selected to be optimized with six metaheuristic algorithms, 
namely ACO, BBO, ES, GA, PBIL, and PSO. Note that five 
accuracy criteria of kappa statistics (κ), mean absolute error 
(MAE), root mean square error (RMSE), relative absolute 
error (RAE in  %), and root relative squared error (RRSE 
in  %) were used. Equations (1)–(5) describe these indices:

in which po is the percentage agreement between the classi-
fier and ground truth, and pe represents the chance agree-
ment. Also, Yi

observed

 and Yi
predicted

 stand for the actual and pre-
dicted values of landslide occurrence, respectively. The term 
S defines the number of instances, and Ȳobserved is the average 
of the target landslide numbers (i.e., 1 and 2).

3.1 � Conventional machine learning technique 
implementation

In this part, the performance of LR, MLP, SGD, DT, SOM, 
LWL, and REP tree classification models is evaluated for 
estimating the landslide occurrence using altitude, slope, 
total curvature, profile curvature, plan curvature, SPI, TRI, 
TWI, fault river, road, aspect, soil, land use, and geology are 
considered as landslide independent factors. The Waikato 
environment for knowledge analysis (WEKA) software was 
used to implement the mentioned models. Table 2 shows an 
example of the produced results by each model. Also, the 
implemented models are compared in Table 3 in terms of 
KS, MAE, RMSE, RAE (%), and RRSE (%) accuracy indi-
ces. Note that, a score-based ranking system is also devel-
oped to determine the most capable models. Based on this 
system, the cells that indicate more accuracy for each model 
are shown with more intense red color. Finally, the overall 

(1)� =
po − pe

1 − pe
,

(2)MAE =
1

N

s∑

I=1

|Yiobserved − Yipredicted |,

(3)RMSE =

√√√√ 1

N

s∑

i=1

[(Yiobserved − Yipredicted)]
2,

(4)RAE =

∑s

i=1

���Yiobserved − Yiobserved
���

∑s

i=1

���Yiobserved − Yobserved
���
,

(5)RRSE =

����
∑s

i=1
(Yipredicted − Yiobserved)

2

∑s

i=1
(Yiobserved − Yobserved)

2
,
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score of each model determines its ranking. According to 
this table, the MLP outperforms all other six models in terms 
of all defined indices. In this regard, the KS, MAE, RMSE, 
RAE, and RRSE of the MLP are obtained as 0.796, 0.219, 
0.312, 53.976, and 62.392, respectively. In addition, consid-
ering the total ranking score (16, 35, 12, 9, 12, 21, and 30, 
respectively, obtained for LR, MLP, SGD, DT, SOM, LWL, 
and REP tree) it can be seen that the MLP presents the most 
accurate estimation, followed by REP tree and LWL as the 
second and third efficient models.

3.2 � Metaheuristic evolutionary technique 
implementation

In this part, it is aimed to optimize the performance of the 
elite model which showed the highest accuracy of the pre-
diction among typical machine learning approaches. As 
explained, the MLP outperformed other models and is cou-
pled with ACO, BBO, ES, GA, PBIL, and PSO evolutionary 
algorithms to achieve a more reliable approximation of land-
slide occurrence risk. This is noteworthy that the mentioned 
methods try to find the optimal values of the weights and 
biases of the MLP.

The programming language of MATLAB 2014 was used 
for this part. Each optimization process was executed within 
1000 iterations, and mean absolute error (MSE) as defined 
as the objective function to measure the accuracy of the 
ACO-MLP, BBO-MLP, ES-MLP, GA-MLP, PBIL-MLP, 
and PSO-MLP ensembles in each iteration. Figure 1 illus-
trates the convergence path of each model. According to 
this figure, the GA-MLP, PBIL-MLP, and BBO-MLP have 
reached the lower MSE in comparison with other ensembles. 
Notably, the MSEs obtained for the ACO-MLP and ES-MLP 
(around 0.0080) was a little higher than PSO-MLP (around 
0.0027). Also, considering the number of iterations that each 
model needed to reach the minimum error, it was concluded 
that the ACO-MLP had the best convergence speed; how-
ever, the obtained MSE was higher than other models.

In the following, two accuracy criteria of the area under 
the receiving operating characteristic curve (AUROC), 

which is a well-known method for evaluating the accuracy 
of a diagnostic issue, and classification ratio are defined. The 
ROC curves related to the performance of the typical MLP, 
as well as metaheuristic ensembles, are shown in Fig. 2. 
Needless to say, the higher the AUROC, the higher the 
accuracy of the results. As the first result, it can be deduced 
that the performance of the MLP has enhanced considerably, 
by applying the mentioned algorithms. Moreover, the GA-
MLP has gained the highest AUROC (0.983), followed by 
BBO-MLP (AUROC = 0.971) and PBIL-MLP (0.948). After 
those, the PSO was a more successful technique for optimiz-
ing the MLP (0.917), in comparison with ACO (0.896) and 
ES (0.878).

Table 3   The obtained results of the conventional machine learning models for the landslide occurrence prediction

Model no. Classification model Statistical indexes Ranking the predicted models Total ranking

KS MAE RMSE RAE (%) RRSE (%) KS MAE RMSE RAE (%) RRSE (%)

1 LR 0.368 0.426 0.460 85.224 92.009 4 2 4 2 4 16
2 MLP 0.796 0.219 0.312 53.976 62.392 7 7 7 7 7 35
3 SGD 0.293 0.353 0.595 70.677 118.892 2 4 1 4 1 12
4 DT 0.256 0.447 0.470 89.429 94.084 1 1 3 1 3 9
5 SOM 0.293 0.353 0.595 70.677 118.892 2 4 1 4 1 12
6 Lazy (LWL) 0.504 0.403 0.429 80.582 85.866 5 3 5 3 5 21
7 REP tree 0.564 0.312 0.395 62.475 79.041 6 6 6 6 6 30

Fig. 1   The convergence curves of the implemented evolutionary 
models in terms of MSE
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Fig. 2   The ROC curve plotted for the results of the applied models
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Furthermore, the percentage of the correctly classified 
samples demonstrates another method for accuracy evalua-
tion of the applied models. Figure 3 shows the classification 
ratio of the proposed models. First, increasing the classifica-
tion ratio of the MLP shows the efficiency of the used opti-
mization algorithms. Also, supporting the AUROC results, 
the highest value of the classification ratio is obtained for 
the GA-MLP (85%) followed by BBO-MLP (81.5%) and 
PBIL-MLP (79.6%). The PSO-MLP has classified 75.4% of 
the samples correctly. This value was calculated as 62.8% 
and 60.1%, respectively, for the ES-MLP and ACO-MLP. All 
in all, the results of the study show that the GA, BBO, PBIL, 
and PSO have shown the higher capability of optimization 
of the MLP neural network.

4 � Conclusions

Due to the importance of having an appropriate approxi-
mation of landslide occurrence risk, this study presented 
a comprehensive optimization of MLP neural network for 
landslide occurrence prediction using six capable evolution-
ary methods, namely ACO, BBO, ES, GA, PBIL, and PSO. 
To do so, a proper dataset was provided. First, seven con-
ventional machine learning techniques including LR, MLP, 
SGD, DT, SOM, LWL, and REP tree were evaluated. The 
results showed that the MLP performed more efficiently 
with respective KS, MAE, RMSE, RAE, and RRSE of 
0.796, 0.219, 0.312, 53.976, and 62.392. In the next step, 
the elite model (i.e., MLP) was coupled with the mentioned 
optimization algorithms to achieve a more reliable predic-
tion. The results showed that the AUROC and classifica-
tion of the MLP (i.e., 0.816 and 58.3%) increased as 0.983, 
0.971, 0.948, 0.917, 0.878, and 0.896, and 85, 81.5, 79.6, 
75.4, 62.8, and 60.1%, respectively, by applying GA, BBO, 
PBIL, PSO, ES, and ACO techniques. From the compari-
son viewpoint, it was revealed that GA outperformed other 

optimization methods. Finally, it is worth noting that the 
presented paper can be improved by performing an optimi-
zation for proper selection of landslide conditioning factors, 
which would be a good idea for future works.
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