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Abstract
In the current investigation, based upon the nonlocal strain gradient theory of elasticity, an inhomogeneous size-dependent

beam model is formulated within the framework of a refined hyperbolic shear deformation beam theory. Thereafter, via the

constructed nonlocal strain gradient refined beam model, the nonlinear primary resonance of laminated functionally graded

graphene platelet-reinforced composite (FG-GPLRC) microbeams under external harmonic excitation is studied in the

presence of the both hardening-stiffness and softening-stiffness size effects. The graphene platelets are randomly dispersed

in each individual layer in such a way that the weight fraction of the reinforcement varies on the basis of different patterns

of FG dispersion. Based upon the Halpin–Tsai micromechanical scheme, the effective material properties of laminated FG-

GPLRC microbeams are achieved. By putting the Hamilton’s principle to use, the nonlocal strain gradient equations of

motion are developed. After that, a numerical solving process using the generalized differential quadrature (GDQ) method

together with the Galerkin technique is employed to obtain the nonlocal strain gradient frequency response and amplitude

response associated with the nonlinear primary resonance of laminated FG-GPLRC microbeams. It is found that the

nonlocality size effect leads to an increase in the peak of the jump phenomenon and the associated excitation frequency,

while the strain gradient size dependency results in a reduction in both of them.
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1 Introduction

The exceptional mechanical, electrical and thermal char-

acteristics of graphene have led to attracting tremendous

attention from the research community. Graphene-based

nanocomposite materials can be one of the most promising

applications of graphene nanosheets. Using graphene pla-

telet (GPL) as composite nanofiller makes the enhancement

of multifunctional property possible. Recently, some

studies have been carried out to analyze the mechanical

behavior of multilayer functional graded graphene platelet-

reinforced composite (FG-GPLRC) structures. Yang et al.

[1] reported the buckling and postbuckling response of

laminated FG-GPLRC Timoshenko beams using the dif-

ferential quadrature method. Song et al. [2] predicted the

free and forced vibrations of multilayer FG-GPLRC first-

order shear deformable plates using the Navier solution.

Feng et al. [3] investigated the nonlinear bending charac-

teristic of laminated FG-GPLRC Timoshenko beams via

the Ritz method. Wu et al. [4] examined the dynamic

stability of laminated FG-GPLRC nanocomposite beams

based on Bolotin’s method.

Due to the rapid advancement in materials science and

technology, the miniaturized FG materials can provide a

new opportunity for design of efficient micro- and nano-

electromechanical systems and devices [5–7]. As a result,

size dependency in mechanical behaviors of these small-

scale structures is worth studying. In the last decade, sev-

eral unconventional continuum theories of elasticity have

been employed to study the size-dependent characteristics

of microstructures [8–35].

Generally, in the previous investigations, it has been

observed that the size effect in type of stress nonlocality

has a softening-stiffness influence, while the strain gradient

size dependency leads to a hardening-stiffness effect.
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Accordingly, Lim et al. [36] proposed a more compre-

hensive size-dependent continuum theory namely nonlocal

strain gradient elasticity which includes both softening and

stiffening influences to describe the size dependency in a

more accurate way. Afterwards, a few studies have been

performed on the basis of nonlocal strain gradient elasticity

theory. Li and Hu [37] reported the size-dependent critical

buckling loads of nonlinear Euler–Bernoulli nanobeams

based upon nonlocal strain gradient theory of elasticity.

They also presented the size-dependent frequency of wave

motion on fluid-conveying carbon nanotubes via nonlocal

strain gradient theory [38]. Yang et al. [39] established a

nonlocal strain gradient beam model to evaluate the critical

voltages corresponding to pull-in instability FG carbon

nanotube-reinforced actuators at nanoscale. Simsek [40]

used the nonlocal strain gradient theory to capture the size

effects on the nonlinear natural frequencies of FGM Euler–

Bernoulli nanobeams. Sahmani and Aghdam [41–44]

employed the theory of nonlocal strain gradient elasticity to

analyze the nonlinear instability of micro/nanoshells under

various types of loading condition. Li et al. [45] anticipated

the size-dependent nonlinear free vibration response of

porous nanobeams based on the nonlocal strain gradient

Euler–Bernoulli beam model. Radwan and Sobhy [46]

studied the nonlocal strain gradient dynamic deformation

response of graphene sheets on a viscoelastic foundation

under a time harmonic thermal load. Wang et al. [47]

predicted the transverse-free vibrations of axially moving

nanobeams on the basis of nonlocal strain gradient Euler–

Bernoulli beam model. Sahmani and Aghdam [48–51] put

the nonlocal strain gradient elasticity theory to use for size-

dependent analysis of nonlinear mechanical behavior of

GPLRC micro/nanostructures. Zeighampour et al. [52]

examined the wave propagation in viscoelastic cylindrical

nanoshells surrounded by an elastic medium via a devel-

oped nonlocal strain gradient shell model.

The main objective of this work is to analyze the size-

dependent nonlinear primary resonance of harmonic exci-

ted FG-GPLRC laminated microbeams based upon the

nonlocal strain gradient hyperbolic shear deformable beam

model. With the aid of the Hamilton’s principle, the non-

classical nonlinear differential equations of motion are

constructed. On the basis of the Halpin–Tsai microme-

chanical scheme, the effective material properties of lam-

inated FG-GPLRC microbeams are achieved. Thereafter, a

numerical solution methodology using generalized differ-

ential quadrature method together with the Galerkin tech-

nique was reported and the nonlocal strain gradient fre-

quency response and amplitude response associated with

the primary resonance of FG-GPLRC laminated microbe-

ams was obtained.

2 Nonlocal strain gradient refined beam
model

Figure 1 illustrates a six-layer FG-GPLRC microbeam with

length L, width b, thickness h and the attached coordinate

system. The thicknesses of all six layers are the same equal

to hl ¼ h=6. Based upon the related dispersion pattern, the

weight fraction of GPLs varies layer by layer of the lam-

inated microbeam. In accordance with Fig. 1, three dif-

ferent patterns of GPL dispersion namely X-GPLRC, O-

GPLRC and A-GPLRC are taken into consideration toge-

ther with the uniform one (U-GPLRC). As a consequence,

for each type of GPL dispersion pattern, the GPL volume

fraction associated with k-th layer can be given as [6],

U � GPLRC : V
kð Þ

GPL ¼ V�
GPL;

X � GPLRC : V
kð Þ

GPL ¼ 2V�
GPL 2k � nL � 1j j=nLð Þ;

O� GPLRC : V
kð Þ

GPL ¼ 2V�
GPL 1� 2k � nL � 1j j=nLð Þð Þ;

A� GPLRC : V
kð Þ

GPL ¼ V�
GPL 2k � 1ð Þ=nLð Þ;

ð1Þ

in which nL represents the total number of layers and V�
GPL

stands for the total GPL volume fraction of the laminated

micro/nanobeam as shown below:

V�
GPL ¼ WGPL

WGPL þ qGPL
qm

� �
1�WGPLð Þ

; ð2Þ

where qGPL and qm in order denote the mass densities

associated with GPLs and the polymer matrix of the lam-

inated microbeam made from the FG-GPLRC nanocom-

posite. Also, WGPL is the GPL weight fraction.

With the aid of the Halpin–Tsai scheme [53], the

Young’s modulus relevant to k-th layer of the FG-GPLRC

containing randomly oriented reinforcements can be

extracted as,

E kð Þ ¼ 3

8

1þ kLgLV
kð Þ

GPL

1� gLV
kð Þ

GPL

þ 5

8

1þ kTgTV
kð Þ

GPL

1� gTV
kð Þ

GPL

 !
Em; ð3Þ

in which Em denotes the Young’s modulus of the polymer

matrix, and,

gL ¼
EGPL

Em
� 1

EGPL

Em
þ kL

; gT ¼
EGPL

Em
� 1

EGPL

Em
þ kT

; kL ¼ 2LGPL
hGPL

;

kT ¼ 2bGPL
hGPL

;

ð4Þ

where EGPL; LGPL; bGPL; hGPL are, respectively, the Young’s

modulus, length, width and thickness of GPL nanofillers.

Additionally, on the basis of the rule of mixture [54], the

Poisson’s ratio and mass density of the k-th layer of the

FG-GPLRC laminated microbeam can be obtained as,
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m kð Þ ¼ mm 1� V
kð Þ

GPL

� �
þ mGPLV

kð Þ
GPL;

q kð Þ ¼ qm 1� V
kð Þ

GPL

� �
þ qGPLV

kð Þ
GPL;

ð5Þ

where mm and qm stand for the Poisson’s ratio and mass

density of the polymer matrix, respectively. Also, mGPL and

qGPL denote, respectively, the Poisson’s ratio and mass

density of GPL reinforcements.

Based upon the hyperbolic shear deformation beam

theory, the displacement field along different coordinate

directions can be written as,

ux x; z; tð Þ ¼ u x; tð Þ � zw;x x; tð Þ
þ z cosh 1=2ð Þ � h sinh z=hð Þ½ �w x; tð Þ; ð6aÞ

uz x; z; tð Þ ¼ w x; tð Þ; ð6bÞ

where u and w in order are the displacement components of

the FG-GPLRC laminated microbeam along x- and z-axis.

Additionally, w represents the rotation with respect to the

cross-section of the microbeam at neutral plane, normal

about y-axis.

Consequently, the non-zero strain components are

derived as,

exx
cxz

� �
¼

u;x þ
1

2

� �
w2
;x � zw;xx þ z cosh

1

2

� �
� h sinh

z

h

� �� 	
w;x

cosh
1

2

� �
� cosh

z

h

� �� 	
w

8>><
>>:

9>>=
>>;
:

ð7Þ

As it has been reported previously, the nonlocal elas-

ticity theory and strain gradient elasticity theory do not

consider size effect comprehensively. The nonlocal theory

cannot take the higher-order stresses into account. On the

other hand, the strain gradient theory has the capability to

consider only local higher-order strain gradients. Motivated

by this fact, Lim et al. [36] proposed a combination of these

theories namely nonlocal strain gradient elasticity theory

which assess small-scale effects more reasonably.

Accordingly, the total nonlocal strain gradient stress tensor

K for a beam-type structure can be defined as seen below

[36],

Kxx ¼ rxx � r�xx;x; ð8aÞ

Kxz ¼ rxz � r�xz;x; ð8bÞ

where r and r� are the stress and higher-order stress

tensors.

In accordance with the method of Eringen, the consti-

tutive equation relevant to the total nonlocal strain gradient

stress tensor of a FG-GPLRC laminated microbeam can be

derived as,

Kxx � l2Kxx;xx

Kxz � l2Kxz;xx

� �

kð Þ
¼ Q

kð Þ
11 0

0 Q
kð Þ
44

" #
exx � l2exx;xx
exz � l2exz;xx

� �

kð Þ
;

ð9Þ

in which,

Q
kð Þ
11 ¼ E kð Þ

1� m kð Þð Þ2
; Q

kð Þ
44 ¼ E kð Þ

2 1þ m kð Þð Þ ; ð10Þ

and l and l in order are the nonlocal parameter and strain

gradient parameter. Thereafter, the nonlocal strain gradient

constitutive relations for a hyperbolic shear deformable

FG-GPLRC laminated microbeam can be expressed as,

Kxx � l2Kxx;xx

Kxz � l2Kxz;xx

( )

kð Þ

¼
Q

kð Þ
11 0

0 Q
kð Þ
44

" # u;x þ
1

2

� �
w;x


 �2�zw;xx þ z cosh
1

2

� �
� h sinh

z

h

� �� 	
w;x

cosh
1

2

� �
� cosh

z

h

� �� 	
w

8>>><
>>>:

9>>>=
>>>;

kð Þ

� l2
u;xxx þ w;xw;xxx þ w2

;xx � zw;xxxx þ z cosh
1

2

� �
� h sinh

z

h

� �� 	
w;xxx

cosh
1

2

� �
� cosh

z

h

� �� 	
w;xx

8>>><
>>>:

9>>>=
>>>;

kð Þ

:

ð11Þ

Therefore, within the framework of the nonlocal strain

gradient hyperbolic shear deformable beam model, the

Fig. 1 A FG-GPLRC laminated

micro/nanobeam with various

GPL distributions
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total strain energy of a FG-GPLRC laminated microbeam

can be written as,

Ps ¼
1

2
r
L

0

r
S

rijeij þ r�ijreij
n o

dSdx

¼ 1

2
r
L

0

Nxx u;x þ
1

2

� �
w2
;x

� 	
�Mxxw;xx þ Rxxw;x þ Qxw

� �
dx;

ð12Þ

where S represents the cross-sectional area of the FG-

GPLRC laminated microbeam. Also, the stress resultants

can be achieved in the following forms,

Nxx � l2Nxx;xx ¼ A�
11 u;x þ

1

2

� �
w2
;x � l2 u;xxx þ w;xw;xxx þ w2

;xx

� �� 	

þ B�
11 �w;xx þ l2w;xxxx


 �
þ C�

11 w;x � l2w;xxx


 �

Mxx � l2Mxx;xx ¼ B�
11 u;x þ

1

2

� �
w2
;x � l2 u;xxx þ w;xw;xxx þ w2

;xx

� �� 	

þ D�
11 �w;xx þ l2w;xxxx


 �
þ F�

11 w;x � l2w;xxx


 �

Rxx � l2Rxx;xx ¼ C�
11 u;x þ

1

2

� �
w2
;x � l2 u;xxx þ w;xw;xxx þ w2

;xx

� �� 	

þ F�
11 �w;xx þ l2w;xxxx


 �
þ G�

11 w;x � l2w;xxx


 �

Qx � l2Qx;xx ¼ A�
44 w� l2w;xx


 �
;

ð13Þ

in which,

Nxx;Mxx;Rxxf g ¼ b
XnL
k¼1

r
zk

zk�1

K kð Þ
xx 1; z; z cosh

1

2

� �
� h sinh

z

h

� �� �
dz

 !

Qx ¼ b
XnL
k¼1

r
zk

zk�1

K kð Þ
xz cosh

1

2

� �
� cosh

z

h

� �� �
dz;

ð14Þ

and,

A�
11;B

�
11;C

�
11

� 
¼ b

XnL
k¼1

Q
kð Þ
11 r

zk

zk�1

1; z; z cosh
1

2

� �
� h sinh

z

h

� �� �
dz

 !

D�
11;F

�
11;G

�
11

� 
¼ b

XnL
k¼1

Q
kð Þ
11 r

zk

zk�1

z2; z2 cosh
1

2

� �
� zh sinh

z

h

� �
;

� 

z cosh
1

2

� �
� h sinh

z

h

� �� 	2)
dz

!

A�
44 ¼ b

XnL
k¼1

Q
kð Þ
44 r

zk

zk�1

cosh
1

2

� �
� cosh

z

h

� �� �
dz

 !
:

ð15Þ

Furthermore, the kinetic energy of a FG-GPLRC lami-

nated microbeam modeled via the nonlocal strain gradient

hyperbolic shear deformable beam model can be expressed

as,

PT ¼ 1

2
r
L

0

r
S

q ux;t

 �2þ uz;t


 �2n o
dSdx

¼ 1

2
r
L

0

I0 u;t

 �2�2I1u;tw;xt þ 2I2u;tw;t þ I3 w;xt


 �2n

� 2I4w;xtw;t þ I5 w;t


 �2þI0 w;t


 �2o
dx; ð16Þ

where,

I0; I1; I2f g

¼ b
XnL
k¼1

q kð Þ r
zk

zk�1

1; z; z cosh
1

2

� �
� h sinh

z

h

� �� �
dz

 !

I3; I4; I5f g

¼ b
XnL
k¼1

q kð Þ r
zk

zk�1

z2; z2 cosh
1

2

� �
� zh sinh

z

h

� �
;

� 

z cosh
1

2

� �
� h sinh

z

h

� �� 	2)
dz

!
: ð17Þ

Additionally, the work done by the transverse force q

can be defined as follows:

PP ¼ r
L

0

q x; tð Þwdx: ð18Þ

Thereby, using the Hamilton’s principle, the governing

differential equations in terms of the stress resultants can

be derived as,

Nxx;x ¼ I0u;tt � I1w;xxt þ I2w;tt; ð19aÞ

Mxx;xx þ Nxxw;x


 �
;x
þq ¼ I0w;tt þ I1u;xtt � I3w;xxtt þ I4w;xtt;

ð19bÞ
Rxx;x � Qx ¼ I2u;tt � I4w;xtt þ I5w;xtt ð19cÞ

Thereafter, by inserting Eqs. (13) in (19a, 19b), the

nonlinear size-dependent equations of motion can be

rewritten as,

A�
11 u;xx þ w;xw;xx � l2 u;xxxx þ 3w;xxw;xxx þ w;xw;xxxx


 �� �

þ B�
11 �w;xxx þ l2w;xxxxx


 �
þ C�

11 w;xx � l2w;xxxx


 �

¼ I0 u;tt � l2u;xxtt

 �

� I1 w;xxt � l2w;xxxxt


 �
þ I2 w;tt � l2w;xxtt


 �
;

ð20aÞ
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B�
11 u;xxx þ w2

;xx þ w;xw;xxx � l2
h

u;xxxxx þ 3w2
;xxx þ 4w;xxw;xxxx þ w;xw;xxxxx

� �i

þ D�
11 �w;xxxx þ l2w;xxxxxx


 �
þ F�

11 w;xxx � l2w;xxxxx


 �

þ A�
11C1 � l2A�

11C2 � l2A�
11C3 þ l2l2A�

11C4 � B�
11C5

þ l2B�
11C6 þ l2B�

11C7 � l2l2B�
11C8 þ C�

11C9

� l2C�
11C10 � l2C�

11C11 þ l2l2C�
11C12

¼ I0 w;tt � l2w;xxtt


 �
þ I1 u;xtt � l2u;xxxtt


 �

� I3 w;xxtt � l2w;xxxxtt


 �

þ I4 w;xtt � l2w;xxxtt


 �
� qþ l2q;xx; ð20bÞ

C�
11 u;xx þ w;xw;xx � l2 u;xxxx þ 3w;xxw;xxx þ w;xw;xxxx


 �� �

þ F�
11 �w;xxx þ l2w;xxxxx


 �

þ G�
11 w;xx � l2w;xxxx


 �
� A�

44 w� l2w;xx


 �

¼ I2 u;tt � l2u;xxtt

 �

� I4 w;xtt � l2w;xxxtt


 �

þ I5 w;tt � l2w;xxtt


 �
;

ð20cÞ

in which,

C1 ¼ u;xxw;x þ u;xw;xx þ 3=2ð Þw;xxw
2
;x

C2 ¼ u;xxxxw;x þ u;xxxw;xx þ 4w;xw;xxw;xxx

þ w;xx þ w;xxxx


 �
w2
;x

C3 ¼ u;xxxxw;x þ 3u;xxxw;xx þ 3u;xxw;xxx þ u;xw;xxxx

þ 3w3
;xx þ 9w;xw;xxw;xxx þ 3=2ð Þw2

;xw;xxxx

C4 ¼ u;xxxxxxw;x þ 3u;xxxxxw;xx þ 3u;xxxxw;xxx þ u;xxxw;xxxx

þ 10w;xxxxw
2
;xx þ 12w;xxw

2
;xxx

þ 14w;xw;xxxw;xxxx þ 8w;xw;xxw;xxxxx þ 6w;xw;xxw;xxx

þ w;xxxx þ w;xxxxx


 �
w2
;x þ 2w3

;xx

C5 ¼ w;xw;xxx þ w2
;xx

C6 ¼ w;xxw;xxxx þ w;xw;xxxxx

C7 ¼ 3w2
;xxx þ 4w;xxw;xxxx þ w;xw;xxxxx

C8 ¼ w2
;xxxx þ 3w;xxxw;xxxxx þ 3w;xxw;xxxxxx þ w;xw;xxxxxxx

C9 ¼ w;xxw;x þ w;xw;xx

C10 ¼ w;xxw;xxx þ w;xw;xxxx

C11 ¼ w;xxxxw;x þ 3w;xxxw;xx þ 3w;xxw;xxx þ w;xw;xxxx

C12 ¼ w;xxxxw;xxx þ 3w;xxxw;xxxx þ 3w;xxw;xxxxx þ w;xw;xxxxxx:

ð21Þ

To perform the numerical solving process in a more

general form, the following dimensionless parameters are

taken into consideration,

X ¼ x

L
; U ¼ u

h
; W ¼ w

h
; W ¼ w;

g1 ¼
l

L
; g2 ¼

l
L
; b ¼ h

L

T ¼ t

L

ffiffiffiffiffiffiffi
A�
11

I0

r
; a�11; a

�
44; b

�
11; c

�
11; d

�
11; f

�
11; g

�
11

� 

¼ A�
11

A�
11

;
A�
44

A�
11

;
B�
11

A�
11h

;
C�
11

A�
11h

;
D�

11

A�
11h

2
;
F�
11

A�
11h

2
;
G�

11

A�
11h

2

� �

I�0 ; I
�
1 ; I

�
2 ; I

�
3 ; I

�
4 ; I

�
5

� 
¼ I0

I0
;
I1
I0h

;
I2
I0h

;
I3
I0h2

;
I4
I0h2

;
I5
I0h2

� �
; Q ¼ qL2

A�
11h

:

ð22Þ

As a result, the dimensionless form of the size-depen-

dent nonlinear governing differential equations of motion

can be expressed as,

a�11 U;XX þ bW;XW;XX � g21 U;XXXX þ 3bW;XXW;XXX


�

þ bW;XW;XXXX

��
� b�11 W;XXX � g21W;XXXXX


 �

þ c�11 W;XX � g21W;XXXX


 �

¼ I�0 U;TT � g22U;XXTT


 �
� I�1 W;XXT � g22W;XXXXT


 �

þ I�2 W;TT � g22W;XXTT


 �
;

ð23aÞ

b�11 U;XXX þ bW2
;XX þ bW;XW;XXX

h

� g21 U;XXXXX þ 3bW2
;XXX þ 4bW;XXW;XXXX þ bW;XW;XXXXX

� �i

� d�11 W;XXXX � g21W;XXXXXX


 �
þ f �11 W;XXX � g21W;XXXXX


 �

þ a�11
~C1 � g21a

�
11
~C2 � g22a

�
11
~C3 þ g22g

2
1a

�
11
~C4 � b�11

~C5

þ g21b
�
11
~C6 þ g22b

�
11
~C7 � g22g

2
1b

�
11
~C8 þ c�11

~C9

� g21c
�
11
~C10 � g22c

�
11
~C11 þ g22g

2
1c

�
11
~C12

¼ I�0 W;TT � g22W;XXTT


 �
þ I�1 U;XTT � g22U;XXXTT


 �

� I�3 W;XXTT � g22W;XXXXTT


 �

þ I�4 W;XTT � g22W;XXXTT


 �
�Qþ g22Q;XX;

ð23bÞ

c�11 U;XX þ bW;XW;XX � g21 U;XXXX þ 3bW;XXW;XXX


�

þ bW;XW;XXXX

��
� f �11 W;XXX � g21W;XXXXX


 �

þ g�11 W;XX � g21W;XXXX


 �
� a�44 W� g21W;XX


 �

¼ I�2 U;TT � g22U;XXTT


 �
� I�4 W;XTT � g22W;XXXTT


 �

þ I�5 W;TT � g22W;XXTT


 �
; ð23cÞ

where,
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~C1 ¼ bU;XXW;X þ bU;XW;XX þ 3=2ð Þb2W;XXW
2
;X

~C2 ¼ bU;XXXXW;X þ bU;XXXW;XX þ 4b2W;XW;XXW;XXX

þ b2 W;XX þW;XXXX


 �
W2

;X

~C3 ¼ b U;XXXXW;X þ 3U;XXXW;XX þ 3U;XXW;XXX þ U;XW;XXXX

� �

þ b2 3W3
;XX þ 9W;XW;XXW;XXX þ 3=2ð ÞW2

;XW;XXXX

h i

~C4 ¼ b U;XXXXXXW;X þ 3U;XXXXXW;XX þ 3U;XXXXW;XXX þ U;XXXW;XXXX

� �

þ b2 10W;XXXXW
2
;XX þ 12W;XXW

2
;XXX

h

þ14W;XW;XXXW;XXXX þ 8W;XW;XXW;XXXXX þ 6W;XW;XXW;XXX

þ W;XXXX þW;XXXXX


 �
W2

;X þ 2W3
;XX

i

~C5 ¼ bW;XW;XXX þ bW2
;XX

~C6 ¼ bW;XXW;XXXX þ bW;XW;XXXXX

~C7 ¼ 3bW2
;XXX þ 4bW;XXW;XXXX þ bW;XW;XXXXX

~C8 ¼ bW2
;XXXX þ 3bW;XXXW;XXXXX þ 3bW;XXW;XXXXXX þ bW;XW;XXXXXXX

~C9 ¼ W;XXW;X þW;XW;XX

~C10 ¼ W;XXW;XXX þW;XW;XXXX

~C11 ¼ W;XXXXW;X þ 3W;XXXW;XX þ 3W;XXW;XXX þW;XW;XXXX

~C12 ¼ W;XXXXW;XXX þ 3W;XXXW;XXXX þ 3W;XXW;XXXXX þW;XW;XXXXXX :

ð24Þ

3 Numerical solution methodology

Herein, to capture the nonlinear nonlocal strain gradient

frequency of a FG-GPLRC microbeam, a solving process

on the basis of the GDQ numerical method is utilized [55].

Based upon the Chebyshev–Gauss–Lobatto scheme, a set

of mesh points within X domain can be obtained as,

Xi ¼ 1=2ð Þ 1� cos p i� 1ð Þ= N � 1ð Þð Þ½ �; i ¼ 1; 2; . . .;N:

ð25Þ

Consequently, the discretized nonlinear governing

equations of motion can be written in terms of mass matrix,

damping matrix and stiffness matrix as below,

M€pþ C _pþKLpþKN ¼ Q cos XTð Þ: ð26Þ

The derivative operators corresponding to each order

can be introduced as,

Dr
ij ¼

IX r ¼ 0QN
j¼1;j 6¼i Xk � Xj


 �

Xi � Xj


 �QN
i¼1;i 6¼j Xj � Xi


 � r ¼ 1; i; j ¼ 1; 2; . . .;N

r D1
ijDr�1

ii �
Dr�1

ij

Xi � Xj


 �
 !

r ¼ 2; 3; . . .;N � 1; i; j ¼ 1; 2; . . .;N

�
PN

i¼1;i¼j

Dr
ij r ¼ 1; 2; ; . . .;N � 1; i; j ¼ 1; 2; . . .;N

8
>>>>>>>>>><
>>>>>>>>>>:

ð27Þ

where IX represents the identity matrix.

Also, the time derivative operator corresponding to each

order can be introduced explicitly in the following matrix

forms,

D 1ð Þ
T ¼ Aij

where

A1;1 ¼ 0

Ai;1 ¼ �1ð Þi�1
cot

p i� 1ð Þ
Nt

� 	

Ai;j ¼ �1ð ÞNt�jþ1
cot

p Nt � jþ 1ð Þ
Nt

� 	

Aiþ1;jþ1 ¼ Aij

8>>>>>><
>>>>>>:

i; j ¼ 2; 3; . . .;Nt;

ð28Þ

D 2ð Þ
T ¼ Bij where

B1;1 ¼ �N2
t

12
� 1

6

Bi;1 ¼
�1ð Þi�1

2 sin2
p i� 1ð Þ

Nt

� 	

Bi;j ¼
�1ð ÞNt�jþ1

2 sin2
p Nt � jþ 1ð Þ

Nt

� 	

Biþ1;jþ1 ¼ Bij

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

i; j ¼ 2; 3; . . .;Nt;

ð29Þ

4 Numerical results and discussion

On the basis of the developed nonlocal strain gradient

beam model, the size-dependent frequency response and

amplitude response associated with the primary resonance

of harmonic excited FG-GPLRC laminated microbeams

are predicted. In the preceding numerical results, the

damping parameter is assumed as C ¼ 0:02. Also, the

geometric parameters of the FG-GPLRC laminated

microbeams are selected as h ¼ 24 nm for nL ¼ 6 and

b ¼ h; L ¼ 20h, hGPL ¼ 0:3 nm, LGPL ¼ 5 nm, and

bGPL ¼ 2:5 nm. In addition, xL stands for the linear natural

frequency of the FG-GPLRC laminated microbeam. The

material properties of the polymer matrix and GPL rein-

forcements are tabulated in Table 1.

Herein, the validity of the given solution is checked. To

this end, by ignoring the strain gradient terms, the nonlocal

natural frequencies of a simply supported carbon nanotube

with different slenderness ratios are calculated and com-

pared with those presented by Sahmani and Ansari [58]

using the GDQ method and molecular dynamics

Table 1 Material properties of

the polymer matrix and GPL

reinforcements [56, 57]

EGPL TPað Þ 1.01

mGPL 0.186

qGPL kg=m3ð Þ 1062.5

Em GPað Þ 3

mm 0.34

qm kg=m3ð Þ 1200
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simulation. As shown in Table 2, a very good agreement is

found which confirms the validity of the given solution for

the problem.

Figures 2 and 3 illustrate the nonlocal strain gradient

frequency response of the harmonic excited FG-GPLRC

laminated microbeams corresponding to different values of

Table 2 Comparison of natural frequencies of simply supported carbon nanotubes obtained by the nonlocal beam model and molecular dynamics

simulations (THz)

Length-to-diameter ratio of carbon

nanotube

Results of molecular dynamics

simulation [58]

Results of GDQ method

[58]

Results of the present solution

methodology

24.5 0.0519 0.0521 0.0521

31.6 0.0358 0.0357 0.0357

39.1 0.0259 0.0259 0.0259
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the nonlocal parameter and strain gradient parameter,

respectively. It can be seen that the nonlocality size effect

leads to an increase in the peak of the jump phenomenon in

the vibration amplitude and it occurs at a higher excitation

frequency. However, by changing the end supports from

simply supported to clamped one, the significance of this

pattern reduces. On the other hand, by taking the strain

gradient size dependency into account, the peak of the

jump phenomenon decreases and it is shifted to a lower

excitation frequency. It is shown again that through

changing the boundary conditions from simply supported–

simply supported (SS–SS) to clamped–clamped (C–C),

these observations related to the strain gradient size effect

become negligible.

Figures 4 and 5 display the nonlocal strain gradient

amplitude response curves of the harmonic excited FG-

GPLRC laminated microbeams corresponding to different

values of the nonlocal parameter and strain gradient

parameter, respectively. It is observed that by increasing

the excitation amplitude, the vibration amplitude increases

up to the first bifurcation point. After that, increment in the

vibration amplitude continues via reduction in the value of

excitation amplitude up to the second bifurcation point. It

is found that the nonlocality causes a decrease in the

excitation amplitudes associated with both the bifurcation

0.9 0.95 1 1.05 1.1
0

0.1

0.2

0.3

0.4

0.5

0.6

V
ib

ra
tio

n 
am

pl
itu

de

C-SSSS-SS

0.9 0.95 1 1.05 1.1
0

0.05

0.1

0.15

0.2

0.25

V
ib

ra
tio

n 
am

pl
itu

de

C-C

0.8 1 1.2 1.4 1.6 1.8 2

1.4

1.2

1

0.8

0.6

0.4

0.2

0

V
ib

ra
tio

n 
am

pl
itu

de

I = 0 nm
I = 20 nm
I = 40 nm

I = 60 nm
I = 80 nm

/ L / L

/ L

Fig. 3 Size-dependent frequency response of the soft excited FG-GPLRC laminated micro/nanobeams corresponding to different strain gradient

parameters and boundary conditions (Q ¼ 0:01;U � GPLRC;VGPL ¼ 0:1;l ¼ 0 nm)

1746 Engineering with Computers (2020) 36:1739–1750

123



points, but its effect on the first one is more significant.

However, the strain gradient size dependency has an

opposite influence and leads to an increase. Furthermore, it

is indicated that by changing the end supports from simply

supported to clamped one, the influence of the nonlocality

on the excitation amplitudes associated with the first and

second bifurcation points increases and decreases, respec-

tively. But for the strain gradient size dependency, its

influence on the excitation amplitudes associated with both

the bifurcation points reduces by changing the boundary

conditions from SS–SS to C–C.

5 Concluding remarks

The prime aim of this investigation was to anticipate the

nonlocal strain gradient nonlinear primary resonance of the

harmonic excited FG-GPLRC laminated microbeams with

different GPL dispersion patterns and various boundary

conditions. To this purpose, the nonlocal strain gradient

theory of elasticity was applied to the refined hyperbolic

shear deformation beam theory to construct a more com-

prehensive size-dependent beam model. Via a numerical

solving process, the nonlocal strain gradient frequency

response and amplitude response are captured.
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It was indicated that the nonlocality size effect leads to

an increase in the peak of the jump phenomenon in the

vibration amplitude and it occurs at a higher excitation

frequency. However, by changing the end supports from

simply supported to clamped one, the significance of this

pattern reduces. On the other hand, by taking the strain

gradient size dependency into account, the peak of the

jump phenomenon decreases and it is shifted to a lower

excitation frequency. It was observed that for all types of

boundary conditions and GPL dispersion pattern, the sig-

nificance of strain gradient size dependency on the linear

frequency of the harmonic excited FG-GPLRC laminated

microbeam is more than that of the nonlocal size effect.

Moreover, it was seen that the nonlocality causes a

decrease in the excitation amplitudes associated with both

the bifurcation points, but its effect on the first one is more

significant. However, the strain gradient size dependency

has an opposite influence and leads to an increase.
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