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Abstract
In this paper, two numerical techniques are presented to solve the nonlinear inverse generalized Benjamin–Bona–Mahony–
Burgers equation using noisy data. These two methods are the quartic B-spline and Haar wavelet methods combined with 
the Tikhonov regularization method. We show that the convergence rate of the proposed methods is O(k2 + h3) and O

(

1

M

)

 
for the quartic B-spline and Haar wavelet method, respectively. In fact, this work considers a comparative study between 
quartic B-spline and Haar wavelet methods to solve some nonlinear inverse problems. Results show that an excellent estima-
tion of the unknown functions of the nonlinear inverse problem has been obtained.

Keywords Quartic B-spline collocation method · Haar wavelet method · Convergence analysis · Ill-posed problems · Noisy 
data

Mathematics subject classification 65M32 · 35K05

1 Introduction

Nonlinear phenomena play important roles in applied math-
ematics, physics and also in engineering problems [1]. As 
said in [2], many phenomena in engineering and applied sci-
ences are modeled by nonlinear evolution equations, such as: 
solid-state physics [3], fluid mechanics [4], chemical kinetics 
[5], plasma physics, population models [6], nonlinear optics 
and etc. Analytical exact solutions to nonlinear partial dif-
ferential equation (PDE) play an important role in nonlin-
ear science, especially they may provide us much physical 
information and more insight into the physical aspects of 
the problem and may lead to further applications. A variety 
of powerful methods, such as inverse scattering method [7], 
exp-function method [8], homotopy perturbation method 

[9], (G�∕G)-expansion method [10] were used for obtaining 
explicit traveling and solitary wave solutions of nonlinear 
evolutions equation. The knowledge of closed form solu-
tions of the nonlinear partial differential equations facili-
tates the testing of numerical solvers, aids in the stability 
analysis of solutions and conduces to a better understanding 
of nonlinear phenomena that these equations model [11]. 
But, the research of exact solution for the nonlinear partial 
differential equations is very difficult. Therefore, numerical 
methods are useful for solving these equations. The mathe-
matical model of propagation of small amplitude long waves 
in nonlinear dispersive media is described by the following 
Benjamin–Bona–Mahony–Burgers equation [12],

where 𝛼 > 0 and � are constants, and f is a given forcing 
term. In the physical case, the dispersive effect of (1.1) is 
the same as the Benjamin–Bona–Mahony (BBM) equation, 
while the dissipative effect is the same as the burger equa-
tion, and which is an alternative model for the Korteweg-de 
Vries-Burger (KdVB) equation [13]. As mentioned in [14], 

(1.1)

ut − uxxt − �uxx + �ux + uux = f (x, t), (x, t) ∈ [0, L] × [0, tf ],

u(0, t) = u(L, t) = 0, t ∈ [0, tf ],

u(x, 0) = u0(x), x ∈ [0, L],
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the (BBM) equation is used in the analysis of the surface 
waves of long wavelength in liquids, hydro-magnetic wave in 
cold plasma, acoustic-gravity waves in compressible fluids 
and acoustic waves in harmonic crystals. The Eq. (1.1) is 
solved using different numerical methods such as numeri-
cal methods based on either finite elements [15], finite dif-
ference [16], Adomian decomposition scheme [17], cubic 
B-spline collocation method, [18] and quadratic B-spline 
finite element method [19].

In this paper, we consider the nonlinear inverse general-
ized Benjamin–Bona–Mahony–Burger equation to the fol-
lowing form

with initial condition

boundary conditions

where p(x) and f(x, t) are continuous known functions and tf  
represents the final time, while the functions g1(t) , g2(t) , and 
u(x, t) are unknown which remain to be determined.

The core of applied mathematical models is made up 
of partial differential equations [20]. These models can 
be divided into two general classifications as direct and 
inverse problems. Today, the literature on both analytical and 
numerical methods for the solution of direct problems, even 
for multi-dimensional cases, is well extended. While for 
the inverse problems, this matter still remains poorly devel-
oped. Inverse problems in physics often belong to the class 
of ill-posed problems. Inverse problems are encountered in 
many branches of engineering and science. In one particular 
branch, parabolic initial and boundary value problems in one 
dimension have been studied by several authors [21–29]. 
Mathematically speaking, in these problems, apart from the 
both issues of existence and uniqueness of the solution that 
appear extremely difficult to be shown, there is also the issue 
of stability to deal with, i.e., the continuous dependence of 
the solution on input data [30].

The key note in the approximate solution of the inverse 
problems is the requirement to identify the right-hand side, 
leading coefficients and parameters and some initial and 
boundary conditions of time-dependent or stationary equa-
tions. On the other hand, since a wide area of the sciences 
and engineering phenomena is modeled by these problems, 
the main intent is to draw attention to the use of more appli-
cable and accurate algorithms that make it possible to deter-
mine the unknown function using some given observation 
at accessible parts of the domain of the problem. Produc-
ing more accurate methods for inverse problems rests on 

(1.2)
ut − uxxt − uxx + ux + uux = f (x, t), (x, t) ∈ [0, 1] × [0, tf ],

(1.3)u(x, 0) = p(x), x ∈ [0, 1],

(1.4)u(0, t) = g1(t), t ∈ [0, tf ],

(1.5)u(1, t) = g2(t), t ∈ [0, tf ],

the development and examination of numerical methods 
for boundary value problems formulated for basic equa-
tions in mathematical physics [20]. On top of that, in the 
past few decades, a great deal of interest has been directed 
towards the determination of unknown coefficients which 
represent physical quantities, for example, the conductiv-
ity of a medium, in second-order equations, especially 
to parabolic equations. As an example for application of 
inverse problems in modeling the stationary equations, we 
can point to the process of reconstructing the mass distri-
bution in the problems of potential theory formulated by 
Laplace equation, if a mass distribution is not known but 
its potential outside a certain ball is given and the goal is 
finding this mass distribution [31]. Besides, inverse bound-
ary value problems can be used in modeling the diffusion 
processes like denoting the concentration of a chemical or 
temperature in the context of the heat conduction problems 
[22, 32]. Also for determination of source parameter in the 
wave equation, we refer the interested reader to [33]. In this 
paper, we design two numerical methods for solving inverse 
Benjamin–Bona–Mahony equations of the form (1.2)–(1.5). 
Collocation method based on a quartic B-spline basis func-
tions and Haar wavelet method.

We know that B-splines have some special features, 
which are useful in numerical work. One feature is that the 
continuity conditions are inherent, other special features of 
B-splines are that they have small local support, i.e., each 
B-spline function is only non-zero over a few mesh sub-
intervals, so that the resulting matrix for the discretization 
equation is tightly banded. Due to their smoothness and 
capability to handle local phenomena, B-spline offer dis-
tinct advantages. In combination with collocation, this sig-
nificantly simplifies the solution procedure of differential 
equations. There is a great reduction of the numerical effort, 
because there is no need to calculate the integrals (like in 
variational methods) to form the final set of algebraic equa-
tions, which substitutes the given set of nonlinear differential 
equations. Unlike some previous techniques using various 
transformations to reduce the equation into simpler equa-
tion, the current method does not require extra effort to deal 
with the nonlinear terms. Therefore, the equations are solved 
easily and elegantly using the present method. This method 
also has additional advantages over some rival techniques, 
such as ease of use and computational cost effectiveness to 
find solutions of the given nonlinear evolution equations. In 
the present work, the combination of the quartic B-spline 
collocation method in space with finite difference in time 
and the Tikhonov regularization method for solving ill-
conditioned system provides an efficient explicit solution 
with high accuracy and minimal computational effort for the 
problem represented by (1.2)–(1.5).

Wavelet methods have been applied for solving partial dif-
ferential equations from beginning of the early 1990s. Among 



1455Engineering with Computers (2020) 36:1453–1466 

1 3

all the wavelet families the Haar wavelets have been given 
more attention. They are made up of pairs of piecewise con-
stant functions and are therefore mathematically the simplest 
of all the wavelet families. A good feature of the Haar wavelets 
is also the possibility to integrate these wavelets analytically in 
arbitrary times. A drawback of these wavelets is their discon-
tinuity. Hence, the absence of the derivatives in the breaking 
points makes impossible, the direct usage of these wavelets for 
solving PDEs. The Haar wavelets are very efficient tools for 
solving the nonlinear systems in physics, biology, chemical 
reactions and fluid mechanics [34–37]. Furthermore, Celik in 
[38] used the Haar wavelets approximation method based on 
approximating the truncated double Haar wavelets series to 
obtain magnetohydrodynamic flow equations in a rectangular 
duct in presence of transverse external oblique magnetic. Ray 
[39] used the operational matrix of Haar wavelet method for 
solving Bagley–Torvik equation. Ray and Patra [40] proposed 
an efficient numerical method for solving nonlinear damped 
Van der Pol equation based on the Haar wavelets. In the field 
of numerical solution of the inverse problems, Pourgholi et al. 
[41–44] have used the Haar wavelet method for the solution 
of a variety of PDEs.

The rest of the paper is organized as follows: in Sect. 2, 
quartic B-spline collocation scheme is explained and in 
Subsect. 2.1 and 2.2 the method is applied to solve problem 
(1.2)–(1.5). The uniform convergence of the method is proved 
in Subsect. 2.3. The Haar wavelet method for solving the non-
linear inverse problem (1.2)–(1.5), and the convergence analy-
sis of this method is described in Sect. 3. In Sect. 4 numerical 
experiment is conducted to demonstrate the viability and the 
efficiency of the proposed methods computationally. A sum-
mary is given at the end of the paper in Sect. 5.

2  Quartic B‑spline collocation method

In this Section we solve the nonlinear inverse problem 
(1.2)–(1.5) with the over-specified conditions

where 0 < a < 1 is a fixed point.

(2.1)u(a, t) = h1(t), t ∈ [0, tf ],

(2.2)ux(a, t) = h2(t), t ∈ [0, tf ],

(2.3)uxx(a, t) = h3(t), t ∈ [0, tf ],

The solution domain x ∈ [0, 1] is partitioned into a 
mesh of uniform length h = xi+1 − xi by the knots xi where 
i = 0, 1,⋯ ,N − 1 such that 𝛥 = 0 = x0 < x1 < ⋯ < xN = 1 
be the partition in [0, 1]. B-splines are the unique nonzero 
splines of smallest compact support with knots at 
x0 < x1 < ⋯ < xN . We define the quartic B-spline Bi(x) for 
i = −2, 0,⋯ ,N + 1 by the following relation [45]

It can be easily seen that the set of functions 
� = {B−2(x),B−1(x),B0(x),⋯ ,BN+1(x)} is linearly independ-
ent on [0, 1], thus � = Span(� ) is a subspace of C2[0, 1] and 
� is (N + 4)-dimensional. Let us consider Um(x, t) ∈ � is 
the B-spline approximation to the exact solution u(x, t) in 
the form

where ci(t) are time-dependent quantities to be determined 
from the boundary and over-specified conditions and collo-
cation form of the differential equations. The values of Bi(x) 
and its derivatives may be tabulated as in Table 1.

Using approximate function (2.5) and quartic B-spline 
(2.4), the approximate values at the knots of U(x) and its 
derivatives up to third order are determined in terms of the 
time parameters cm as

2.1  Temporal discretization

Let us consider a uniform mesh (xi, tn) to discretize the 
region [0, 1] × [0, tf ] where xi = ih , i = 0, 1, 2,⋯ ,N  and 

(2.4)

Bi(x) =
1

h4

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(x − xi−2)
4, x ∈ [xi−2, xi−1),

(x − xi−2)
4 − 5(x − xi−1)

4, x ∈ [xi−1, xi),

(x − xi−2)
4 − 5(x − xi−1)

4 + 10(x − xi)
4, x ∈ [xi, xi+1),

(xi+3 − x)4 − 5(xi+2 − x)4, x ∈ [xi+1, xi+2),

(xi+3 − x)4, x ∈ [xi+2, xi+3),

0, otherwise.

(2.5)Um(x, t) =

m+1
∑

i=−2

ci(t)Bi(x),

(2.6)Um =cm+1 + 11cm + 11cm−1 + cm−2,

(2.7)U�
m
=(4∕h)(cm+1 + 3cm − 3cm−1 − cm−2),

(2.8)U��
m
=(12∕h2)(cm+1 − cm − cm−1 + cm−2),

(2.9)U���
m

=(24∕h3)(cm+1 − 3cm + 3cm−1 − cm−2),

Table 1  Values of Bi(x) and its 
derivatives at the nodal points

x xi−3 xi−2 xi−1 xi xi+1 xi+3

Bi(x) 0 1 11 11 1 0
B�
i
(x) 0 −4∕h −12∕h 12 / h 4 / h 0

B��
i
(x) 0 12∕h2 −12∕h2 −12∕h2 12∕h2 0

B���
i
(x) 0 −24∕h3 72∕h3 −72∕h3 24∕h32 0
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tn = nk , n = 0, 1,⋯ , where h and k are mesh sizes in the 
space and time directions, respectively.

At first we discretize the problem in time variable using 
the following finite difference approximation with uniform 
step size k

where �tun = un+1 − un , un = u(x, tn) and u0 = u(x, 0) = p(x) . 
Substituting the above approximation in to Eq. (1.2) and 
discretizing in time variable we have

so

thus, we have

To linearized the nonlinear term (uux)n+1 we use the lineari-
zation form given by Rubin and Graves [46]

Putting values from Eq. (2.14) in (2.13) we get

thus

where

Substituting the approximate solution U for u and putting 
the values of the nodal values U, its derivatives using Eqs. 
(2.6)–(2.8) at the knots in Eq. (2.16) yield the following dif-
ference equation with the variable c

where

(2.10)un
t
≅

�t
k(1 − ��t)

un, n ≥ 0, � ≠ 1,

(2.11)

�t
k(1 − ��t)

un −
�t

k(1 − ��t)
un
xx
= un

xx
− un

x
− (uux)

n + f (x, tn),

(2.12)
�t

k(1 − ��t)

[

un − un
xx

]

= un
xx
− un

x
− (uux)

n + f (x, tn),

(2.13)

[

un+1 − un − un+1
xx

+ un
xx

]

= k
[

un
xx
− un

x
− (uux)

n + f (x, tn)
]

− k�
[

un+1
xx

− un
xx
− un+1

x
+ un

x
− (uux)

n+1 + (uux)
n

+f (x, tn+1) − f (x, tn)
]

.

(2.14)(uux)
n+1 = un+1un

x
+ unun+1

x
− (uux)

n.

(2.15)

un+1 − un+1
xx

+ k�
[

un+1
xx

− un+1un
x
− unun+1

x
− un+1

x
+ f (x, tn+1)

]

= un − un
xx
+ k

[

un
xx
− un

x
− unun

x
+ f (x, tn)

]

− k�
[

−un
xx
+ un

x
+ 2unun

x
− f (x, tn)

]

,

(2.16)

�1u
n+1 + �2u

n+1
xx

+ �3u
n+1
x

= un + �4u
n
xx
+ �5u

n
x

+ �6u
nun

x
+ �7f (x, tn) + �8f (x, tn+1),

�
1
= 1 − k�un

x
, �

2
= k� − 1, �

3
= −k�(un + 1),

�
4
= −1 + k(1 + �), �

5
= −k(1 + �), �

6
= −k(1 + 2�),

�
7
= k(1 + �), �

8
= −k� .

(2.17)
A∗cn+1

i−2
+ B∗cn+1

i−1
+ C∗cn+1

i
+ D∗cn+1

i+1
= H(xi, tn) + H(xi, tn+1),

The system (2.17) consists of (N + 1) linear equations in 
(N + 4) unknowns

To obtain a unique solution to this system the over-specified 
conditions (2.1)–(2.3) are required.

Let a = xs , 1 ≤ s ≤ N − 1 , so we have

expanding u in terms of approximate quartic B-spline for-
mula from (2.6)–(2.8) at xs putting m = s we get

thus, the system (2.17) is changed to a system of (N + 4) 
linear equations in (N + 4) unknowns, given by

where

A
∗ =�

1
+
(

12

h2

)

�
2
−
(

4

h

)

�
3
,

B
∗ =11�

1
−
(

12

h2

)

�
2
−
(

12

h

)

�
3
,

C
∗ =11�

1
+
(

12

h2

)

�
2
+
(

12

h

)

�
3
,

D
∗ =�

1
+
(

12

h2

)

�
2
+
(

4

h

)

�
3
,

H(x
i
, t
n
) =(cn

i+1
+ 11c

n

i
+ 11c

n

i−1
+ c

n

i−2
)

+ �
4

(

12

h2

)

(cn
i+1

− c
n

i
− c

n

i−1
+ c

n

i−2
)

+ �
5

(

4

h

)

(cn
i+1

+ 3c
n

i
− 3c

n

i−1
− c

n

i−2
)

+ �
6

(

4

h

)

(cn
i+1

+ 11c
n

i
+ 11c

n

i−1
+ c

n

i−2
)

× (cn
i+1

+ 3c
n

i
− 3c

n

i−1
− c

n

i−2
)

+ �
7
f (x

i
, t
n
), 0 ≤ i ≤ N

H(x
i
, t
n+1) =�8f (xi, tn+1), 0 ≤ i ≤ N.

(c−2, c−1, c0,⋯ , cN , cN+1)
T .

(2.18)u(xs, t) = h1(t), t ∈ [0, tf ],

(2.19)ux(xs, t) = h2(t), t ∈ [0, tf ],

(2.20)uxx(xs, t) = h3(t), t ∈ [0, tf ],

(2.21)cn+1
s+1

+ 11cn+1
s+2

+ 11cn+1
s+3

+ cn+1
s+4

= h1(tn+1),

(2.22)
(

4

h

)

(cn+1
s+4

+ 3cn+1
s+3

− 3cn+1
s+2

− cn+1
s+1

) = h2(tn+1),

(2.23)

(

12

h2

)

(cn+1
s+4

− cn+1
s+3

− cn+1
s+2

+ cn+1
s+1

) = h3(tn+1),

(2.24)AC = D,

A[1, s + 1] = A[1, s + 4] = 1,

A[1, s + 2] = A[1, s + 3] = 11,

A[2, s + 1] = −A[2, s + 4] = −4∕h,

A[2, s + 2] = −A[2, s + 3] = −12∕h,

A[N + 4, s + 1] = A[N + 4, s + 4] = 12∕h2,

A[N + 4, s + 2] = A[N + 4, s + 3] = −12∕h2,
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thus

A is ill-conditioned matrix, thus we solved this system (2.24) 
by the Tikhonov regularization method [25].

2.2  The initial state

The initial vector c0 can be obtained from the initial condition 
(1.3) and over-specified conditions (2.1)–(2.3) as the follow-
ing expressions

A =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 ⋯ 1 11 11 1 ⋯ 0

0 ⋯ −
4

h
−

12

h

12

h

4

h
⋯ 0

A∗ B∗ C∗ D∗ ⋮

A∗ B∗ C∗ D∗

⋯ ⋯ ⋯

⋯ ⋯ ⋯

A∗ B∗ C∗ D∗

⋮ A∗ B∗ C∗ D∗

0 ⋯
12

h2
−

12

h2
−

12

h2
12

h2
⋯ 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

C =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

c
(n+1)

−2

c
(n+1)

−1

c
(n+1)

0

c
(n+1)

1

⋮

c(n+1)
s

⋮

c
(n+1)

N−1

c
(n+1)

N

c
(n+1)

N+1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

D =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

D
(n)

−2

D
(n)

−1

D0
(n)

D
(n)

1

⋮

D(n)
s

⋮

DN−1
(n)

DN
(n)

DN+1
(n)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

D
(n)

−2
= h1(tn+1)

D
(n)

−1
= h2(tn+1),

D
(n)

i
= H(xi, tn) + H(xi, tn+1), 0 ≤ i ≤ N,

D
(n)

N+1
= h3(tn+1).

This yields a (N + 4) × (N + 4) system of equations, of the 
form

where

thus

u(xi, t0) = c0
i+1

+ 11c0
i
+ 11c0

i−1
+ c0

i−2
= p(xi), 0 ≤ i ≤ N,

u(xs, t0) = c0
s+1

+ 11c0
s
+ 11c0

s−1
+ c0

s−2
= h1(t0),

ux(xs, t0) =
(

4

h

)

(c0
s+4

+ 3c0
s+3

− 3c0
s+2

− c0
s+1

) = h2(t0),

uxx(xs, t0) =
(

12

h2

)

(c0
s+4

− c0
s+3

− c0
s+2

+ c0
s+1

) = h3(t0).

(2.25)�C0 = �,

�[1, s + 1] = �[1, s + 4] = 1,

�[1, s + 2] = �[1, s + 3] = 11,

�[2, s + 1] = −�[2, s + 4] = −4∕h,

�[2, s + 2] = −�[2, s + 3] = −12∕h,

�[N + 4, s + 1] = �[N + 4, s + 4] = 12∕h2,

�[N + 4, s + 2] = �[N + 4, s + 3] = −12∕h2,

� =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 ⋯ 1 11 11 1 ⋯ 0

0 ⋯ −
4

h
−

12

h

12

h

4

h
⋯ 0

1 11 11 1 ⋮

1 11 11 1

⋯ ⋯ ⋯

⋯ ⋯ ⋯

1 11 11 1

⋮ 1 11 11 1

0 ⋯
12

h2
−

12

h2
−

12

h2
12

h2
⋯ 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

C0 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

c0
−2

c0
−1

c0
0

c1
0

⋮

cs
0

⋮

cN−1
0

cN
0

cN+1
0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

� =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

h1(t0)

h2(t0)

p(x0)

p(x1)

⋮

p(xs)

⋮

p(xN−1)

p(xN)

h3(t0)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.
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The solution of (2.25) can be found by the Tikhonov regu-
larization method.

2.3  Convergence analysis

Let u(x) = u(x, tn+1) be the exact solution of the Eq. (1.2) in 
t = tn+1 with the over-specified conditions (2.1)–(2.3) and 
initial condition (1.3) and also U(x) =

∑N+1

i=−2
ciBi(x) be the 

B-spline collocation approximation to u(x). Due to round 
off errors in computations we assume that Û(x) be the com-
puted spline for U(x) so that �U(x) =

∑N+1

i=−2
ĉiBi(x) where 

�C = (ĉ−2, ĉ−1, ĉ0, ĉ1,⋯ , ĉN , ĉN+1) . To estimate the error 
‖u(x) − U(x)‖∞ we must estimate the errors ‖u(x) − Û(x)‖∞ 
and ‖Û(x) − U(x)‖∞ separately. Following (2.24) for Û we 
have

where

and

Subtracting (2.26) and (2.24) we have

first we need to recall a Theorem.

Theorem 2.1 Suppose that f (x) ∈ C5[0, 1] and |f 5(x)| ≤ L , 
∀ x ∈ [0, 1] and 𝛥 = {0 = x0 < x1 < ⋯ < xN = 1} is the 
equality spaced partition of [0, 1] with step size h. If S�(x) 
is the unique spline function interpolate f(x) at nodes 
x0, x1,⋯ , xN ∈ � , then there exist a constant �j ≤ 2 such 
that ∀x ∈ [0, 1],

where ‖.‖ represents the ∞-norm.

Proof For the proof see [47].   ◻

Now, we want to find a bound on ‖D − D̂‖∞ first. We have

(2.26)AĈ = D̂,

�D = (h1(tn+1), h2(tn+1), �̂�0, �̂�1,⋯ , �̂�N , h3(tn+1)),

�̂�i =(ĉ
n
i+1

+ 11ĉn
i
+ 11ĉn

i−1
+ ĉn

i−2
)

+ 𝜃4

(

12

h2

)

(ĉn
i+1

− ĉn
i
− ĉn

i−1
+ ĉn

i−2
)

+ 𝜃5

(

4

h

)

(ĉn
i+1

+ 3ĉn
i
− 3ĉn

i−1
− ĉn

i−2
)

+ 𝜃6

(

4

h

)

(ĉn
i+1

+ 11ĉn
i
+ 11ĉn

i−1
+ ĉn

i−2
)(ĉn

i+1
+ 3ĉn

i
− 3ĉn

i−1
− ĉn

i−2
)

+ 𝜃7f (xi, tn) + 𝜃8f (xi, tn+1).

(2.27)A(C − Ĉ) = (D − D̂),

(2.28)‖f j(x) − S
j

�
(x)‖ ≤ �jLh

5−j, j = 0, 1, 2, 3, 4,

by following theorem (2.1) and [48] (page 218) we obtain

where ‖���(z)‖∞ ≤ M . Thus we can rewrite (2.29) as follows

where M1 = ML(�0h
2 + �1h + �2) . The matrix A in (2.27) is 

an ill-conditioned matrix, thus by Tikhonov regularization 
solution [25], we have

taking the infinity norm and then using (2.30) we find

where M2 = M1‖[A
TA + �(R(2))TR2]−1AT

‖∞ . Now, we will 
be able to prove the convergence of our present method. 
Therefore, we recall a following lemma first

Lemma 2.1 The B-splines {B−2,B−1,B0,⋯ ,BN+1} satisfy the 
following inequality

Proof We know that

At any node xi , we have

also, we have

similarly,

|D(xi) − D̂(xi)| =
|

|

|

�
(

xi,U(xi),U
�(xi),U

��(xi)
)

−�
(

xi, Û(xi), Û
�(xi), Û

��(xi)
)

|

|

|

|

,

(2.29)

‖D − D̂‖∞ ≤ M
�

�U(x) − Û(x)� + �U�(x) − Û�(x)� + �U��(x) − Û��(x)�
�

≤ ML�0h
5 +ML�1h

4 + L�2h
3,

(2.30)‖D − D̂‖∞ ≤ M1h
3,

(2.31)(C − Ĉ) = [ATA + �(R(2))TR2]−1AT (D − D̂),

(2.32)
‖C − Ĉ‖∞ ≤ ‖[ATA + �(R(2))TR2]−1AT

‖∞‖D − D̂‖∞ ≤ M2h
3,

(2.33)
|

|

|

|

|

|

N+1
∑

i=−2

Bi(x)

|

|

|

|

|

|

≤ 35, (0 ≤ x ≤ 1).

(2.34)
|

|

|

|

|

|

N+1
∑

i=−2

Bi(x)

|

|

|

|

|

|

≤
N+1
∑

i=−2

|Bi(x)|, (0 ≤ x ≤ 1).

(2.35)
N+1
∑

i=−2

|Bi| = |Bi−2| + |Bi−1| + |Bi| + |Bi+1| = 24 < 35,

(2.36)
|Bi−2(x)| ≤ 11, |Bi−1(x)| ≤ 11, |Bi(x)| ≤ 11, xi−1 ≤ x ≤ xi,

(2.37)|Bi−3(x)| ≤ 1, |Bi+1(x)| ≤ 1, xi−1 ≤ x ≤ xi.
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Now for point xi−1 ≤ x ≤ xi , we have

Hence, this proves the lemma.   ◻

Now, observe that we have

thus taking the infinity norm and using (2.32) and (2.33) 
we get

Theorem 2.2 Let u(x) be the exact solution of the equation 
(1.2) with the over-specified conditions (2.1)–(2.3) and ini-
tial condition (1.3) and also U(x) be the B-spline collocation 
approximation to u(x) then the method has second order 
convergence

where � = �0Lh
2 + 35M2 is some finite constant.

Proof From theorem (2.1) we have

thus substituting from (2.39) and (2.40) we have

where � = �0Lh
2 + 35M2 .   ◻

Theorem 2.3 The time discretization process (2.10) that we 
use to discretize equation (1.2) in time variable is of the two 
order convergence.

Proof See [49].   ◻

We suppose that u(x, t) is the solution of Eq. (1.1) and 
U(x, t) be the approximate solution by our present method 
then we have

(2.38)

N+1
∑

i=−2

|Bi(x)| = |Bi−3| + |Bi−2| + |Bi−1| + |Bi| + |Bi+1| ≤ 35.

U(x) − �U(x) =

N+1
∑

i=−2

(ci − ĉi)Bi(x),

(2.39)

‖U(x) − �U(x)‖∞ =

�

�

�

�

�

�

N+1
�

i=−2

(ci − ĉi)Bi(x)

�

�

�

�

�

�∞

≤‖(ci − ĉi)‖∞

�

�

�

�

�

�

N+1
�

i=−2

Bi(x)

�

�

�

�

�

�

≤ 35M2h
3,

‖u(x) − U(x)‖ ≤ �h3,

(2.40)‖u(x) − Û(x)‖ ≤ �0Lh
5,

(2.41)
‖u(x) − U(x)‖ ≤ ‖u(x) − Û(x)‖ + ‖Û(x) − U(x)‖

≤ �
0
Lh

5 + 35M
2
h
3 = �h

3
,

(� is some finite constant), thus the order of convergence of 
our process is O(k2 + h3).

3  Haar wavelet method

The aim of this Section is to describe a new modification of 
the Haar wavelet method for solving the nonlinear inverse 
problem (1.2)–(1.5) with the over-specified conditions

where 0 < a < 1 is a fixed point.

3.1  Function approximation

It is known that any integrable function u(x) ∈ L2([0, 1)) can 
be expanded by the Haar series with an infinite number of 
terms [41],

Specially c1 = ∫ 1

0
u(x) dx . So

If u(x) is piecewise constant function or can be approximated 
as piecewise constant functions during each subinterval, 
then u(x) will be terminated at finite term, which we show it 
with uJ(x) as follows:

where the coefficient CT
M

 and the Haar function vectors 
HM(x) are defined as

3.2  Convergence analysis of the Haar wavelet 
method

In this part, we present the error analysis for our proposed 
scheme. To analyze the convergence of our method, we 
assume that uJ(x) is approximation solution of u(x). The cor-
responding error at J-th level of u(x) is defined as

‖u(x, tn) − U(x, tn)‖ ≤ �(k2 + h3),

(3.1)u(a, t) = h1(t), t ∈ [0, tf ],

(3.2)ux(a, t) = h2(t), t ∈ [0, tf ],

u(x) =

∞
∑

i=1

cihi(x), ci = 2j �
1

0

u(x)hi(x) dx,

i = 2j + k + 1, j ≥ 0, 0 ≤ k < 2j.

u(x) = c1h1(x) +

∞
∑

j=0

2j−1
∑

k=0

c2j+k+1h2j+k+1(x).

(3.3)

uJ(x) ≅ c1h1(x) +

J
∑

j=0

2j−1
∑

k=0

c2j+k+1h2j+k+1(x) = CT
M
HM(x),

CT
M
=
(

c1, c2,⋯ , cM
)

, HM(x) =
(

h1(x), h2(x),⋯ , hM(x)
)T
.
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So we have

Now, we state and prove the following convergence theorem.

Theorem 3.1 Suppose that u(x) satisfies the Lipschitz condi-
tion on [0, 1],  that is,

Then the error bound for ‖eu
J
‖2 is obtained as

Also, the Haar wavelet method will converge in the sense 
that eu

J
(x) goes to zero as M goes to infinity. Moreover, the 

convergence is of order one, that is,

Proof We compute ‖eu
J
‖

2
2
 as the following:

For as much as,

we have

eu
J
(x) = u(x) − uJ(x).

eu
J
(x) =

∞
∑

j=J+1

2j−1
∑

k=0

c2j+k+1h2j+k+1(x),

(3.4)
∃ 𝜅 > 0, ∀ x1, x2 ∈ [0, 1] ∶ |u(x1) − u(x2)| ≤ 𝜅|x1 − x2|.

‖eu
J
‖2 ≤

�

1

3

�

M
.

‖eu
J
‖2 = O

�

1

M

�

.

‖eu
J
‖

2
2
=∫

1

0

⎛

⎜

⎜

⎝

∞
�

j=J+1

2j−1
�

k=0

c2j+k+1h2j+k+1(x)

⎞

⎟

⎟

⎠

2

dx

=∫
1

0

⎛

⎜

⎜

⎝

∞
�

j=J+1

2j−1
�

k=0

c2j+k+1h2j+k+1(x)

⎞

⎟

⎟

⎠

×

⎛

⎜

⎜

⎝

∞
�

l=J+1

2l−1
�

q=0

c2l+q+1h2l+q+1(x)

⎞

⎟

⎟

⎠

dx

=

∞
�

j=J+1

2j−1
�

k=0

∞
�

l=J+1

2l−1
�

q=0

c2j+k+1c2l+q+1

×

�

∫
1

0

h2j+k+1(x)h2l+q+1(x)dx

�

.

�
1

0

hi1(x)hi2 (x) dx =

{

2−j, i1 = i2,

0, i1 ≠ i2,

Since c2j+k+1 = 2j ∫ 1

0
u(x)h2j+k+1(x)dx , according to the Haar 

wavelet functions,

we can write

Now, using the mean value theorem for integral, we can 
conclude

such that

Thus, we can compute c2j+k+1 as follows:

The first inequality is obtained with regard to relation (3.4). 
On the other hand, we have

‖eu
J
‖

2
2
=

∞
�

j=J+1

2j−1
�

k=0

1

2j
c2
2j+k+1

.

hi(x) =

⎧

⎪

⎨

⎪

⎩

1, x ∈ [
k

m
,
k+0.5

m
),

−1, x ∈ [
k+0.5

m
,
k+1

m
),

0, elsewhere,

c2j+k+1 = 2j

(

∫
k+0.5

2j

k

2j

u(x)dx − ∫
k+1

2j

k+0.5

2j

u(x)dx

)

.

∃ x1 ∈
[

k

2j
,
k + 0.5

2j

]

, x2 ∈
[

k + 0.5

2j
,
k + 1

2j

]

,

∫
k+0.5

2j

k

2j

u(x)dx =
1

2j+1
u(x1), ∫

k+1

2j

k+0.5

2j

u(x)dx =
1

2j+1
u(x2).

c2j+k+1 = 2j
(

1

2j+1
u(x1) −

1

2j+1
u(x2)

)

=
1

2

(

u(x1) − u(x2)
)

≤ �

2

(

x1 − x2
)

≤ �

2j+1
.

‖eu
J
‖

2
2
=

∞
�

j=J+1

2j−1
�

k=0

1

2j
c2
2j+k+1

≤
∞
�

j=J+1

2j−1
�

k=0

1

2j
�2

22j+2

=
�2

4

∞
�

j=J+1

4−j =
�2

3
4−J−1.
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Since M = 2J+1 , we obtain

Therefore, the error bound can be expressed as

So, the Haar wavelet method will be convergent, i.e.,

Moreover, the convergence is of order one, that is,

and the proof is complete.   ◻

3.3  Overview of the method

In this part, we first present our method based on the Haar 
wavelet method for solving the nonlinear inverse prob-
lem (1.2)–(3.2). Now, Let us divide the interval [0, tf ] into 
N equal parts of length �t = tf

N
 and denote ts = (s − 1)�t , 

s = 1, 2,⋯ ,N − 1 . We assume that u̇′′ can be expanded in 
terms of Haar wavelets as,

where . and ′ mean differentiation with respect to t and x, 
respectively. Integrating Eq. (3.5) one time with respect to t 
from ts to t, twice with respect to x from a to x, and using the 
over-specified conditions (3.1) and (3.2), we obtain

Now, individual differentiation of Eq. (3.8), one time with 
respect to t, yield

‖eu
J
‖

2
2
≤ �2

3
M−2.

‖eu
J
‖2 ≤

�

1

3

�

M
.

lim
J→∞

eu
J
(x) = 0.

‖eu
J
‖2 = O

�

1

M

�

,

(3.5)

u̇��(x, t) ≅ cs
1
h1(x) +

J
∑

j=0

2j−1
∑

k=0

cs
2j+k+1

h2j+k+1(x) = CT
M
HM(x),

(3.6)u��(x, t) =(t − ts)C
T
M
HM(x) + u��(x, ts),

(3.7)
u�(x, t) =(t − ts)C

T
M

[

PMHM(x) − PMHM(a)
]

+ u�(x, ts) + h2(t) − h2(ts),

(3.8)

u(x, t) =(t − t
s
)CT

M

[

Q
M
H

M
(x) − Q

M
H

M
(a)

−(x − a)P
M
H

M
(a)

]

+ u(x, t
s
)

+
[

h
1
(t) − h

1
(t
s
)
]

+ (x − a)
[

h
2
(t) − h

2
(t
s
)
]

.

where H, P, and Q are obtained from [41]. With discretizing 
the results by assuming x → xl , t → ts+1 and using notation 
T = ts+1 − ts , Eqs. (3.5)–(3.9) are changed as follows,

In the following scheme

To linearize the nonlinear term u(xl, ts+1)u�(xl, ts+1) we use 
the linearization form given by Rubin and Graves [46],

By putting (3.16) in Eq. (3.15) we have,

Substituting Eqs. (3.10)–(3.14) into Eq. (3.17), we obtain

(3.9)

u̇(x, t) =CT
M

[

QMHM(x) − QMHM(a) − (x − a)PMHM(a)
]

+ h�
1
(t) + (x − a)h�

2
(t),

(3.10)u̇��(xl, ts+1) =C
T
M
HM(xl),

(3.11)u��(xl, ts+1) =TC
T
M
HM(xl) + u��(xl, ts),

(3.12)
u�(xl, ts+1) =TC

T
M

[

PMHM(xl) − PMHM(a)
]

+ u�(xl, ts) + h2(ts+1) − h2(ts),

(3.13)

u(x
l
, t
s+1) =TC

T

M

[

Q
M
H

M
(x

l
) − Q

M
H

M
(a)

−(x
l
− a)P

M
H

M
(a)

]

+ u(x
l
, t
s
)

+
[

h
1
(t
s+1) − h

1
(t
s
)
]

+ (x
l
− a)

[

h
2
(t
s+1) − h

2
(t
s
)
]

,

(3.14)

u̇(xl, ts+1) =C
T
M

[

QMHM(xl) − QMHM(a) − (xl − a)PMHM(a)
]

+ h�
1
(ts+1) + (xl − a)h�

2
(ts+1).

(3.15)
u̇(xl, ts+1) − u̇��(xl, ts+1) − u��(xl, ts+1)

+ u�(xl, ts+1) + u(xl, ts+1)u
�(xl, ts+1) = f (xl, ts+1).

(3.16)

u(xl, ts+1)u
�(xl, ts+1) =u(xl, ts+1)u

�(xl, ts)

+ u(xl, ts)u
�(xl, ts+1) − u(xl, ts)u

�(xl, ts).

(3.17)

u̇(xl, ts+1) − u̇��(xl, ts+1) − u��(xl, ts+1) +
(

1 + u(xl, ts)
)

u�(xl, ts+1)

+ u(xl, ts+1)u
�(xl, ts) = f (xl, ts+1) + u(xl, ts)u

�(xl, ts).

(3.18)

CT
M

[[

1 + Tu�(xl, ts)
][

QMHM(xl) − QMHM(a) − (xl − a)PMHM(a)
]

− (1 + T)HM(xl)

+T
[

1 + u(xl, ts)
][

PMHM(xl) − PMHM(a)
]]

= f (xl, ts+1)

−
[

h�
1
(ts+1) + (xl − a)h�

2
(ts+1)

]

+ u��(xl, ts)

−
[

1 + u(xl, ts)
][

u�(xl, ts) + h2(ts+1) − h2(ts)
]

− u�(xl, ts)
[

h1(ts+1) − h1(ts) + (xl − a)
[

h2(ts+1) − h2(ts)
]]
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From the Eq. (3.18), a system of M linear equations in the M 
unknown coefficients is obtained. This system can be written 
in the matrix vector form as follows

To solve the system of linear equation (3.19) and calculated 
the wavelet coefficients CT

M
 , we use the Tikhonov regulari-

zation method [25]. Finally, putting the calculated wave-
let coefficients into the Eq. (3.13), we can successively 
calculate the approximate solutions for l = 1, 2,⋯ ,M and 
s = 1, 2,⋯ ,N , as follows:

4  Numerical illustrations

In this Section, the quartic B-spline collocation and Haar 
wavelet method are employed to obtain the numerical solu-
tions for unknown boundary conditions in the problem 
(1.2)–(1.5). Numerical example is discussed in this Section 

(3.19)AX = B.

u(0, ts+1) =g1(ts+1) = TCT
M

[

aPMHM(a) − QMHM(a)
]

+ u(0, ts) +
[

h1(ts+1) − h1(ts)
]

− a
[

h2(ts+1) − h2(ts)
]

,

u(1, ts+1) =g2(ts+1) = TCT
M

[

QMHM(1) − QMHM(a) − (1 − a)PMHM(a)
]

+ u(1, ts)

+
[

h1(ts+1) − h1(ts)
]

+ (1 − a)
[

h2(ts+1) − h2(ts)
]

,

u(xl, ts+1) =TC
T
M

[

QMHM(xl) − QMHM(a) − (xl − a)PMHM(a)
]

+ u(xl, ts)

+
[

h1(ts+1) − h1(ts)
]

+ (xl − a)
[

h2(ts+1) − h2(ts)
]

.

to demonstrate the accuracy of the presented methods 
described in Sects. 2 and 3 for solving the nonlinear inverse 
problem (1.2)–(1.5) and these numerical results are com-
pared with together.

In an inverse problem, there are two sources of error in 
the estimation. The first source is the unavoidable bias devia-
tion (deterministic error) and the second one is the variance 
due to the amplification of measurement errors (stochas-
tic error). The global effect of deterministic and stochastic 
errors is considered in the mean squared error or the total 
error [50]. Therefore, we compare the exact and the approxi-
mate solutions by considering the total error S defined by

where N is the number of estimated values, g1 and g2 are the 
exact values, g∗

1
 and g∗

2
 are the estimated values.

To illustrate the performance of the methods and justify 
the accuracy and efficiency of the proposed methods, we 
also offer the infinity-norm of absolute error for 0 ≤ x ≤ 1 
and 0 ≤ t ≤ tf .

also,

where, u∗(x, t) is the estimated value of u(x, t).
In the following numerical example, we take a = 0.2 , 

tf = 1 , �t = 0.01 , and the noisy data (input data+0.001×
rand(1)).

Example 4.1 In this example, we solve the nonlinear inverse 
problem (1.2)-(1.5) satisfying,

with given data

Sg1 =

[

1

N − 1

N
∑

s=1

(

g1(ts+1) − g∗
1
(ts+1)

)2

]

1

2

,

Sg2 =

[

1

N − 1

N
∑

s=1

(

g2(ts+1) − g∗
2
(ts+1)

)2

]

1

2

,

Lg1
∞
= ||g1(t) − g∗

1
(t)||∞ = max |g1(t) − g∗

1
(t)|,

Lg2
∞
= ||g2(t) − g∗

2
(t)||∞ = max |g2(t) − g∗

2
(t)|,

Lu
∞
= ||u(x, t) − u∗(x, t)||∞ = max |u(x, t) − u∗(x, t)|,

ut − uxxt − uxx + ux + uux = f (x, t),

u(x, 0) = sech(x),

f (x, t) =
2 cosh(x − t) + 5 sinh(x − t) − sinh(x − t) cosh(x − t) − cosh3(x − t) − sinh3(x − t)

cosh4(x − t)
.

The exact solutions of this problem are,

The numerical results of the unknown boundary conditions 
u(0, t) and u(1, t) are reported in Tables 2 and 3, respectively. 
To clarify the accuracy of the present method, the corre-
sponding graphical illustration are presented in Figures 1 
and 2. The obtained numerical solutions for u(x, t) at point 

u(x, t) = sech(x − t), 0 ≤ x ≤ 1, 0 ≤ t ≤ 1,

u(0, t) = g1(t) = sech(−t), 0 ≤ t ≤ 1,

u(1, t) = g2(t) = sech(1 − t), 0 ≤ t ≤ 1.
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x = 0.1 is given in Table 4. Also, the graphical illustration 
of the comparison between exact and numerical solutions 
u(x, t) are presented in Figures 3 and 4.

5  Conclusion

The quartic B-spline and Haar wavelet method have been 
employed to estimate unknown boundary conditions were 
proposed for the nonlinear inverse generalized Benja-
min–Bona–Mahony–Burgers Eqs. (1.2)–(1.5). Since in both 

Table 2  The comparison 
between exact and numerical 
solutions for g

1
(t) using the 

quartic B-spline collocation 
and Haar wavelet method in 
Example 4.1, when N = 100 
and M = 32 , respectively

t Quartic B-spline Haar wavelet

g
1
(t) g∗

1
(t) |g

1
(t) − g∗

1
(t)| g

1
(t) g∗

1
(t) |g

1
(t) − g∗

1
(t)|

0.1 0.995021 0.995186 1.6e − 04 0.995021 0.993324 1.6e − 03

0.2 0.980328 0.980461 1.3e − 04 0.980328 0.976093 4.2e − 03

0.3 0.956628 0.956733 1.0e − 04 0.956628 0.949205 7.4e − 03

0.4 0.925007 0.925090 8.2e − 05 0.925007 0.914042 1.0e − 02

0.5 0.886819 0.886884 6.5e − 05 0.886819 0.872300 1.4e − 02

0.6 0.843551 0.843603 5.3e − 05 0.843551 0.825809 1.7e − 02

0.7 0.796705 0.796750 4.5e − 05 0.796705 0.776352 2.0e − 02

0.8 0.747700 0.747741 4.1e − 05 0.747700 0.725524 2.2e − 02

0.9 0.697795 0.697833 3.9e − 05 0.697795 0.674651 2.3e − 02

1 0.648054 0.648093 3.8e − 05 0.648054 0.624757 2.3e − 02

Sg
1

– – 9.7141e − 005 – – 1.577232e − 02

L
g
1

∞ – – 2.0079e − 004 – – 2.333055e − 02

Execution 
time 
(second)

77.032573 117.318942

Condition 
number 
of matrix 
A

6.5290e + 018 4.230065e + 00

Table 3  The comparison 
between exact and numerical 
solutions for g

2
(t) using the 

quartic B-spline collocation 
and Haar wavelet method in 
Example 4.1, when N = 100 
and M = 32 , respectively

t Quartic B-spline Haar wavelet

g
2
(t) g∗

2
(t) |g

2
(t) − g∗

2
(t)| g

2
(t) g∗

2
(t) |g

2
(t) − g∗

2
(t)|

0.1 0.697795 0.697519 2.7e − 04 0.697795 0.698080 2.8e − 04

0.2 0.747700 0.747300 4.0e − 04 0.747700 0.748423 7.2e − 04

0.3 0.796705 0.796150 5.5e − 04 0.796705 0.797987 1.2e − 03

0.4 0.843551 0.842823 7.2e − 04 0.843551 0.845458 1.9e − 03

0.5 0.886819 0.885920 8.9e − 04 0.886819 0.889351 2.5e − 03

0.6 0.925007 0.923957 1.0e − 03 0.925007 0.928091 3.0e − 03

0.7 0.956628 0.955460 1.1e − 03 0.956628 0.960126 3.4e − 03

0.8 0.980328 0.979088 1.2e − 03 0.980328 0.984060 3.7e − 03

0.9 0.995021 0.993758 1.2e − 03 0.995021 0.998789 3.7e − 03

1 1.000000 0.998761 1.2e − 03 1.000000 1.003613 3.6e − 03

Sg
2

– – 9.1081e − 004 – – 2.649490e − 03

L
g
2

∞ – – 1.324751e − 03 – – 3.778467e − 03

Execution 
time 
(second)

77.032573 117.318942

Condition 
Number 
of Matrix 
A

6.5290e + 018 4.230065e + 00
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methods, the coefficients matrix is usually ill-conditioned, 
hence to regularize the resultant ill-conditioned linear 

system of equations, we have applied the Tikhonov regulari-
zation method to obtain a stable numerical approximation to 
the solution. The convergence rate of the proposed methods 
have been discussed and shown that it is O(k2 + h3) and 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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1(t)

−g
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x 10−3
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|g
2(t)

−g
2* (t)

|

(b)

Fig. 1  The comparison between the exact and numerical solutions 
(using quartic B-spline method) of (a) u(0,  t) and (b) u(1,  t) for 
Example 4.1
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x 10−3
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−g
2* (t)
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Fig. 2  The comparison between the exact and numerical solutions 
(using Haar wavelet method) of (a) u(0,  t) and (b) u(1,  t) for Exam-
ple 4.1

Table 4  The comparison 
between exact and numerical 
solutions for u(0.1, t) using the 
quartic B-spline collocation 
and Haar wavelet method in 
Example 4.1, when N = 100 
and M = 32 , respectively

t Quartic B-spline Haar wavelet

u(0.1, t) u∗(0.1, t) |u(0.1, t) − u∗(0.1, t)| u(0.1, t) u∗(0.1, t) |u(0.1, t) − u∗(0.1, t)|

0.1 1.000000 1.000086 8.6e − 05 1.000000 0.999655 3.4e − 04

0.2 0.995021 0.995094 7.4e − 05 0.995021 0.994123 8.9e − 04

0.3 0.980328 0.980391 6.3e − 05 0.980328 0.978708 1.6e − 03

0.4 0.956628 0.956681 5.3e − 05 0.956628 0.954182 2.4e − 03

0.5 0.925007 0.925052 4.5e − 05 0.925007 0.921712 3.2e − 03

0.6 0.886819 0.886858 3.9e − 05 0.886819 0.882735 4.0e − 03

0.7 0.843551 0.843585 3.4e − 05 0.843551 0.838811 4.7e − 03

0.8 0.796705 0.796736 3.0e − 05 0.796705 0.791493 5.2e − 03

0.9 0.747700 0.747727 2.8e − 05 0.747700 0.742217 5.4e − 03

1 0.697795 0.697820 2.6e − 05 0.697795 0.692239 5.5e − 03

S – – 5.5655e − 005 – – 3.675694e − 03

Lu
∞

– – 9.9492e − 005 – – 5.556393e − 03
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O
(

1

M

)

 for the quartic B-spline and Haar wavelet method, 
respectively. Numerical comparisons have been made 
between the implementations of the quartic B-spline and 
Haar wavelet method. The numerical results showed that the 
quartic B-spline has the best performance. More precisely, 
it is the most accurate, stable and fastest in comparison with 
Haar wavelet method. Generally, the obtained numerical 
solutions by the presented methods are in excellent agree-
ment with the exact solutions. The strong point of the quartic 
B-spline method is its easy and simple computation with 
low-storage space and cost. These results are obtained in the 
MATLAB 7.10 (R2010a) and is tested on a personal com-
puter with intel(R) core(TM)2 Duo CPU and 4GB RAM.
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