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Abstract
A developed comparative analysis of metaheuristic optimization algorithms has been used for optimal active control of 
structures. The linear quadratic regulator (LQR) has ignored the external excitation in solving the Riccati equation with no 
sufficient optimal results. To enhance the efficiency of LQR and overcome the non-optimality problem, six intelligent opti-
mization methods including BAT, BEE, differential evolution, firefly, harmony search and imperialist competitive algorithm 
have been discretely added to wavelet-based LQR to seek the attained optimum feedback gains. The proposed approach has 
not required the solution of Riccati equation enabling the excitation effect in controlling process. Employing this advantage 
by each of six mentioned algorithms to three-story and eight-story structures under different earthquakes led to define (1) 
the best solution, (2) convergence rate and (3) computational effort of all methods. The purpose of this research is to study 
the aforementioned methods besides the superiority of ICA in finding the optimal responses for active control problem. 
Numerical simulations have confirmed that the proposed controller is enabling to significantly reduce the structural responses 
using less control energy compared to LQR.

Keywords  Active control · Metaheuristic optimization algorithm · Linear quadratic regulator (LQR) · Discrete wavelet 
transform (DWT)

1  Introduction

Applications of soft computing methods in different field 
of civil engineering have been used in many researches 
recently [1–14]. The idea of using active control strategy as 
one of these methods for civil structures has been introduced 
in early of 70s. The active control system can change the 
structural dynamic properties by adding an auxiliary input 
to the structure. Smart structure is the name that refers to 
this system [15–19].

One of the most important subjects in active control is to 
find out the optimum control force, so that using the least 
control energy, the structural responses have been remained 
under the allowable values [17]. Respectively, successfully 
implementation of the smart technology has been laid in an 
effective algorithm choice that adjusted the applied control 
forces. LQR, LQG, sliding mode control, pole assignment, 
H2, and H∞ are known as the common control algorithms 
[18], furthermore, LQR has been selected as the most effec-
tive, simple application and popular controller in active and 
semi-active structural control.
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The objective of LQR is to minimize a quadratic cost 
function establishing a reasonable balance between the 
reduction of responses and required control forces. During 
the minimization procedure, the external excitation has not 
participated in solving the Riccati algebraic equation avoid-
ing LQR as truly optimal. An applicable solution to deal 
with the mentioned difficulties has been passed through the 
intelligent optimization methods. The metaheuristic capabil-
ities in the global optimal solution achievement for nonlinear 
and complex problems have provided a lot of flexibility in 
design controller.

Electrical and mechanical engineering have proposed 
multi-objective approaches for selecting LQR weights 
in controlling of double-inverted pendulum system [20]. 
Wang et al. [21] has applied Artificial Bee Colony (ABC) 
algorithm in weight selection of LQG for large antenna 
servo, and to avoid the repeated adjustment of LQR 
weights, accordingly, ABC has been used to determine Q 
and R for inverted pendulum system [22].

According to the literature, few studies have been per-
formed in structural control as well as LQR weight selec-
tion based on metaheuristic algorithms. GA as an effective 
optimization technique has been used for LQR weighting 
matrix selection [23–31]. In the field of active and pas-
sive control design, GA has been used successfully for 
response mitigation of coupled buildings [16], finding the 
optimal size and location of passive devices [32, 33], num-
ber and location of active control devices and sensors [17, 
34]. Joghataie and Mohebbi [26] have proposed an optimal 
control algorithm based on nonlinear Newmark integration 
and distributed genetic algorithm (DGA) used to optimally 
select weights in the proposed controller. Amini et al. 
[35] has presented a method to find the optimal control 
forces for active tuned mass damper. In this research, to 
eliminate the trial and error, particle swarm optimization 
(PSO) has been used to determine feedback gains with 
online updates of LQR weighting matrices. To optimize 
the number, location and total driving force of required 
actuators, an improved particle swarm algorithm has been 
presented in [36]. Amini and Ghaderi [37] have described 
an improved version of ant colony optimization (ACO) to 
find the optimal locations of fuzzy logic-controlled MR 
dampers. Harmony search (HS) has been utilized in the 
field of structural control as well as in [38]. Hybridiza-
tion of HS and ACO for optimal locating of dampers has 
been discussed in [39], and a comprehensive review of 
the researches on the optimal damper location problem 
based on optimization algorithms has been presented in 
[40]. Several attempts have been made to determine the 
optimal parameters of the tuned mass damper (TMD) via 
metaheuristic algorithms. Mohebbi and Joghataie [41] 
have developed a DGA-based control algorithm for mini-
mizing these parameters. Few researchers [35, 42–45] 

have used an improved version of PSO for optimizing the 
required parameters of TMD. Leung and Zhang [46] have 
also used an improved version of PSO for optimizing the 
required parameters of TMD. Differential evolution (DE) 
algorithm has been applied to obtain optimum parameters 
of passive device by minimizing H2 and H∞ norms of the 
benchmark system equipped with TMD [47]. Bagheri and 
Amini [48] have proposed the controller employing the 
pattern search method in minimizing LQR performance 
index. Amini and Bagheri [49] have presented an approach 
for the optimal control of structures estimating the control 
forces conducted by the performance index optimization 
through the colonial competitive algorithm.

As mentioned earlier, those studies applied metaheuris-
tics involved in the field of seeking the optimal number and 
location of sensors and actuators, setting the parameters 
of passive TMD systems and selecting the LQR weight-
ing matrices for active control systems [27–29, 31, 50–55]. 
However, few studies have been conducted in active control 
problem focusing on the classical methods’ shortcoming 
such as sub-optimality problem and the effect of external 
excitation in control forces calculation. On the other hand, 
some of metaheuristics have not been explored in control 
problem yet.

In this research, wavelet transform is used to decompose 
the external excitation into different frequency bands, thus 
the elements of feedback gain matrix are searched by six 
optimization techniques in each frequency range. Achieving 
the best solution, convergence rate and computational effort 
of these algorithms are compared through two numerical 
examples:

•	 imperialist competitive algorithm (ICA) as a socio-polit-
ically motivated algorithm,

•	 differential evolution (DE) as an evolutionary method,
•	 BAT, BEE and firefly (FA) as natural-inspired algo-

rithms, and
•	 harmony search (HS) as music-inspired metaheuristic.

According to the knowledge of the authors, this compari-
son has not discussed the structural active control problem 
yet; therefore, the formulation has not required the solution 
of Riccati algebraic equation and could regard the external 
excitation effect.

The current study has focused on the state space equation 
of motion and formulation of LQR control problem, fol-
lowed by outlining the proposed approach, respectively, first 
wavelet transform is briefly introduced and the metaheuris-
tics’ usage in wavelet-based LQR controller has been 
detailed. Also, the model structures and used earthquakes 
are introduced; furthermore, an overview on components 
and operators of metaheuristics has been demonstrated to 
present and compare the simulation results.
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2 � System equations and linear quadratic 
regulator

A review of performed studies in structural control has 
shown the efficiency and applicability of LQR making it 
the most popular control techniques. For a building equipped 
with an active tendon control subjected to a ground exci-
tation, the state space description of system motion is 
expressed as follows:

X(t) =
[

q(t), q̇(t)
]T is called the state vector, where q(t) and 

q̇(t) denote the n-dimensional vector of the relative displace-
ments and velocities. A (plant matrix), B (control matrix) and 
E (excitation matrix) are given by the following equations:

where M, Cd and Ks are n × n matrices of mass, damping and 
stiffness of the structure, respectively, U(t) is m × 1 control 
force vector applied by m actuators and Ẍg(t) representing 
the time history of ground acceleration. �  is n × 1 influenc-
ing vector of the external forces and H is defined as n × m 
location matrix of actuators.

Due to the actuator capacity curbs and economic efficiency, 
the response mitigation under allowable values with less con-
trol energy is desirable. The linear quadratic regulator is a 
minimized quadratic performance index to make a good trade-
off between limiting the structural response and reducing the 
control force consumption. This quadratic performance index 
“J” is formulated as follows:

where Q and R are referred to state and control force weight-
ing matrices and tf is the duration of earthquake. Essentially, 
Q is non-negative semi-definite and R is the positive definite 
matrices. The solution has been provided by the feedback 
control law and the control force calculated by the following 
equation based on the system’s states:

(1)Ẋ(t) = AX(t) + BU(t) + EẌg(t),

(2)A =

[

O I

−M−1Ks −M−1Cd

]

2n×2n

,

(3)B =

[

O

M−1H

]

2n×n

,

(4)E =

[

O

−M−1�

]

2n×n

,

(5)J =

tf

∫
t0

[X(t)TQX(t) + U(t)TRU(t)]dt,

(6){U(t)}n×1 = −[K]n×2n{X(t)}2n×1,

where K is the feedback gain matrix (Eq. 7) and the sym-
metric matrix P is the solution of algebraic Riccati equation 
(ARE):

3 � Wavelet‑based optimal active control 
formulation

The wavelet transform (WT) as one of the most effective 
time–frequency analysis tools can be used to detect the local 
frequency content of earthquakes. WT is a transformation 
decomposing the signal into a superposition of the elementary 
basic function �s,�(t) called mother wavelet. The wavelets are 
generated from scaling and translation of this mother wavelet. 
The continuous wavelet transform (CWT) of the signal x(t) is 
expressed as

where �∗ is the complex conjugation of � and wt (s,� ) is 
called the wavelet coefficient. In Eq. (9), s is the scale factor 
representing the frequency content of signal and translation 
factor � discriminating the location of wavelets during the 
time. The discrete version of wavelet transform (DWT) has 
been used by discretizing the scale and translation param-
eter. Using dyadic values for � and s (Eq. 10), the corre-
sponding wtj,k(t) is as Eq. (11). j and k are positive integers.

If the earthquake signal ẍg(t) is decomposed to I level using 
DWT:

Di is the ith detail and AI is the Ith level of approximate 
signal. Adopting this approach, LQR performance index has 
been computed as follows:

(7)K = −R−1BTP,

(8)ATP + PA − PBR−1BTP + Q = −Ṗ.

(9)wt(s, �) =
1
√

s ∫
+∞

−∞

x(t)�∗
�

t − �

s

�

dt,

(10)s = 2−j, � = 2−jk,

(11)wtj,k(t) = 2j∕2�(2jt − k).

(12)ẍg(t) = AI(t) +
∑

i≤I
Di(t),

(13)Xi(t) =
[

qi(t), q̇i(t)
]

,

(14)XI(t) =
[

qI(t), q̇I(t)
]

,

(15)
J = �

tf

0

[XI(t)
TQXI(t) + UI(t)

TRUI(t)]dt

+
∑

i≤I �
tf

0

[Xi(t)
TQXi(t) + Ui(t)

TRUi(t)]dt,
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In this study, to enhance the controller performance, 
DWT has been applied to decompose the excitation into dif-
ferent frequency bands. For decomposition process, signal is 
decomposed using Daubechies wavelet of order 10 (db 10) 
mother wavelet in five levels.

Defined wavelet-based performance index (Eq. 15) has 
been selected as objective function and gain matrix elements 
considered as design variables of optimization process. Then 
metaheuristic algorithm has been employed to search the 
optimum gain matrix for each frequency band to calculate 
the control force in each domain (Eq. 18), thus total control 
force is also calculated with Eq. (19). Ki is the gain matrix 
at level i.

Adopting this approach, the earthquake excitation has 
been participated in solving the Riccati equation and calcu-
lating the control forces. The proposed controller has been 
employed by different optimization algorithms to increase 
the accuracy toward the optimum controller gains compar-
ing different aspects of metaheuristics in dealing with the 
optimal active control problem.

According to the results of this study, the effectiveness of 
each algorithm in vibration reduction through various seis-
mic excitations has been evaluated by numerical simula-
tions. This formula is able to be easily performed with any 
metaheuristic algorithm providing the great flexibility in the 
active controller design (Fig. 1).

4 � Numerical study

To investigate the performance of proposed controller, three- 
and eight-story shear frames have been equipped with active 
tendon system selected as numerical examples. The sche-
matic model of mentioned structures and dynamical prop-
erties of these structures are summarized in Table 1 and 
Fig. 2. The placed actuators in all stories have applied the 
control force.

The displacement response of structure’s upper story 
(Fig. 2) was calculated by earthquake excitation (Fig. 3) for 

(16)X = XI(t) +
∑

i≤I
Xi(t),

(17)U = UI(t) +
∑

i≤I
Ui(t).

(18)
UI(t) = −KIXI(t),

Ui(t) = −KiXi(t),

(19)U(t) = −KIXI(t) −
∑

i≤I
KiXi(t).

uncontrolled and controlled structures, and required control 
forces were obtained. Then the performance of each control-
ler has been evaluated in terms of reducing the displacement 
response and the required control force compared to uncon-
trolled mode. Finally, the advantages of different optimiza-
tion algorithms are compared in optimized controller design 
from a variety of aspects. Comparing the performance of the 
controller in addition to the structure response, nine indica-
tors of performance in Table 2 have been used for more 
accurate comparison. 

The time history of the earthquake records is introduced 
as the input of the system and the velocity and displacement 
responses of the structure is received as the output of the 
program. Based on the output values and using control rule, 
Eq. 19 of the time history of the control forces applied to the 
structure was calculated.

To demonstrate the effectiveness and potential application 
of controller for different earthquakes, aforementioned struc-
tures are analyzed under three well-known historical earth-
quakes: Kobe (PGA = 0.345 g), Landers (PGA = 0.245 g) 
and Parkfield (PGA = 0.357 g) ground motions. The details 
of the earthquakes are shown in Fig. 3.

In addition to wavelet-based LQR performance index 
used as objective function of optimization, nine benchmark 
indices obtained from the results are calculated (Table 2) 
to evaluate the controller performance by reduction of dif-
ferent design parameters such as interstory drift, story dis-
placement, acceleration, base shear and needed control force 
compared to the uncontrolled cases.

di(t) , xi(t) , ẍ(t) , hi and mi are the interstory drift, displace-
ment, acceleration, height and mass of the ith story, respec-
tively. fl(t) is the control force produced by lth actuator and 
W is the structure weight. c and uc superscripts are related 
to controlled and uncontrolled cases.

In the following, the basic steps of aforementioned intel-
ligent optimization methods are expressed as pseudo-code (a 
brief review on the operators and parameters of metaheuris-
tic algorithm). Then the controller based on these algorithms 
is applied to the prior structures under various earthquakes 
and the performance of the optimal smart systems is com-
pared to the uncontrolled one, LQR controller and one 
another.

4.1 � The ICA‑based optimal controller

Imperialist competitive algorithm inspired by imperialist 
competition has been developed by Atashpaz-Gargari and 
Lucas [57]. The pseudo-code of ICA is shown in Fig. 4.

ICA has required specific parameters to effectual perfor-
mance affecting the quality of results and algorithm capabil-
ity. In this study, ICA parameters are set as in Table 3
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Fig. 1   The flowchart of pro-
posed optimal controller

Table 1   Dynamical properties of studied structures

mi (ton) ki (kN/m) ci (kN s/m) �
i

3-dof 1 980 1.407 � = 0.01, 0.028, 0.04

8-dof 345.6 680,000 734 � = 0.004, 0.013, 0.021, 0.028, 0.035, 0.04, 0.044, 0.047
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The maximum number of iterations has been selected 
based on the required accuracy of optimization; accordingly, 
in this study, 50 iterations have been selected for ICA. The 
process has started to solve vibration control problems with 
30 (for 3-dof structure) and 50 (for 8-dof structure) popula-
tion size. In the following, ICA’s performance in confronting 
with active control problem has been studied by numerical 
simulations.

Fig. 2   Aforementioned structures equipped with active tendons: a 3-dof; b 8-dof structures

Fig. 3   The time histories of Kobe, Parkfield and Landers earthquakes

Table 2   Formulas of benchmark indices [56]

Interstory drift ratio Level displacement Level acceleration Base shear

J1 =
max

t,i

|
d
c

i
(t)
|

hi

max
t,i

|
d
uc

i
(t)
|

hi

J2 =
max

t,i
|
x
c

i
(t)
|

max
t,i

|
x
uc

i
(t)
|

J3 =
max

t,i
|
ẍ
c

ai
(t)
|
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t,i

|
ẍ
uc

ai
(t)
|
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t
�

∑

i
m

i
ẍ
c

ai
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�
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∑
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Normed interstory drift ratio Normed level displacement Normed level acceleration Normed base shear
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J8 =
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‖

∑
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(t)
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‖

∑
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Control force

J9 =
max

t,l
|
f
l
(t)
|

W

Table 3   The values of ICA parameters

Number of imperialists Nimp 3
Revolution rate R 0.3
Assimilation coefficient β 2
Assimilation angular coefficient γ 0.5
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4.1.1 � Vibration control of structures with ICA‑based 
optimal controller

In example 1, the responses of 3-dof building are con-
trolled. The needed control force and controlled displace-
ment of top story due to Kobe earthquake are presented 

with the corresponding uncontrolled ones in Fig. 5. The 
comparative results are drawn in Table 4.

On the whole, the results have shown that ICA controller 
can find more optimal objective function than LQR. The 
maximum displacement of 3-dof roof under Kobe earth-
quake has been reduced 11% with only 91% of maximum 

Fig. 4   The pseudo-code of ICA

Fig. 5   The results of ICA controller for 3-dof’s top story under Kobe earthquake: a displacement; b control force

Table 4   The comparison between ICA and LQR for 3-dof under Kobe earthquake

J Maximum displace-
ment of top story 
(Dispmax) (m)

Maximum velocity 
of top story (Velmax) 
(m/s)

Maximum accel-
eration of top story 
(Accmax) (m/s2)

Maximum control 
force of top story 
(Umax) (kN)

Maximum drift of 
structure (Drift-
max)

Uncontrol (UC) – 0.0658 0.9369 15.7387 – 0.00468
LQR 0.4956 0.0164 0.2573 5.3770 2.1641 0.00381
ICA 0.4384 0.0146 0.2208 4.7267 1.9820 0.00124
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control force needed for LQR. Maximum drift, accelera-
tion and velocity have also been reduced by ICA controller. 
According to Table 5, the maximum displacement of 8-dof 
roof under Parkfield earthquake is approximately the same 
as LQR with only using of 50% of maximum control force 
(Fig. 6). 

4.2 � The DE‑based optimal controller

Differential evolution algorithm has been proposed by Storn 
and Price [58]. The main concepts of DE are shown in the 
pseudo-code given in Figure 7

The parameters shown in Table 6 are considered for DE, 
in this paper (Fig. 8).

4.2.1 � Vibration control of structures with DE‑based optimal 
controller

The results of structural displacement and control force for 
8-dof top story due to Parkfield earthquake calculated by 
DE controller are shown in Fig. 9.

The results have indicated that DE controller has reduced 
both the displacement and control forces simultaneously for 
3-dof and 8-dof (Tables 7, 8).  

4.3 � BAT‑based optimal controller

The standard BAT algorithm has been introduced by Xin-
She Yang [51] based on the echolocation behavior of micro-
bats to find and hunt for prey. The procedure of BAT is 
shown through the stages in pseudo-code (Fig. 10).

In this paper, to solve the optimal active control problem, 
the parameters of Table 9 have been selected for BAT algo-
rithm; therefore, the related subsection has presented the 
results of BAT-based controller to studied structures.

Table 5   Comparison between 
ICA and LQR for 8-dof under 
Parkfield earthquake

J Dispmax (m) Velmax (m/s) Accmax (m/s2) Umax (kN) Driftmax

UC – 0.0375 0.4303 7.3899 – 0.0011
LQR 1.2295 0.0205 0.2326 4.5455 576.798 0.0005
ICA 1.0794 0.0203 0.2708 5.5173 285.469 0.0006

Fig. 6   Results of ICA controller for 8-dof’s top story under Parkfield earthquake: a displacement; b control force

Fig. 7   The pseudo-code of DE

Table 6   The values of DE 
parameters Scale coefficient F 0.5

Crossover probability CR 0.2
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4.3.1 � Vibration control of structures with BAT‑based 
optimal controller

The 8-dof’s displacement and control force in the cases of 
uncontrolled, LQR and BAT controller are presented in 
Fig. 12 and Table 11.

According to Figs. 11 and 12, and Tables 10 and 11, this 
controller has performed better than conventional LQR in 
reducing the displacements and control force for 3-dof and 
8-dof structures.

4.4 � The BEE‑based optimal controller

In this study, BEE algorithm [59] (as fourth metaheuris-
tic technique) has been used as an optimization algorithm 
inspired by the natural foraging behavior of honey bees to 
find the food resources. Pseudo-code of this algorithm is 
drawn in Fig. 13.

The algorithm required the number of parameters as in 
Table 12.

The time history of displacement response and control 
force for 3-dof shear frame under Landers earthquake is 
shown in Fig. 14. Also, Fig. 15 shows the time history of 

Fig. 8   Results of DE controller for 3-dof top story under Landers earthquake: a displacement; b control force

Fig. 9   Results of DE controller for 8-dof top story under Parkfield earthquake: a displacement; b control force

Table 7   Comparison between 
DE and LQR for 3-dof under 
Landers earthquake

J Dispmax (m) Velmax (m/s) Accmax (m/s2) Umax (kN) Driftmax

UC – 0.0354 0.4424 6.8714 – 0.0024
LQR 0.3248 0.0189 0.1771 2.2658 1.125 0.0011
DE 0.28 0.0168 0.1784 2.6674 0.72 0.0011

Table 8   Comparison between 
DE and LQR for 8-dof under 
Parkfield earthquake

J Dispmax (m) Velmax (m/s) Accmax (m/s2) Umax (kN) Driftmax

UC – 0.0375 0.4303 7.3899 – 0.00217
LQR 1.2295 0.0205 0.2326 4.5455 576.7981 0.00133
DE 1.1781 0.0204 0.2834 5.8792 312.1668 0.00141
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response and needed control force for 8-dof excited by Park-
field earthquake.

4.4.1 � Vibration control of structures with BEE‑based 
optimal controller

BEE has outstandingly performed LQR in terms of control-
ler effort and structural responses (Tables 13, 14).

4.5 � FA‑based optimal controller

The firefly algorithm (FA) has been developed by Xin-She 
Yang [60] based on the idealization of flashing characteristics 
of fireflies. The firefly’s behavior is modeled to develop FA by 
the following process (Fig. 16).

In this study, the values shown in Table 15 are considered 
for FA parameters.

4.5.1 � Vibration control of structures with FA‑based optimal 
controller

The simulation results of 3-dof and 8-dof structures sub-
ject to the Parkfield earthquake calculated by FA controller 
have been sketched in Figs. 17 and 18.

Fig. 10   The pseudo-code of 
BAT algorithm

Table 9   The values of BAT 
parameters Minimum frequency fmin 0

Maximum frequency fmax 1
Loudness A 0.5
Pulse emission rate r 0.5

Table 10   Comparison between 
BAT and LQR for 3-dof under 
Parkfield earthquake

J Dispmax (m) Velmax (m/s) Accmax (m/s2) Umax (kN) Driftmax

UC – 0.05443 0.8403 13.3886 – 0.003515
LQR 0.5793 0.0269 0.4847 7.4851 2.2456 0.002106
BAT 0.4416 0.0239 0.4378 7.0013 1.7225 0.001947

Table 11   Comparison between 
BAT and LQR for 8-dof under 
Parkfield earthquake

J Dispmax (m) Velmax (m/s) Accmax (m/s2) Umax (kN) Driftmax

UC – 0.0375 0.4303 7.3899 – 0.0011
LQR 1.2295 0.0205 0.2326 4.5455 576.798 0.0005
BAT 1.1993 0.0198 0.2717 5.8573 427.913 0.0007
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Fig. 11   The results of BAT controller for 3-dof top story under Parkfield earthquake: a displacement; b control force

Fig. 12   The results of BAT controller for 8-dof top story under Parkfield earthquake: a displacement; b control force

Fig. 13   The pseudo-code of BEE algorithm
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The proposed controller has reduced the maximum dis-
placement and control force for 3-dof and 8-dof structures 
(Tables 16, 17).

4.6 � The harmony search‑based optimal controller

Geem et al. [61] has pioneered harmony search (HS) by 
seeking harmony in music making. The following pseudo-
code has shown how the harmony in music has inspired find-
ing an optimality in an optimization problem (Fig. 19). HS 
parameter setting is shown in Table 18.

Table 12   The values of BEE parameters

Number of sites selected m 15
Number of best sites e 6
Number of bees recruited for best sites nep 30
Number of bees recruited for the other sites nsp 15

Fig. 14   Results of BEE controller for 3-dof top story under Landers earthquake: a displacement; b control force

Fig. 15   Results of BEE controller for 8-dof top story under Parkfield earthquake: a displacement; b control force

Table 13   Comparison between 
BEE and LQR for 3-dof under 
Landers earthquake

J Dispmax (m) Velmax (m/s) Accmax (m/s2) Umax (kN) Driftmax

UC – 0.0354 0.4424 6.8714 – 0.0024
LQR 0.3248 0.0189 0.1771 2.2658 1.125 0.0011
BEE 0.2827 0.0165 0.178 2.6529 0.771 0.0011

Table 14   Comparison between 
BEE and LQR for 8-dof under 
Parkfield earthquake

J Dispmax (m) Velmax (m/s) Accmax (m/s2) Umax (kN) Driftmax

UC – 0.0375 0.4303 7.3899 – 0.0011
LQR 1.2295 0.0205 0.2326 4.5455 576.798 0.0005
BEE 1.2895 0.0203 0.2852 6.1476 453.94 0.0007
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4.6.1 � Vibration control of structures with HS‑based optimal 
controller

HS is also utilized to solve the numerical examples. The 
simulation results are depicted in Figs. 20 and 21.

According to the results, HS controller has reduced the 
third floor displacement more than 13% compared to LQR. 
Simultaneously, the applied control force is reduced to 89% 
(Table 19).

The maximum displacement of the eighth story is 
reduced from 35 mm in the uncontrolled case to 20 mm 
in LQR and HS, also the maximum of needed control 
force for HS controller is 216 kN less than LQR (Fig. 21 
and Table 20). The results have represented the power of 
metaheuristics and superiority of these controllers over 
the classical LQR in controlling the vibration of 3-dof and 
8-dof structures subjected to different earthquake excita-
tions. The next section has contained the results compar-
ing different aspects of studied metaheuristics in dealing 
with active control problem.

Fig. 16   The pseudo-code of firefly algorithm

Table 15   The values of FA parameters

Randomization parameter α 0.5
Attractiveness β 0.2
Light absorption coefficient γ 1

Fig. 17   Results of FA controller for 3-dof top story under Parkfield earthquake: a displacement; b control force

Fig. 18   The results of FA controller for 8-dof top story under Parkfield earthquake: a displacement; b control force
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4.7 � Comparison of six studied metaheuristics 
in active control of structures

In this section, the results of six previously introduced opti-
mal controllers are compared. To gain accurate comparison, 
fixed parameters are used for all algorithms including popu-
lation size and iteration number. The iteration number for 

all methods is set as 50. The initial population sizes of all 
algorithms for 3- and 8-dof structures are set to 30 and 50. 
The summarized result of all algorithms for 3-dof structure 
against Kobe earthquake is drawn in Table 21.

The effectiveness of these controllers in reducing the 
response of the three-story building due to Landers and 
Parkfield earthquake is also shown in Tables 22, 23.

According to Table 21, the response reduction ratio (ratio 
of the controlled to uncontrolled response) at top floor of 
3-dof shear frame against Kobe earthquake is about 78%, 
77%, 77%, 78%, 76% and 78% for ICA, DE, BAT, BEE, FA 
and HS controllers, respectively. This decrement is about 
11%, 9%, 9%, 10%, 5% and 13% compared to LQR, aligned 
with other similar earthquakes. Comparison between the 
metaheuristics and LQR for 8-dof structure under Parkfield 
earthquake is drawn in Table 24.

The response reduction ratio at top story of 8-dof struc-
ture against Parkfield earthquake is about 46%, 45%, 47%, 
46%, 43% and 46% for ICA, DE, BAT, BEE, FA and HS 
controllers. Almost the same behavior is observed for other 
earthquakes as well. Consequently, the metaheuristics per-
formance is more optimal than LQR controller; therefore, 
the maximum response of structure and needed control force 
are reduced compared to LQR.

Also, the comparison of benchmark indices has pro-
vided the appropriate information about the advantages of 
designed controllers. The values of these indices for 3-dof 
under Parkfield earthquake are shown in Table 25. Based 
on the calculations, all controllers have performed better 
than LQR; however, ICA controller performance is optimal 
than others.

Regarding other comparative criterion, the root mean 
square (RMS) of responses is used, accordingly, the results 

Table 16   Comparison between 
the FA and LQR for 3-dof under 
Parkfield earthquake

J Dispmax (m) Velmax (m/s) Accmax (m/s2) Umax (kN) Driftmax

UC – 0.0544 0.8403 13.3886 – 0.00352
LQR 0.5793 0.0269 0.4847 7.4851 2.2456 0.00211
FA 0.4477 0.0257 0.4611 7.2971 1.8251 0.00206

Table 17   Comparison between 
FA and LQR for 8-dof under 
Parkfield earthquake

J Dispmax (m) Velmax (m/s) Accmax (m/s2) Umax (kN) Driftmax

UC 0 0.0375 0.4303 7.3899 0 0.0011
LQR 1.2295 0.0205 0.2326 4.5455 576.798 0.0005
FA 1.2324 0.0212 0.2801 6.0198 365.714 0.0007

Fig. 19   The pseudo-code of HS

Table 18   The values of HS 
parameters Bandwidth BW 0.2

Harmony mem-
ory choosing 
rate

HMCR 0.95

Pitch adjust rate PAR 0.3

Table 19   Comparison between 
HS and LQR for 3-dof under 
Kobe earthquake

J Dispmax (m) Velmax (m/s) Accmax (m/s2) Umax (kN) Driftmax

UC – 0.0658 0.9369 15.7387 – 0.0047
LQR 0.4956 0.0164 0.2573 5.377 2.164 0.0014
HS 0.4667 0.0143 0.2352 5.1215 1.922 0.0013
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of RMS of displacement for 3-dof under Parkfield earth-
quake are shown in Fig. 22.

The numerical analysis of the above RMS curves has 
shown total RMS of displacement response (total area in 
RMS curve) for ICA, DE, BAT, BEE, FA and HS as 23%, 
25%, 23%, 23%, 25% and 25% of total RMS of displacement 

for LQR controller. This percentage is about 83%, 91%, 86%, 
85%, 93% and 93% of total RMS of uncontrolled displace-
ment showing ICA’s performance more optimal than other 
metaheuristics. RMS of needed control force for 8-dof shear 
frame under Parkfield is shown in Fig. 23.

Fig. 20   HS controller results for 3-dof top story under Kobe earthquake: a displacement; b control force

Fig. 21   HS controller results for 8-dof top story under Parkfield earthquake: a displacement; b control force

Table 20   The comparison 
between HS and LQR for 8-dof 
under Parkfield earthquake

J Dispmax (m) Velmax (m/s) Accmax (m/s2) Umax (kN) Driftmax

UC – 0.0355 0.4303 7.3899 – 0.00217
LQR 1.2295 0.02051 0.2326 4.5455 576.7981 0.00133
HS 1.2120 0.02033 0.2735 5.8072 360.9319 0.00217

Table 21   Comparison between 
the metaheuristics and LQR for 
3-dof under Kobe earthquake

J Dispmax (m) Velmax (m/s) Accmax(m/s2) Umax (kN) Driftmax

UC – 0.0658 0.9369 15.7387 – 0.0047
LQR 0.4956 0.0164 0.2573 5.377 2.164 0.0014
ICA 0.4384 0.0146 0.2208 4.7267 1.982 0.0012
DE 0.4488 0.015 0.2354 5.0676 2.004 0.0013
BAT 0.4536 0.015 0.2164 4.9023 2.136 0.0013
BEE 0.4677 0.0148 0.2399 5.2675 1.858 0.0014
FA 0.4676 0.0155 0.2456 5.3502 2.06 0.0015
HS 0.4667 0.0143 0.2352 5.1215 1.922 0.0013
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According to Fig. 23, the total RMS of control force (the 
covered area of RMS curve) calculated by ICA method is 
52% of control force needed for LQR. This percentage for 
DE, BAT, BEE, FA and HS is 55%, 75%, 70%, 61% and 

55%; subsequently, ICA’s performance is also better than 
other techniques. The convergence rate has significantly 
determined the comparison of metaheuristics observed and 
compared from Fig. 24 for 8-dof under Parkfield earthquake.

Table 22   Comparison between 
the metaheuristics and LQR for 
3-dof under Landers earthquake

J Dispmax (m) Velmax (m/s) Accmax (m/s2) Umax (kN) Driftmax

UC – 0.0354 0.4424 6.8714 – 0.0024
LQR 0.3248 0.0189 0.1771 2.2658 1.125 0.0011
ICA 0.2793 0.0168 0.1811 2.6094 0.764 0.0011
DE 0.28 0.0168 0.1784 2.6674 0.72 0.0011
BAT 0.2999 0.017 0.1786 2.6591 0.773 0.0011
BEE 0.2827 0.0165 0.178 2.6529 0.771 0.0011
FA 0.3012 0.0172 0.191 2.8775 0.78 0.0011
HS 0.3008 0.0175 0.1877 2.8231 0.792 0.0011

Table 23   Comparison between 
the metaheuristics and LQR 
for 3-dof under Parkfield 
earthquake

J Dispmax (m) Velmax (m/s) Accmax (m/s2) Umax (kN) Driftmax

UC – 0.0544 0.8403 13.3886 – 0.0035
LQR 0.5793 0.0269 0.4847 7.4851 2.246 0.0021
ICA 0.4264 0.0237 0.4204 6.7744 1.818 0.002
DE 0.4374 0.0254 0.4569 7.3248 1.524 0.0021
BAT 0.4416 0.0239 0.4378 7.0013 1.722 0.0019
BEE 0.4347 0.0237 0.432 6.9661 1.646 0.0019
FA 0.4477 0.0257 0.4611 7.2971 1.825 0.0021
HS 0.4393 0.026 0.4589 7.2669 1.628 0.0021

Table 24   Comparison between 
the metaheuristics and LQR 
for 8-dof under Parkfield 
earthquake

J Dispmax (m) Velmax (m/s) Accmax (m/s2) Umax (kN) Driftmax

UC 0 0.0375 0.4303 7.3899 0 0.0011
LQR 1.2295 0.0205 0.2326 4.5455 576.798 0.0005
ICA 1.0794 0.0203 0.2708 5.5173 285.469 0.0006
DE 1.1781 0.0205 0.2834 5.8792 312.167 0.0007
BAT 1.1993 0.0198 0.2717 5.8573 427.913 0.0007
BEE 1.2895 0.0203 0.2852 6.1476 453.94 0.0007
FA 1.2324 0.0212 0.2801 6.0198 365.714 0.0007
HS 1.212 0.0203 0.2735 5.8072 360.932 0.0007

Table 25   The results of 
benchmark indices for 3-dof 
under Parkfield earthquake

LQR ICA DE BAT BEE FA HS

J1 0.4773 0.3946 0.4375 0.4045 0.4149 0.4393 0.441
J2 0.4861 0.4213 0.4553 0.4293 0.4269 0.4602 0.464
J3 0.5591 0.506 0.5471 0.5229 0.5203 0.545 0.5428
J4 0.5882 0.0002 0.0003 0.0004 0.0005 0.0003 0.0073
J5 0.2175 0.1794 0.1966 0.1845 0.1834 0.1997 0.2008
J6 0.2354 0.1956 0.2143 0.2013 0.2003 0.2181 0.2188
J7 0.2727 0.2366 0.2555 0.2425 0.2436 0.2595 0.2601
J8 0.2682 2.31 × 10−05 3.13 × 10−05 4.96 × 10−05 4.84 × 10−05 3.90 × 10−05 0.0008
J9 0.0763 0.0618 0.0586 0.062 0.0559 0.062 0.0553
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Similar behavior has been repeated for 3-dof convergence 
under various earthquakes showing the out performs of ICA 
than other methods in terms of convergence rate, respec-
tively, DE and BAT are located in other next ranks.

5 � Conclusions

The current study has focused on an optimal configura-
tion of LQR controller applied on 3-dof and 8-dof struc-
tures subjected to several historical earthquakes. Based on 
the results, the metaheuristic optimizer has made control 
system meet optimal states and control energy, simulta-
neously. Due to the multiplicity of metaheuristics, the 
optimization objective function has been performed by 
six methods and the results have been compared to one 
another.

•	 Computational time is an important characteristic of opti-
mization algorithm. Regarding the whole processing time 
(from the initial to the final configuration), the compari-
sons have revealed a faster run in HS (50 iterations in 

about 1 min), also, ICA and DE have required slightly 
more time than HS; however, BAT and FA are weaker 
and BEE is the slowest algorithm (4–5 times slower than 
ICA).

•	 Considering Fig. 24, FA and BAT have good convergence 
tendency compared to other algorithms (convergence 
occurred in about 10 iterations) as a favorable choice for 
computational burden reduction, meanwhile, the conver-
gence occurred for ICA, DE and BEE is about 40 itera-
tions. Subsequently, regarding the convergence rate, the 
mentioned metaheuristics have been ranked as FA (first 
rank) and BAT, ICA, DE and BEE (the next).

•	 Considering total cost value, ICA and DE have pro-
duced better results compared to all the mentioned 
algorithms. BAT, HS, BEE and FA have second, third, 
fourth, fifth and sixth rank. Additionally, all the men-
tioned algorithms have produced better results than 
LQR. Consequently, each metaheuristic algorithm has 
advantages and disadvantages in solving active control 
problem; furthermore, considering the effectiveness of 
six intelligent controllers, ICA, DE, and HS have per-
formed favorably for the very optimization problem in 

Fig. 22   RMS of 3-dof top story displacement under Parkfield earthquake: a ICA; b DE; c BAT; d BEE; e FA; f HS controllers
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Fig. 23   RMS of control force for 8-dof under Parkfield earthquake: a ICA; b DE; c BAT; d BEE; e FA; f HS controllers

Fig. 24   Convergence rate of all algorithms for 8-dof under Parkfield earthquakes: a ICA; b DE; c BAT; d BEE; e FA; f HS controllers
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seeking of the best solution, convergence rate and com-
putational effort. On the contrary, BAT, FA, and BEE 
have been weakly performed for the problems and lev-
eled the next. The superiority of ICA over other meth-
ods in finding the optimal responses for active control 
problem has been shown as well.

To sum up, the results for active control of structures 
have shown the potential of wavelet and metaheuristic 
algorithms in vibration control for building structures 
depending on the user to select the appropriate algorithm 
or on the problem types and its requirements such as the 
quality of solution, convergence rate, computational effort, 
and consuming time.
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