
Vol.:(0123456789)1 3

Engineering with Computers (2020) 36:1751–1762 
https://doi.org/10.1007/s00366-019-00793-2

ORIGINAL ARTICLE

New collocation method for stochastic response surface reliability 
analyses

Peng Zeng1 · Tianbin Li1 · Yu Chen1 · Rafael Jimenez2 · Xianda Feng3 · Salvador Senent2

Received: 5 September 2018 / Accepted: 4 June 2019 / Published online: 24 June 2019 
© Springer-Verlag London Ltd., part of Springer Nature 2019

Abstract
The stochastic response surface method (SRSM) is widely used in engineering reliability analyses due to its efficiency and 
accuracy. The selection of collocation points in the SRSM has great significance, as it may strongly affect the computed 
results. This paper investigates the performance of different selection strategies in SRSM, and proposes a new collocation 
method. First, two commonly used collocation methods—the regression-based collocation method and the linearly inde-
pendent collocation method—are briefly reviewed; and their limitations in application to reliability analysis are discussed. 
Then, an improved collocation method that achieves a better tradeoff between efficiency and accuracy is proposed. Four 
examples are employed to test the performance of the proposed collocation method; and a comparative study is conducted 
to demonstrate its advantages with respect to some other existing collocation methods.

Keywords Reliability analysis · Stochastic response surface method · Polynomial chaos expansion · Collocation point · 
Probability of failure

List of symbols
p  Order of PCE
X  A vector of random variables in physical space
U  A vector of uncorrelated standard normal ran-

dom variables
y  Random output of the model
Γp(·)  Multidimensional Hermite polynomials of order 

p
n  Number of random variables in PCE
a  A vector of unknown coefficients
T  Hermite polynomial information matrix
T  Transpose matrix operator

Na  Number of unknown coefficients
Pi  Selected collocation point
Pi
′  Symmetric point of Pi with respect to the origin

ζ  Asymmetrical ratio of the selected collocation 
points

Δ  Relative error with respect to MCS or LHS
Np  Number of selected collocation points or limit 

state function evaluations
COV  Coefficient of variation
Pf  Probability of failure
μ  Mean value
SD  Standard deviation
σt  Applied support pressure at the tunnel face
σc,partial  Collapse pressure provided by partial collapse 

mechanism
σc,global  Collapse pressure provided by global collapse 

mechanism
σc,max  Maximum collapse pressure provided by partial 

collapse or global collapse
c  Cohesion
φ  Friction angle
ρ  Correlation coefficient
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1 Introduction

Reliability methods have been applied to many structural 
engineering studies, as they can account for the effects 
of uncertainties and provide a basis for risk assessments. 
Various methods have been proposed to estimate the reli-
ability index or the probability of failure, such as the first 
order reliability method (FORM) (see e.g. [1, 2]), the 
second order reliability method (SORM) (see e.g. [3–5]), 
the response surface method (RSM) [6], and the sampling 
method [7], among others.

The RSM approximates an implicit limit state func-
tion (LSF) using a set of actual values of the LSF, and it 
has been proved to be effective to address complex engi-
neering problems with inexplicit LSFs (see, e.g. [8–10]). 
However, RSMs can only fit the LSF well in the vicin-
ity of the design point; i.e., in the vicinity of the point 
within the failure region with highest probability of occur-
rence. In contrast, the stochastic response surface method 
(SRSM)—an extension of classical deterministic RSMs 
to consider uncertain inputs and outputs through a series 
expansion of standard random variables [11]—can fit the 
LSF in the entire variable space, thus providing better pre-
dictions of the output response [12, 13].

Recently, considerable efforts have been put to solve 
reliability problems in structural and geotechnical engi-
neering using SRSMs. For instance, Isukapalli et al. [11] 
proposed using the SRSM to quantify uncertainty propaga-
tion; Huang et al. [14] developed Excel add-ins to promote 
the application of SRSM without the need for advanced 
mathematical and programming skills; Li et al. [12] pro-
posed an improved SRSM for reliability analysis of rock 
slopes involving correlated non-normal random variables; 
Mollon et al. [15] applied the collocation-based SRSM to 
estimate the probability of face collapse in tunnels driven 
by a compressed-air pressurized shield; and Wang and Li 
[16] employed the SRSM to estimate the reliability of a 
tunnel considering non-Gaussian dependent random vari-
ables under incomplete probability information.

However, one remaining challenge for a successful 
implementation of the SRSM in practice is how to reli-
ably and efficiently select collocation points to estimate the 
unknown coefficients of the polynomial chaos expansion 
(PCE); this aspect is crucial, as it has a significant impact 
on the performance of the SRSM [12]. Although some 
advanced sampling methods have been developed in recent 
years—for instance, Blatman and Sudret [17] and Blat-
man and Sudret [18] proposed an adaptive sparse stochas-
tic response surface method with least square regression 
and least angle regression; Xiong et al. [19] and Hampton 
and Doostan [20] suggested the use of weighted sampling 
method to improve the computational efficiency of SRSM. 

The conventional collocation method using the roots of 
next higher order Hermite polynomials is still widely 
used in engineering application (particularly in geotech-
nical engineering as mentioned above) for its simplicity. 
Therefore, many researchers put their efforts to improve 
the performance of conventional collocation method.

Isukapalli et al. [11] recommended, through a conven-
tional regression-based collocation method (RBCM), that 
the collocation points should be close to the origin, and be 
twice the number of unknown coefficients. However, the 
information matrix produced by RBCM is not always full 
rank, resulting in unstable and ineffective estimations [12, 
21, 22].

Alternatively, the linearly independent collocation 
method (LICM)-based SRSM ensures a full rank informa-
tion matrix, because it rejects collocation points until such 
requirement is fulfilled; and the number of selected colloca-
tion points is equivalent to the number of unknown coeffi-
cients, thus being efficient [21, 23]. However, the LICM may 
select highly asymmetrical collocation points with respect to 
the origin, leading to an unexpected result: i.e., that higher 
odd-order SRSMs produce worse estimates of probability 
of failure than lower even-order SRSMs [24]. To overcome 
this drawback, but at the expense of efficiency, Xiao et al. 
[24] proposed a new collocation method that requires many 
more collocation points than LICM.

Therefore, a good strategy to select collocation points for 
SRSMs, with a good balance between computational effi-
ciency and accuracy, is still needed. Building on the merits 
of LICM and RBCM, this paper proposes one new strat-
egy to select collocation points, so that better estimates of 
probability of failure using SRSM can be obtained, while 
still maintaining a reasonable computational efficiency. 
Advantages and disadvantages of different alternatives are 
discussed, and several examples are employed to illustrate 
the computational efficiency and the accuracy of the sug-
gested approach.

2  Stochastic response surface method

As a conceptual extension of the classical (deterministic) 
RSM, the SRSM represents inputs and outputs of an uncer-
tain system through a series expansion of standard random 
variables. Then, for a given SRSM order and based on a 
limited number of observed data, the unknown coefficients 
of such series expansion can be estimated. The procedure is 
well reviewed by Isukapalli et al. [11], Li et al. [12], Xiong 
et al. [19] and many others. A brief summary of the steps 
to use the SRSM with Hermite polynomials is given below.

Step 1: Transformation of random variables: random 
variables with Gaussian distribution considered in the 
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SRSM are often transformed first from their original 
physical space, X, into the uncorrelated standard normal 
variables, U.

Step 2: Functional representation of the outputs: to 
express the response of the deterministic model using a 
PCE. For instance, for normal variables, the output can 
be represented in terms of a Hermite PCE with a series of 
standard normal random variables [11, 12]

where y is a random output of the model; ai1,i2,…,in
 are 

unknown coefficients in the expansion to be estimated; and 
�p(Ui1

,Ui2
,… ,Uip

) are multidimensional Hermite polyno-
mials of order p given by

Considering a pth order Hermite PCE with n random 
variables, the number of the unknown coefficients, Na, can 
be calculated as [15]

Step 3: Estimation of the unknown coefficient in the 
PCE: once the Hermite PCE for the output response has 
been established, the vector of unknown coefficients in 
Eq. (1), a, can be determined using the selected colloca-
tion points and the least square regression-based probabil-
istic collocation method [25], as

where T is a Hermite polynomial information matrix of 
dimension N × Na; N is the number of selected collocation 
points; and T stands for the transpose matrix operator.

Step 4: Hermite PCE-based reliability analysis: using the 
obtained coefficients of the Hermite PCE, conventional sam-
pling methods (e.g., Monte Carlo simulation) can be directly 
employed to evaluate the probability of failure of the analyti-
cal expression that approximates the original LSF, and hence 
to evaluate the corresponding reliability index.

The reader should note that the main goal of this work 
is to improve the method to select optimal collocation 
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points employed in Step 3; our proposals towards this 
objective are discussed in the next section.

3  Selection of the collocation points

One key issue for successful application of the SRSM is 
associated with the selection of collocation points. To that 
end, Webster et al. [25] proposed that the roots of the next 
higher order Hermite polynomials can be used as input vari-
ables to construct the collocation points. Then, the number 
of collocation points becomes (p + 1)n for Hermite polyno-
mials in which one of its roots is 0; otherwise, an extra col-
location point, 0, should be included, as such collocation 
point is located in the region of maximum probability [26]. 
But, since the number of available collocation points is usu-
ally larger than the number of unknown coefficients, a, an 
effective strategy to select collocation points may increase 
the computational efficiency and accuracy of SRSMs. Two 
widely used strategies will be discussed first; then, a new 
collocation method that may improve the existing ones is 
proposed.

3.1  Regression‑based collocation method

Isukapalli et al. [11] proposed a regression-based collocation 
method (RBCM), in which the collocation points located 
closer to the origin—i.e., in regions of higher probability—
are preferred, and selecting the collocation points so that 
they are symmetrically distributed with respect to the origin. 
To obtain good estimates of the unknown coefficients, Isu-
kapalli et al. [11] recommended that the number of selected 
points should be twice the number of unknown coefficients. 
However, Li et al. [12] observed that the rank of the informa-
tion matrix, T, does not linearly increase with the number of 
collocation points, suggesting that some collocation points 
selected are not mutually independent; for instance, for a 
rock slope problem with five random variables, the 3rd order 
SRSM with 56 unknown coefficients requires the first 248 
collocation points to provide a full rank information matrix. 
This indicates that the selection scheme proposed by Isuka-
palli et al. [11] may not always result in robust estimates, 
since the Hermite polynomial information matrix, T, may 
not always keep a full rank and be close to singular.

3.2  Linearly independent collocation method

To circumvent this problem associated to the RBCM, Li 
and Zhang [27] observed that each new set of proposed 
collocation points should fulfill that the (j + 1)th row of T 
is linearly independent to its previous j rows; otherwise, it 
should be rejected. Sudret [28] and Mao et al. [23] empha-
sized that the sample points selected should lead to an 
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invertible information matrix. Based on these observations, 
Jiang et al. [21] and Jiang et al. [13] proposed the linearly 
independent collocation method (LICM), in which collo-
cation points that can increase the rank of the information 
matrix are reserved, being otherwise rejected. In this way, 
only Na collocation points that produce a full rank infor-
mation matrix will be selected; this is equal to the number 
of unknown coefficients, Na, thus significantly reducing the 
number of deterministic function evaluations, and improving 
computational efficiency.

However, according to Xiao et al. [24], the collocation 
points selected in LICM could be asymmetric, particularly 
for odd-orders; and this could lead to large computational 
errors in reliability analyses. To overcome this drawback, 
Xiao et al. [24] proposed an improved collocation method, 
but it requires many more collocation points (about 2–4 
times higher than LICM for a few random variables, and 
even more times higher for more random variables). Thus, 
such method has limited possibilities for application due to 
its high computational cost.

3.3  A proposed symmetric full rank collocation 
method

In our proposed symmetric full rank collocation method 
(SFRCM), two types of collocation methods—RBCM and 
LICM—are combined to achieve a better balance between 
computational efficiency and accuracy. In particular, the 
new method combines the merits of RBCM (i.e., to obtain 
collocation points closer to the origin, and to maintain the 
symmetry of selected collocation points) with the full rank 
criterion used in LICM (i.e., to ensure that the information 
matrix, T, is always invertible). A detailed implementation 
procedure is illustrated below to further explain the details 
of our proposed method (see also the flowchart in Fig. 1). 
The steps are:

1. Determine the order of the Hermite PCE, and compute 
the roots of the next higher order Hermite polynomial. 
For instance, for a 2nd order Hermite PCE, the three 
roots of the 3rd order Hermite polynomial are 0, 

√

3 and 
−
√

3.
2. Generate a group of collocation points (“Group A”) 

associated to the roots of the next higher order Hermite 
polynomial. If the Hermite polynomial has not a 0 root, 
an additional collocation point located on the origin, 0, 
should be included. Thus, Group A will contain (p + 1)n 
or (p + 1)n+ 1 points.

3. Compute the norms of all the collocation points, and sort 
them with increasing norm values. Make i = 0.

4. Make i = i + 1, select the associated collocation point, 
Pi, from the available collocation points in Group A, 

and put it into the group of selected collocation points 
(“Group B”).

5. Compute the rank of the new information matrix, T. If 
the rank of the information matrix does not increase, 
reject Pi; otherwise, accept it.

6. If Pi is kept within Group B, its symmetric point with 
respect to the origin, Pi

’, should also be included into 
Group B (except the point located on the origin, 0). 
Then, update the rank of the new information matrix, 
and delete Pi

’ from Group A.
7. Repeat Steps 4–6 until the rank of the information 

matrix, T, equals the number of unknown coefficient, 
Na.

In this way, our proposed SFRCM can guarantee that all 
the selected collocation points are symmetric with respect to 
the origin, and that the information matrix is always invert-
ible. The computational cost and accuracy associated to 
this proposed procedure will be illustrated in the following 
sections.

4  Comparison of collocation points 
provided by different methods

To further analyze the performance of our proposed sym-
metric full rank collocation method (SFRCM), and its com-
parison to the regression-based collocation method (RBCM) 
and to the linearly independent collocation method (LICM), 
Table 1 lists the required number of collocation points, and 
the rank of the associated information matrix, obtained for 
PCEs of order 1st to 6th, and with up to ten random vari-
ables. It is observed that LICM requires the least number of 
collocation points while RBCM needs the most. Specifically, 
the exact numbers of collocation points associated to them 
are Na and 2Na, respectively. The number of selected collo-
cation points with the proposed SFRCM ranges between (Na, 
2Na): i.e., it is larger than the number required for LICM, 
but smaller than the number required for RBCM. (Note also 
that, for most of the cases considered, the required number 
is about 1.5Na, or the average between LICM and RBCM.)

The ranks of the information matrices obtained with 
LICM and SFRCM are always identical for the same PCE 
order and the same number of random variables; and, since 
the rank is equal to the number of unknown coefficients (i.e., 
Na), this ensures that the information matrix is invertible. 
However, when the RBCM involves more than four random 
variables, or when the PCEs of 3rd, 5th or 6th order with 
four random variables are considered, the rank of the infor-
mation matrix will be less than Na, possibly leading to inad-
equate reliability estimations. Therefore, care must be taken 
when the RBCM is applied in reliability analyses involving 
a relatively larger number of random variables.
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More importantly, Table 1 can also guide readers, so that 
they can pre-evaluate the computational cost of their own 
cases: the total computation cost can be roughly estimated 
multiplying the computational time of a single determinis-
tic model evaluation times the required number of colloca-
tion points. Moreover, as indicated by Jiang et al. [21], the 
process to select collocation points might be complex and 
expensive; therefore, to ease the application of the SRSM in 
practice, all the collocation points for the three collocation 

methods considered herein (considering up to 6th order and 
up to ten random variables) are provided as Supplementary 
materials.

To better assess the three collocation methods considered, 
we defined a ratio, � , to quantify the asymmetry of the col-
location points: � is defined as the number of asymmetric 
collocation points divided by the number of selected colloca-
tion points. Table 2 visualizes the distribution pattern of the 
selected collocation points for the three collocation methods 

Fig. 1  A flowchart to illustrate 
the implementation procedure 
of the proposed SFRCM



1756 Engineering with Computers (2020) 36:1751–1762

1 3

considered herein, using two random variables and PCEs of 
order 1st to 6th. Note that all the points selected by RBCM 
and SLICM are perfectly symmetric with respect to the ori-
gin (i.e., with � equal to 0); and that the SFRCM requires 
less points closer to the origin than RBCM. Similarly, note 
that the collocation points of LICM are asymmetric with 
respect to the origin for all the orders considered herein. It is 
also evident that the asymmetrical ratios for odd-orders are 
generally larger than for even orders, which might explain 
the relatively poor performance of LICM when it deals with 
odd order PCEs [24]. The influence of asymmetric colloca-
tion points provided by LICM on the computed reliability 
results is further illustrated in the case studies below.

5  Case studies

The reliability of four mathematical and engineering prob-
lems is considered in this study as benchmark tests of the 
proposed symmetric full rank collocation method (SFRCM). 
Other existing collocation methods—RBCM and LICM—
are also employed for comparison. To measure accuracy of 
the reliability results, Monte Carlo simulation (MCS) or 
Latin hypercube sampling (LHS) analyses are conducted 
using the true limit state functions (LSFs). (As they provide 

unbiased estimates of the reliability results, they are consid-
ered as the ‘reference’ or ‘exact’ solution for comparison.) 
Additionally, note that the RBCM in this study uses col-
location points that are twice the number of the unknown 
coefficients, as recommended by Isukapalli et al. [11].

5.1  Example 1

The first case is a mathematical problem previously 
employed by Grooteman [29] and Periçaro et al. [30] in reli-
ability analyses. The LSF is given as

and ten independent random variables with a standard nor-
mal distribution are considered. Table 3 lists the number 
of collocation points and the corresponding probability of 
failure results computed using different collocation methods.

According to Table 3, LICM only needs Na collocation 
points to fulfill the requirement of linearly independency, 
whereas RBCM deploys 2Na points. In comparison, SFRCM 
employs an intermediate number between Na and 2Na, with 
relatively larger number (close to 2Na) for first order PCEs 

(5)g(�) = 2 + 0.0.15

9
∑

i=1

x2
i
− x10,

Table 1  Number of collocation points and its corresponding rank of information matrix for different collocation methods

Order Methods
Number of random variables

1 2 3 4 5 6 7 8 9 10

1
LICMa 2/2d 3/3 4/4 5/5 6/6 7/7 8/8 9/9 10/10 11/11

SFRCMb 3/2 5/3 7/4 9/5 11/6 13/7 15/8 17/9 19/10 21/11
RBCMc 3/2 5/3 8/4 10/5 12/5e 14/5 16/5 18/6 20/6 22/6

2
LICM 3/3 6/6 10/10 15/15 21/21 28/28 36/36 45/45 55/55 66/66

SFRCM 3/3 7/6 13/10 21/15 31/21 43/28 57/36 73/45 91/55 111/66
RBCM 3/3 9/6 20/10 30/15 42/19 56/24 72/30 90/36 110/42 132/49

3
LICM 4/4 10/10 20/20 35/35 56/56 84/84 120/120 165/165 220/220 286/286

SFRCM 5/4 13/10 27/20 49/35 81/56 125/84 183/120 257/165 349/220 461/286
RBCM 5/4 17/10 40/20 70/34 112/44 168/57 240/73 330/102 440/130 572/153

4
LICM 5/5 15/15 35/35 70/70 126/126 210/210 330/330 495/495 715/715 1001/1001

SFRCM 5/5 17/15 43/35 91/70 171/126 295/210 477/330 733/495 1081/715 1541/1001
RBCM 5/5 25/15 70/35 140/70 252/106 420/168 660/258 990/381 1430/538 2002/736

5
LICM 6/6 21/21 56/56 126/126 252/252 462/462 792/792 1287/1287 2002/2002 N.A.f /N.A.

SFRCM 7/6 25/21 69/56 161/126 333/252 629/462 1107/792 1841/1287 2002/2923 N.A./N.A.
RBCM 7/6 37/21 112/56 252/114 504/223 924/388 1584/620 2574/1003 4004/1293 6006/1939

6
LICM 7/7 28/28 84/84 210/210 462/462 924/924 1716/1716 N.A./N.A. N.A./N.A. N.A. /N.A.

SFRCM 7/7 31/28 99/84 259/210 591/462 1219/924 1716/2325 3003/4165 N.A. /N.A. N.A. /N.A.
RBCM 7/7 49/28 168/84 420/190 924/422 1848/839 3432/1513 6006/2195 10010/3332 N.A. /N.A.g

a Linearly independent collocation method
b Symmetric full rank collocation method
c Regression-based collocation method
d The value in front of the slash indicates the number of selected collocation points; the value behind the slash represents the rank of the informa-
tion matrix with respect to the specified collocation method. Note also that, the number of the selected collocation points by LICM is also the 
number of unknown coefficients, Na
e Cells in gray indicate that the rank of the information matrix is not full
f Not available due to large computational cost
g It is predicted that the rank of the information matrix is not full
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Table 2  Distribution pattern of selected collocation points for three different collocation methods considering two random variables

Order LICM SFRCM RBCM

1

2

3

4

5

6

-2 -1 0 1 2
-2

-1

0

1

2

u1

u 2

-2 -1 0 1 2
-2
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1

2

u1

u 2
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-1

0
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u1

u 2
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-2

-1

0

1

2

u1

u 2

-2 -1 0 1 2
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-1

0

1

2

u1
u 2
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-2

-1

0

1

2

u1

u 2

-3 -2 -1 0 1 2 3
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1

2

3

4
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-3

-2

-1

0

1

2

3

4
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-4 -3 -2 -1 0 1 2 3 4
-4

-3

-2

-1

0

1

2

3

4
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u 2

-4 -3 -2 -1 0 1 2 3 4
-4

-3

-2

-1

0

1

2

3

4

u1

u 2

-4 -3 -2 -1 0 1 2 3 4
-4

-3
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-1
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3
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-4 -3 -2 -1 0 1 2 3 4
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-3

-2
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-3
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-3
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1

2
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1
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The asymmetrical ratios, ζ, of LICM for orders of 1st to 6th are 2/3, 1/6, 3/10, 2/15, 4/21, 3/28
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and relatively smaller numbers (tending to 1.5Na) for higher 
orders PCEs (i.e., 2nd, 3rd and 4th orders). This implies that 
some effort is needed to preserve the symmetrical properties 
of the collocation points, compared to LICM.

In terms of accuracy, it is interesting to observe that, for 
the 3rd order PCE and under a full rank information matrix, 
LICM produces a probability of failure with a large relative 
error (Δ = 1904.65%) in this case; our proposed SFRCM, 
on the other hand, obtains a much better estimate, with a 
relative error of 16.86% with respect to the MCS result. 
For the 4th order PCE, both LICM and SFRCM produce 
accurate reliability results, with relative errors of 0.00% and 
− 0.19%, respectively. Similarly, information matrices for 
the conventional RBCM (with 1st to 4th order) fail to meet 
the requirement of full rank (see Table 1), thus providing 
useless results.

5.2  Example 2

The second example was originally proposed by Ran-
ganathan [31], and later employed by Santosh et  al. 
[32] and Periçaro et  al. [30] to test the performance of 
Hasofer–Lind–Rackwitz–Fiessler based algorithms. This 
example is related to a cantilever beam with a performance 
function written as

where x1 and x2 are normally distributed random variables 
and x3 is a lognormal random variable. The mean values 
and standard deviations of the three random variables are 
(0.32, 0.032), (1,400,000, 70,000) and (100, 40). All random 

(6)g(�) = x1x2 − 2000x3,

variables are considered independently. Table 4 compares 
probabilities of failure computed using SRSMs with differ-
ent collocation methods.

As in Example 1, the proposed SFRCM requires a number 
of collocation points, Np, that is between those required by 
LICM and RBCM, so that Np is below 1.5Na for higher order 
PCEs (i.e., 2nd, 3rd and 4th orders). This is different from 
what was observed in Example 1, suggesting that a relatively 
larger number of collocation points (i.e., Np >  1.5Na) will 
be required in SFRCM for a larger number of random vari-
ables, and vice versa.

In addition, all three methods applied produce similar 
reliability results in this case. However, LICM produces a 
relative error of − 8.05% with the 3rd order PCE, which 
is obviously larger than relative errors with SFRCM and 
RBCM (both 0.67%). Again, this suggests that the asym-
metry of the collocation points obtained with the 3rd order 
LICM introduces errors to the computed reliability result. 
Moreover, and although the LICM can finally produce a 
comparable accuracy using the 4th and 5th order PCEs, our 
proposed SFRCM improves the computational efficiency of 
the other two methods for the same level of accuracy.

5.3  Example 3

Next, a problem of stress distribution in a steel joint, previ-
ously analyzed by Nguyen et al. [33] and Jiang et al. [21], was 
employed herein to test the ability of our proposed method in 

Table 3  Computed results by different collocation methods for Exam-
ple 1

a Np= number of limit state function evaluations
b Δ = relative error in relation to MCS
c COV

Pf
= 0.62%

N = 10 Order Np
a Pf (× 10−3) Δ (%)b

LICM 1 11 79.08 1432.56
2 66 13.37 159.11
3 286 103.44 1904.65
4 1001 5.16 0.00

SFRCM 1 21 2.22 − 56.98
2 111 13.84 168.22
3 461 6.03 16.86
4 1541 5.15 − 0.19

RBCM 1 22 0 − 100.00
2 132 0 − 100.00
3 572 0 − 100.00
4 2002 0 − 100.00

MCS – 5,000,000 5.16c –

Table 4  Computed results by different collocation methods for Exam-
ple 2

a Np= number of limit state function evaluations
b Δ = relative error in relation to MCS
c COV

Pf
= 1.16%

N = 3 Order Np
a Pf (× 10−2) Δ (%)b

LICM 1 4 0.08 − 94.63
2 10 1.32 − 11.41
3 20 1.37 − 8.05
4 35 1.49 0.00
5 56 1.48 − 0.67

SFRCM 1 7 2.32 55.70
2 13 1.32 − 11.41
3 27 1.50 0.67
4 43 1.49 0.00
5 69 1.49 0.00

RBCM 1 8 2.14 43.62
2 20 1.32 − 11.41
3 40 1.50 0.67
4 70 1.48 − 0.67
5 112 1.49 0.00

MCS – 5,000,000 1.49c –
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dealing with a highly nonlinear LSF. The LSF, which is related 
to elevated temperatures and fatigue, is written as:

The statistical information about the six random variables 
considered is listed in Table 5.

Table 6 lists the required number of collocation points and 
the computed probabilities of failure for the three collocation 
methods considered. As expected, the number of collocation 
points, Np, required by our proposed SFRCM is between those 
employed by LICM (Na) and RBCM (2Na), indicating that Np 
varies from above 1.5Na to below 1.5Na with increasing order 
of the PCE for this case.

In addition, the proposed SFRCM can often outperform the 
reliability results of LICM. In particular, when the 3rd order 
PCE is used, the probability of failure computed by LICM has 
a relative error of − 16.11% with respect to the MCS result; 
however, for SFRCM, the relative error is only − 4.53%. This, 
again, reveals the influence of the asymmetry of the colloca-
tion points on the reliability result; and that the RBCM fails to 
generate reliable results due to information matrices that do 
not fulfill the full rank requirement.

5.4  Example 4

Finally, to illustrate the applicability of the proposed approach 
with implicit LSFs, a practical engineering case concerning 
the face stability of a circular tunnel driven in a layered soil by 
a compressed-air pressurized shield is employed. Based on the 
3D limit analysis mechanism developed by Mollon et al. [34], 
the collapse mechanism proposed by Senent and Jimenez [35] 
allows one to compute the critical face pressure in a layered 
ground (with a softer-top and a stronger-bottom). The mecha-
nism can consider cases in which the contact between layers 
intersects the tunnel face, and it can also consider the possibil-
ity of partial and global collapse (see Fig. 2). Additional details 
can be found in Senent and Jimenez [35].

The LSF can be constructed according to the tunnel face 
collapse mechanism, comparing the maximum collapse pres-
sure and the applied support pressure; it results in:

(7)g(�) = x1 − 104

[

x2(x4x5)
1.71

x3
+

(1 − x2)(x4x5)
1.88

x6

]

.

(8)g(�) = �t − �c,max,

where σt = 10 kPa is the support pressure that is supposed 
to be applied at the tunnel face, σc,max is the maximum col-
lapse pressure due to partial collapse or global collapse 
[i.e., σc,max = max(σc,partial, σc,global)], as obtained from the 
3D mechanism, and where vector, x, are the random vari-
ables in the model.

To represent uncertainty, the Mohr–Coulomb strength 
parameters (i.e., c1 and φ1 for the top layer, and c2 and φ2 
for the bottom layer) are considered as random variables 
with lognormal distributions. Their mean values and 
standard deviations are determined from the literature 
using reasonable assumptions (see, e.g. [35, 36]); see 
Table 7. The cohesion, c, and friction angle, φ, of each 
layer are assumed to be negatively correlated, and the 
strength parameters of one layer are assumed to be inde-
pendent of those of the other layers (i.e., �ci,�i

= −0.5 and 
�ci,cj = ��i,�j

= �ci,�j
= 0 for i, j = 1, 2 and i ≠ j). In addi-

tion, for simplicity, the unit weight of soil and the circular 
tunnel diameter are considered to be deterministic, with 

Table 5  Statistical information 
of random variables considered 
example 3

μ Mean value, SD standard deviation

Random variable x1 x2 x3 x4 x5 x6

μ 1.0440 0.7000 0.2391 1.0110 0.0005 1.8020
SD 0.31320 0.07000 0.95640 0.15165 0.00008 0.72080
Distribution type Lognormal Lognormal Lognormal Lognormal Gumbel Max Lognormal

Table 6  Computed results by different collocation methods for exam-
ple 3

a Np= number of limit state function evaluations
b Δ = relative error in relation to MCS
c COV

Pf
= 0.45%

N = 6 Order Np
a Pf (× 10−3) Δ (%)b

LICM 1 7 8.48 − 14.60
2 28 6.82 − 31.32
3 84 8.33 − 16.11
4 210 9.94 0.10
5 462 10.03 1.01

SFRCM 1 13 11.44 15.21
2 43 7.24 − 27.09
3 125 9.48 − 4.53
4 295 9.99 0.60
5 629 10.00 0.70

RBCM 1 14 0.00 − 100.00
2 56 0.00 − 100.00
3 168 0.00 − 100.00
4 420 499.00 4925.18
5 924 220.84 2123.97

MCS – 5,000,000 9.93c –
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values of 20 kN/m3 and 10 m, respectively. The inter-layer 
position measured from the crown of the circular tunnel to 
the bottom is set to be 5 m.

Table 8 illustrates the performance of SRSMs using vari-
ous collocation methods. [The Latin hypercube sampling 
(LHS) is employed in this case to estimate the probability 
of failure, due to the higher computational cost of the LSF.] 
Results show that the required number of collocation points 
follow a similar pattern as in previous cases. And the reli-
ability results show that the proposed SFRCM and RBCM 
provide adequate estimates of the probability of failure when 
the 4th order PCE is employed. (The SFRCM provides a 
relatively better estimate in this case.) Note also that RBCM 
provides good results with the 2nd order PCE, although 
this may be a “chance” results, as its performance does not 
improve, as it should, for higher order PCEs. Results also 
show that LICM is unable to maintain its symmetry, produc-
ing large deviations with respect to the LHS result, even for 
the 4th and 5th order PCEs.

The reduced performance of SRSM in this case might be 
attributed to two possible reasons: (1) the LSF of the tun-
nel face stability case is highly nonlinear and unsmooth, (2) 
the reference value of the probability of failure computed 
by LHS (8.67 × 10−3) may be not accurate enough for com-
parison, since it is associated to a relatively large coefficient 
of variation (COV) of 17.08%; this problem will be further 
analyzed in our future studies.

6  Summary and conclusions

This paper proposes a new symmetric full rank collo-
cation method (SFRCM) to select collocation points in 
structural and geotechnical reliability analyses using the 
stochastic response surface method (SRSM). For a better 
balance between computational efficiency and accuracy, 
the proposed method builds on two conventional colloca-
tion methods; in particular, it combines the merits of: (1) 
the regression-based collocation method (RBCM) (i.e., 
to obtain collocation points closer to the origin, and to 

Fig. 2  Examples of geometries 
computed with the mechanism 
for the stability of the tunnel 
face: a global collapse and b 
partial collapse

Table 7  Statistical information of random variables considered in 
example 4

μ Mean value, SD standard deviation

Layer Random variable μ SD Distribution type

1 (top) c1 (kPa) 8 2.4 Lognormal
φ1 (°) 30 3 Lognormal

2 (bottom) c2 (kPa) 20 6 Lognormal
φ2 (°) 40 4 Lognormal

Table 8  Computed results by different collocation methods for exam-
ple 4

a Np= number of limit state function evaluations
b Δ = relative error in relation to LHS
c LHS represents the Latin hypercube sampling
d COV

Pf
= 17.08%

N = 4 Order Np
a Pf (× 10−3) Δ (%)b

LICM 1 5 14.25 64.34
2 15 23.45 170.51
3 35 66.82 670.65
4 70 22.11 155.03
5 126 55.22 536.91

SFRCM 1 9 12.02 38.66
2 21 26.00 199.93
3 49 11.87 36.90
4 91 7.94 − 8.37
5 161 8.02 − 7.50

RBCM 1 10 20.02 130.89
2 30 9.24 6.61
3 70 5.15 − 40.65
4 140 7.24 − 16.51
5 252 361.98 4075.09

LHSc – 5000 8.67d –
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maintain their symmetrical property) and (2) of the lin-
early independent collocation method (LICM) (i.e., to use 
a full rank criterion to assure that the information matrix 
that is always invertible).

Four illustrative examples are used to demonstrate the 
advantages of the proposed method in terms of its computa-
tional efficiency and accuracy, and properties of the colloca-
tion points provided by the collocation methods considered, 
such as the numbers of required collocation points, their 
symmetry features, and the ranks of the associated informa-
tion matrices, are analyzed in detail. Results of the analyses 
conducted, and the main conclusions obtained, are summa-
rized as follows.

1. To ease the application of SRSM in engineering prac-
tice, the collocation points corresponding to the three 
collocation methods discussed herein—i.e., LICM, 
SFRCM, RBCM—, considering PCEs of up to 6th order 
and up to ten random variables, are provided as Supple-
mentary materials.

2. The RBCM uses two times the number of unknown 
coefficients as its collocation points. However, it cannot 
always ensure robust reliability results, since the result-
ing information matrix is not always a full rank matrix, 
particularly when a relative large numbers of random 
variables are involved (e.g., n ≥ 4). But, when it is full 
rank, the reliability results of RBCM are quite accurate, 
and often even slightly better than those of LICM and 
SFRCM. (This is probably partly due to the fact that it 
deploys more collocation points.)

3. The LICM only requires an equal number of collocation 
points than the number of unknown coefficients in the 
PCE. In addition, it is designed so as to ensure a full 
rank information matrix, thus avoiding the robustness 
problem encountered with RBCM. However, in the four 
examples considered in this study, when the 3rd or 5th 
order PCE is used, LICM sometimes computes prob-
abilities of failure with larger errors, than those com-
puted with the proposed SFRCM or with RBCM. This 
agrees well with the observations by Xiao et al. [24] in 
their analysis of a layered soil slope considering spa-
tial variability. The poor performance of LICM for the 
odd-order PCEs is attributed to the asymmetry of the 
selected collocation points. In addition, and as revealed 
by the tunnel face stability problem in Example 4, the 
LICM may also introduce huge errors with highly non-
linear and unsmooth LSFs, even when even-order PCEs 
are employed.

4. Results from the four illustrative examples suggest that 
our proposed method achieves the best overall perfor-
mance, thereby providing a robust and efficient estima-
tion of the probability of failure. The reason is that the 
proposed SFRCM employs symmetrical collocation 

points that assure a full rank information matrix; and 
using just a few more collocation points than LICM. At 
the same time, it provides reliability results with accura-
cies equivalent to those of the RBCM (when the latter 
can generate reliable results), but with a reduced com-
putational effort.
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