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Abstract
Shell structures are lightweight constructions which are extensively used by engineering. Due to this reason presenting an 
appropriate shell element for analysis of these structures has become an interesting issue in recent decades. This study pre-
sents a new rectangular flat shell element called ACM-SQ4 obtained by combining bending and membrane elements. The 
bending element is a well-known plate bending element called ACM which is based on the classical thin-plate theory and 
the membrane element is an unsymmetric quadrilateral element called US-Q4θ, the test function of this element is improved 
by the Allman-type drilling DOFs and a rational stress field is used as the element’s trial function. Finally, some numerical 
benchmark problems are used to evaluate the performance of the proposed flat shell element. The obtained results show that 
despite its simple formulation, the proposed element has reasonable accuracy and acceptable convergence in comparison 
with other shell elements.
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1 Introduction

Nowadays, shell structures (the structures that are thin in 
thickness and have considerable length in other two direc-
tions) are widely used in engineering, specifically in the 
automotive and construction industries [1]. Due to their geo-
metrical complexity, various loading conditions and mixed 
boundary conditions, analytical methods cannot meet the 
engineer’s needs. Accordingly, numerical methods are the 
best solution to analyze such structures, among numerical 
methods finite element method is a conventional selection 
for engineers. Using an appropriate element which has rea-
sonable accuracy and fast convergence is one of the serious 
challenges in the finite element method therefore, differ-
ent kinds of elements were proposed by researchers. For 
instance, Carrera and Petrolo [2] presented a modified beam 
element for the numerical analysis of shell structures. Using 
a combination of the edge-based smoothed finite element 
(ES-FEM) and the node-based smoothed finite element (NS-
FEM) Nguyen et al. [3] developed a triangular shell element 

with acceptable accuracy in benchmark problems. Hernan-
dez et al. [4] evaluated the dynamic behavior of the cylin-
drical shell using finite element method. A practical study 
was done by Yuqi et al. [5] on flange earring steel plates 
in deep-drawing process using the triangular shell element.

In general, shell elements used in the finite element analy-
sis of shell structures are flat shell element [6], curved shell 
element [7], axisymmetric shell element [8] and degen-
erated solid element [9], the merits and demerits of each 
type are detailed in Gallagher research [10]. Among the 
shell elements, flat shell elements are quite popular ele-
ment for analyses of shell structures due to the simplic-
ity of formulation and reasonable computational costs. In 
small deformation the stretching and bending deformation 
can be considered independently for a flat shell element, 
hence the element can be developed by combining mem-
brane and bending elements. Using the element combining 
method, Botaz et al. [11] proposed the DKQ16 square ele-
ment and evaluated its accuracy by numerical benchmark 
problems. In another research [12] they introduced new flat 
shell elements by using discrete Kirchhoff pentagonal and 
hexagonal plate elements and combining them with RP5 and 
RH6 membrane elements, respectively, then evaluated the 
accuracy of each one through some numerical benchmark 
problems. Zengjie and Wanji [13] evaluated the performance 
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of a new triangular shell element using some numerical 
problems. The shell element was formed by assemblage 
of the RDKTM bending element and CST membrane ele-
ment. Sabourin et al. [14] introduced a new quadrilateral 
shell element called DKS16, which is the superposition of 
a modified DKT12 membrane element and quadrilateral S4 
element, the accuracy of the proposed element evaluated 
using some geometrically nonlinear benchmark problems. 
For geometrically nonlinear analysis of composite plates 
Wang and Sun [15] introduced a new flat shell element using 
a four-node membrane element based on the quadrilateral 
area coordinate method and combining it with a four-node 
bending element based on the Timoshenko beam function. 
Zhang et al. [16] proposed a new triangular shell element 
through combining an ANDES-based membrane element 
and a refined nonconforming element method-based bend-
ing element then the performance of the proposed element 
was evaluated by experimental results and some numerical 
problems. Hamadi et al. [17] introduced a flat shell element 
called ACM_RSBE5 through the superposition of elements 
and examined its accuracy using experimental results. Yan 
et al. [18] introduced a quadrilateral flat shell element by 
combination of a HDF (hybrid displacement function) plate 
bending element and a HSF (hybrid stress function) mem-
brane element, called HDF-HSF, then the performance of 
the element evaluated through numerical standard problems.

Using drilling degrees of freedom in element is one of 
the main improvement method in shell structural analysis. 
Allman [19] enhanced the performance of CST element in 
numerical analyses of problems by adding the drilling degree 
of freedom to each node of the element. 18DOF triangular 
flat shell element was presented by Providas and Kattis [20] 
through combining a triangular plate bending element and a 
new triangular membrane element which was obtained by a 
novel approach for adding the drilling rotations to the CST 
element. Pimpinelli [21] proposed a flat shell element which 
was the combination of DKQ plate bending element and a 
new strain-based membrane element with drilling degrees of 
freedom, the accuracy of the proposed element tested using 
numerical problems. A new quadrilateral membrane ele-
ment with drilling rotations introduced by Madeo et al. [22]. 
The element was based on the mixed Hellinger–Reissner 
variational formulation and was less sensitive to the mesh 
distortion. Choi et al. [23] assessed the performance of the 
new hybrid Trefftz plane element with drilling degrees of 
freedom by some benchmark problems. For the nonlinear 
analysis of reinforced concrete structures Rojas et al. [24] 
presented a quadrilateral membrane element with drilling 
degrees of freedom using a blended field interpolation for 
the displacements over the element.

Adding mid-side nodes between those in the corners is 
another improvement method in the shell elements. This 
method improves the element accuracy in the analyses of shell 

structures; however, it increases the computational costs. As an 
example, Nestorovic et al. [25] proposed a nine-node triangu-
lar degenerated shell element based on the Reissner–Mindlin 
theory to analyze composite structures. Areias et al. [26] pre-
sented a nine-node shell element that was improved in both 
out-of-plane and in-plane bending cases by mixed formulation. 
They also showed the robustness of the proposed element is 
adequate for crack propagation simulation. For geometrically 
nonlinear analysis of shell structures Kim et al. [27] proposed 
an eight-node shell element, the ANS method was employed 
in the proposed element to eliminate various locking problems. 
Li et al. [28] have presented a 9-node curved shell element 
based on the co-rotational formulation to analyze shell struc-
tures then examined the performance of the proposed element 
by some numerical problems. For the nonlinear analysis of 
shell structures Li et al. [29] proposed a six-node triangular 
shell element based on the Reissner–Mindlin theory and the 
assumed strain method, in formulation of the proposed element 
rigid body rotation were excluded from the local nodal vari-
ables. The effort of these studies was introducing an element 
with simple formulation, appropriate accuracy and reasonable 
convergence that are the main issue of the present study.

The present study proposes a novel flat shell element 
defined by 24 degrees of freedom (3 translations and 3 rota-
tions for each node) called ACM-SQ4 which is the superpo-
sition of quadrilateral bending and membrane elements, the 
most important feature of the superposition method is the 
introduction of a new element with simple formulation. In 
this method at first, the parents elements should be checked 
to have appropriate performance then should be investigated 
whether this combination leads to a shell element with rea-
sonable performance or not. The membrane element pro-
posed by Shang and Ouyang [30] is an unsymmetric four-
node low-order element with drilling degrees of freedom, 
called US-Q4θ. The test function of the membrane element 
is a new type of displacement field which was improved by 
drilling degrees of freedom. The element’s trial function is 
a rational stress field which was computed by the analytical 
solution of plane problem. Moreover, the quasi-conform-
ing method was used to express the relations between the 
assumed stress field and the nodal degrees of freedom. The 
bending element presented by Clough and Adini [31] is a 
nonconforming plate bending element based on the Kirch-
hoff plate theory, named ACM. Finally, the performance of 
the proposed element is evaluated through some numerical 
benchmark problems.

2  Formulation

As mentioned earlier, the proposed flat shell element is a 
combination of US-Q4θ membrane and ACM plate bending 
elements, correspondingly the element stiffness matrix is a 
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combination of those elements. As shown in Fig. 1, each node 
of the shell element has 6 degrees of freedom.

The general element equation for membrane element is 
shown in Eq. (1).

where �m , �m and �m are the stiffness matrix, the nodal dis-
placement and the element load vector of the membrane 
element, respectively. The general element equation of the 
plate bending element is written as

where �p , �p and �p are the stiffness matrix, the nodal dis-
placement and the element load vector of the plate bending 
element, respectively. By superposition of the membrane 
and plate bending equations, the force–displacement rela-
tionship of the flat shell element is defined as follows

where � , � and � are the stiffness matrix, the nodal displace-
ment and the element load vector of the flat shell element, 
respectively. The sub-matrix of the stiffness matrix for the 
ith node of the shell element is

where km
jl

 and kp
jl
 are elements of �m and �p for the ith node, 

respectively. Elements of the nodal displacement vector of 
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where qm
j

 and qp
j
 are the elements of �m and �p for the ith 

node, respectively. It is necessary to describe a rotation 
matrix (�) to transform structural quantities including dis-
placement, force, etc., between local coordinate system and 
global coordinate system. The elements of the rotation 
matrix (li,mi and ni) are the cosines of the angles between 
local and global coordinate axes; details of the rotation 
matrix computation are presented by Cook [32].

Accordingly, the stiffness matrix (�global) , nodal displace-
ment (�global) and element load vector (�global) of the shell ele-
ment in global coordinate system can be obtained from their 
local forms

where
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Fig. 1  Detail of the element composition
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2.1  The plate bending component

The bending part of the proposed shell element is a 12DOF 
nonconforming quadrilateral plate bending element, called 
ACM. As shown in Fig. 2, the nodal degrees of freedom 
variables of the bending element are wi,�xi and �yi , where wi

,�xi(�wi∕��y) and �yi(−�wi∕��x) are the translation along the 
z-axis and bending rotations along the x- and y-axes for the 

ith node, respectively. The ACM element is chosen because 
it has simple formulation and appropriate accuracy in bend-
ing-dominated problems among the bending elements.

The nodal displacement vector of the plate bending ele-
ment is

The plate bending element is a non-conforming element 
based on the Kirchhoff plate theory [33], a significant advan-
tage of this element is the simple formulation of assumed 
displacement field that provides reasonable accuracy in 
bending problems. Accordingly, the deflection of the ele-
ment considered in the z direction (without any stretching) 

(11)
�T
p
= {w1 �x1 �y1 w2 �x2 �y2 w3 �x3 �y3 w4 �x4 �y4 }.

Fig. 2  The plate bending element geometry and nodal degrees of 
freedom

and assumed to be a function of x and y only, w = w(x, y). 
The assumed displacement field is a fourth-order polynomial 
expression in terms of the 12 parameters (since the bending 
element has 12 degrees of freedom) as follows

The constants ai can be evaluated through the 12 simul-
taneous equations linking the values of wi , �xi and �yi. The 
matrix form of the equations is:

where xi and yi represent the location of the ith node. Equa-
tion (13) can be rewritten as

where C is the first matrix on the right-side of the Eq. (13). 
Finally the constant ⊊1 through ⊊12 are determined as follows

The curvature–displacement relationship of the bending 
element is defined as follows

where �x,�y and �xy are the elements of curvature vector that 
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Equation (16) is summarized as
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Finally, the bending element stiffness matrix is expressed 
by

where �p is the plate elasticity matrix. Reference [34] pro-
vides more details about the ACM plate bending element. 
“Appendix A” presents explicit form of the shape functions 
and usual form of the stiffness matrix in terms of natural 
coordinate system. The other advantage of the ACM bending 
element is its formulation that was provided in both global 
and natural coordinate systems.

2.2  The membrane component

The membrane element is a 12DOF unsymmetric quadrilat-
eral element, called US-Q4θ. This element can be an appro-
priate choice because the accuracy and convergence of the 
membrane element are acceptable in membrane-dominated 
problems and its formulation is one of the simplest among 
the membrane elements. Figure 3 shows the membrane ele-
ment with following degrees of freedom ui , vi and �zi where 
ui and vi are the nodal translations along the x- and y-axes 
and �zi is the drilling rotation along the z-axis. The valu-
able advantage of the membrane element formulation is the 
accurate integral even for zero or negative Jacobian determi-
nant. Moreover, the drilling vertex rotations of the US-Q4θ 
membrane element causes avoidance singularity problem 
when the element is used in a flat shell element through 
superposition method.

The nodal displacement vector of the membrane element 
is

The test function and trial function of the membrane ele-
ment are based on the displacement field and stress field, 

(19)�p = ∬ (��−1)T�p��−1dA,
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respectively. Therefore, the membrane element stiffness 
matrix is expressed by
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related to the displacement field and matrices H, M and 
V are deduced by the stress field. Accordingly, the strain 
matrix B is
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function theory as follows

(21)�m = ∫ ∫ �T��−1�tdA,

(22)

� =

⎡
⎢⎢⎢⎣
…

�Ni

�x
0

−�Ni(y−yi)

2�x

0
�Ni

�y

�Ni(x−xi)

2�y
�Ni

�y

�Ni

�x

�Ni(x−xi)

2�x
−

�Ni(y−yi)

2�y

…

⎤
⎥⎥⎥⎦
, (i = 1 − 4).

(23)Ni(�, �) =
1

4
(1 + �i�)(1 + �i�), (i = 1 − 4),

(24)� = ∫ ∫ �T�−1
m
�tdA,

(25)� = ∫ ∫ �T�tdA,

(26)� =

⎡
⎢⎢⎣

0 0 2 0 0 2x 6y

2 0 0 6x 2y 0 0

0 −1 0 0 −2x −2y 0

⎤
⎥⎥⎦
.

Fig. 3  The membrane element 
geometry and nodal degrees of 
freedom
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3  Numerical test

In this section, the performance of the proposed ACM-
SQ4 shell element is evaluated using some numerical 
benchmark problems. As should be noted the ACM-SQ4 

element is proposed for analysis of shell structures with 
flat geometry, in geometric nonlinear analysis of shell 
structures the warped geometry will happen that means 
the proposed element cannot be used for geometric non-
linear analysis. To assess the accuracy of the element, the 

Table 1  List of considered elements in this study

Name Description

MITC3+ 3-Node shell element based on assumed shear strain field with 5-DOFs per node [35]
MITC4 4-Node shell element with 5-DOFs per each node which is based on assumed shear strain field [36]
MITC4+ New MITC4 shell element by Ko et al. [37], 5-DOFs per node
IBRA4 Stress resultant shell element with drilling DOFs by Ibrahimbegovic´ and Frey [38] which is including 6-DOFs per node
Allman Triangular element including vertex rotation (3-DOFs) suggested by Allman [19]
Simo Bilinear shell element with mixed formulation used for the membrane and bending stresses proposed by Simo et al. [39], 5-DOFs 

per node
RSDS-4 Degenerated shell element with uniform reduced integration and 5-DOFs per each node [40]
QPH 4-Node shell with one point quadrature [41] which is including 5-DOFs per node.
RESS Reduced integration enhanced strain solid-shell element with three translational DOFs [42]
QCS1 4-Node quasi-conforming Reissner–Mindlin shell element [43], 5-DOFs per node
XSOLID86 Co-rotational 8-node element with three translational DOFs [44]
HCiS12 8-Node volumetric and shear locking‐free 3D enhanced strain element [45] which is including 3-DOFs per node
S4E6P7 Enhanced transverse shear strain shell element with 5-DOFs per node [46].
TRIC3 Facet triangular shell element based on natural mode method [47], 6-DOFs per node
SHB8PS 8-Node solid-shell element based on a purely three-dimensional formulation with three translational DOFs [48]
MIST1 4-Node flat shell element based on mixed interpolation and 6-DOFs per node [49].
Q4DRL Non-conforming quadrilateral facet-shell element with drilling stiffness [50], 6-DOFs per node
Cook Triangular flat shell element with 6-DOFs per each node proposed by Cook [51].
Providas Triangular shell element with drilling DOFs suggested by Providas and Kattis [20] which is including 3-DOFs per node
ANDES Triangular element with optimal parameters combined with the DKMT bending element [52], 6-DOFs per node
Shin Triangular flat shell element with 6-DOFs per node-based on the assumed natural deviatoric strain formulation proposed by Shin 

and Lee [53]
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Fig. 4  Clamped square plate. a Geometry and material description (a = 1, P = 10−5 thickness t = 0.001, elastic modouls E = 1.092 × 103 and 
poisson ratio � = 0.3) . b Contour plot of Von Mises stress distribution
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obtained results are compared with other elements as listed 
in Table 1.

3.1  The patch tests

The bending and membrane components of the proposed flat 
shell element passed all patch tests for membrane and plate 

elements; hence the developed ACM-SQ4 shell element 
which is a combination of them can pass all the patch tests.

3.2  Square plate problem

To evaluate the accuracy of the proposed element in bend-
ing-dominated problem, a clamped square plate subjected 
to a uniformly distributed load of pressure P is analyzed. 
Due to symmetry one-quarter of the plate (ABCD region) 
is modeled, as shown in Fig. 4a. The boundary conditions 
for the considered region are: v = �x = �z = 0 along AD, 
u = �y = �z = 0 along AB and u = v = w = �x = �y = �z = 0 
along CD and BC. Figure 4b shows the performance of the 
proposed element by the contour plot for the Von Mises 
stress distribution.

Table 2 shows the normalized displacement (wA∕wref) 
at the center of square plate problem using N × N(N = 4, 
8, 16) element meshes.

Table 2  Normalized deflection at center of the clamped square plate

Model Mesh

4 × 4 8 × 8 16 × 16

MITC3+ 0.932 0.981 0.994
MITC4 0.987 0.996 0.998
MITC4+ 0.987 0.996 0.998
ACM-SQ4 1.030 1.008 1.002

Fig. 5  Convergence of normal-
ized deflection for the clamped 
square plate at point A
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Fig. 6  Cantilever beam subjected to tip shear load. a Geometry and material description ( E = 3 × 104, � = 0.25, t = 1, P = 40, width w = 12 and 
length L = 48 ). b Contour plot of Von Mises stress distribution
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Furthermore, the results of other shell elements are 
listed in Table 2 and the convergence plots are given in 
Fig. 5. For clamped square plate, the reference displace-
ment at the plate center was obtained using 0.1265Pa4∕D 
where D = Et3∕(12(1 − �2)).

The results show that the proposed flat shell element 
has reasonable accuracy with appropriate convergence for 
clamped square plate as a benchmark bending-dominated 
problem. The percent difference between the analytical 
solution and numerical solution obtained for the proposed 
element is only 0.2%.

3.3  Cantilever beam

This is a standard problem to assess the performance of the 
shell elements in membrane-dominated problem. Figure 6a 
illustrates a cantilever beam that is subjected to a shear load 
at its free edge. The performance of the proposed flat shell 
element is shown by the contour plot for the Von Mises 
stress distribution in Fig. 6b.

Table 3 presents the normalized results (wtip∕wref) of the 
tip deflection using N × 4N(N = 1, 2, 4) element meshes. 
The results for the proposed shell element and the other 

Table 3  Normalized tip deflection for the cantilever beam

Model Mesh

1 × 4 2 × 8 4 × 16

Allman 0.850 0.954 0.987
IBRA4 0.941 0.991 0.997
Cook 0.658 0.895 0.978
Providas 0.253 0.552 0.826
ANDES 1.048 1.019 1.003
Shin 0.785 0.972 1.005
ACM-SQ4 0.982 0.995 1.000

Fig. 7  Convergence of normal-
ized tip deflection for the 
cantilever beam
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Fig. 8  Pinched cylinder with ends rigid diaphragm. a Geometry and material description ( E = 3 × 106, � = 0.3, t = 3, L = 600 and R = 300 ). b 
Contour plot of transverse displacement
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ones have been normalized using the analytical value 
(wref = 0.3558) suggested by Timoshenko [54].

As shown in Table 3, the proposed ACM-SQ4 element 
provides acceptable performance in comparison with other 
shell elements. Regarding the analytical solution, it can be 
seen that the error of the proposed element is less than 0.1%. 

Moreover, the result of ACM-SQ4 element converges to the 
analytical solution with less number of elements, shown in 
Fig. 7.

3.4  Pinched cylinders with end diaphragms

Figure 8a shows a cylinder with end rigid diaphragms sub-
jected to a pair of concentrated forces at cylinder mid-length. 
The pinched cylinder is a standard problem to evaluate the 
performance of the shell element in bending-dominated 
problem with the presence of complex membrane and in-
extensible bending. Due to the symmetry conditions, the 
ABCD region (one-eighth of the cylinder) is analyzed. 
The boundary conditions are: u = w = �y = 0 along AD, 
u = �y = �z = 0 along AB, v = �x = �z = 0 along BC, and 
w = �x = �y = 0 along DC. Figure 8b depicts the contour 
plot of analyzed model for the transverse displacement along 
the z direction using ACM-SQ4 element.

For all shell elements, the normalized numerical results 
(wB∕wref) using N × N(N = 4, 8, 16) element meshes are 
presented in Table 4. The numerical results are normal-
ized by the analytical value for the deflection of load point 
(wref = 1.8248 × 10−5) proposed by Flügge [55].

The convergence plots of the normalized displacement 
are shown in Fig. 9; for better distinction the convergence 
plots are drawn for the new-version elements. It is observed 
that the accuracy of the ACM-SQ4 is reasonable and con-
verges rapidly to the analytical solution. Additionally, in 
comparison to analytical solution the error of the proposed 
element is only 0.3%.

Table 4  Normalized displacement at point B for the pinched cylinder

Model Mesh

4 × 4 8 × 8 16 × 16

RSDS-4 0.469 0.791 0.946
MITC4 0.378 0.746 0.928
MITC4+ 0.390 0.754 0.931
MITC3+ 0.407 0.768 0.930
IBRA4 0.370 0.736 0.934
QPH 0.370 0.740 0.933
RESS 0.112 0.590 0.934
QCS1 0.608 0.925 0.981
XSOLID86 0.137 0.586 0.912
HCiS12 0.104 0.494 0.946
S4E6P7 0.392 0.746 0.923
TRIC3 0.394 0.778 0.953
SHB8PS 0.387 0.754 0.940
MIST1 0.470 0.801 0.948
Q4DRL 0.348 0.732 0.926
Allman 0.590 0.924 1.004
Cook 0.537 0.897 0.996
Providas 0.435 0.856 0.982
ANDES 0.630 0.937 1.006
Shin 0.57 0.922 1.011
Simo 0.399 0.763 0.937
ACM-SQ4 0.630 0.929 0.997
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Fig. 9  Convergence of normalized displacement at point B for the pinched cylinder
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3.5  Scordelis–Lo roof

The Scordelis–Lo roof is a standard test to assess the per-
formance of the Shell elements in membrane-dominated 
problem with the presence of bending action. As shown in 
Fig. 10a, the roof structure is a part of a cylinder shell which 
is subjected to its self-weight and bounded by diaphragms 

at curved edges. Taking advantage of symmetry, the ABCD 
region (one-quarter of the roof) is modeled. The contour plot 
of the considered region for the vertical deflection using the 
ACM-SQ4 flat shell element is shown in Fig. 10b.

The boundary conditions for ABCD region are: 
u = �y = �z = 0 along the AB, v = �x = �z = 0 along the BC 
side, and u = w = �y = 0 along AD. The vertical deflection 
of point C at the middle of the straight edge for the proposed 
element and the other ones are listed in Table 5.

The results obtained using N × N(N = 4, 8, 16) element 
meshes and normalized (wC∕wref) by the reference solution 
(wref = 0.3024) proposed by Macneal and Harder [56]. Fig-
ure 11 shows the convergence plots of normalized displace-
ment at the middle of the straight edge for the new-version 
elements. It can be seen that the accuracy and convergence 
of the ACM-SQ4 element are reasonable. The percent dif-
ference between the analytical solution and numerical value 
is only 1%.

3.6  Hook problem

Due to the mixed deformation pattern (bending, extension 
and twisting) the Hook problem is used to assess the stabil-
ity of the proposed shell element. As shown in Fig. 12a, the 
structure consists of two different curved cylindrical shells 
that is clamped at one end and loaded by a uniformly dis-
tributed shear load at its tip. Figure 12b illustrates the con-
tour plot for transverse displacement along the applied shear 
load, using the proposed element.

Table 6 shows the normalized displacement (wA∕wref) of 
the free edge for the proposed shell element and the other 
ones using different element meshes. Moreover, the corre-
sponding convergence plots are given in Fig. 13.

The obtained results have been normalized by the refer-
ence solution (wref = 4.82482) suggested by KO et al. [57]. 
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Fig. 10  Scordelis–Lo roof problem. a geometry and material description ( E = 4.32 × 108, � = 0.0, t = 0.25, L = 50, density � = 360, accelera-
tion of gravity g = 1 and R = 25 ). b Contour plot of transverse displacement

Table 5  Normalized displacement at point C for the Scordelis–Lo 
roof

Model Mesh

4 × 4 8 × 8 16 × 16

RSDS-4 1.201 1.046 1.010
QPH 0.94 0.98 1.010
MITC3+ 0.669 0.857 0.955
MITC4+ 1.048 1.005 0.997
MITC4 0.943 0.972 0.988
IBRA4 1.047 1.005 0.997
Q4DRL 0.775 0.913 –
MIST1 1.168 1.028 1.008
QCS1 0.771 0.83 0.940
XSOLID86 1.066 1.044 1.034
RESS 0.995 0.986 0.993
HCiS12 0.937 0.974 0.990
S4E6P7 1.001 1.002 0.992
TRIC3 0.697 0.902 –
Allman 1.004 0.987 –
Cook 0.907 0.95 –
Providas 0.734 0.873 –
ANDES 1.083 1.013 –
Shin 1.023 1.004 –
Simo 1.083 1.015 1.000
ACM-SQ4 1.043 1.026 1.010
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Fig. 12  Hook problem. a geometry and material description ( E = 3.3 × 103, � = 0.3, R1 = 14, �1 = 60◦, R2 = 46, �2 = 150◦, thickness t = 2 and 
P = 1 ). b Contour plot of transverse displacement

Table 6  Normalized 
displacement at point A for the 
Hook problem

Model Mesh

2 × 12 3 × 18 4 × 24 5 × 36 8 × 48 10 × 72

MITC3+ 0.989 – 0.979 – 0.980 –
MITC4 0.953 – 0.963 – 0.978 –
MITC4+ 0.953 – 0.963 – 0. 978 –
Allman – 0.961 – 0.995 – 1.104
Cook – 0.964 – 1.015 – 1.232
Providas – 0.971 – 1.057 – 1.477
ANDES – 0.961 – 0.985 – 1.009
Shin – 0.963 – 0.988 – 1.017
ACM-SQ4 0.938 0.961 0.969 0.975 0.978 0.979
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It is observed that the proposed flat shell element provides 
satisfactory accuracy with reasonable convergence. In com-
parison with analytical value, the error of the ACM-SQ4 
element is 2.1%.

4  Conclusions

Using an appropriate element is one of the main require-
ments in the finite element analysis of shell structures with 
complex loading and boundary conditions. Moreover, the 
accuracy of the element should be least sensitive to the 
geometry of the shell structures.

In this study a rectangular flat shell element, called 
ACM-SQ4, is proposed by combination of US-Q4θ mem-
brane element and well-known ACM plate bending ele-
ment. The selected membrane and bending elements can 
be used only for membrane and bending problems, respec-
tively. Moreover, these elements have limited degrees of 
freedom (i.e., in-plane loads could not be applied to ACM 
element). The ACM-SQ4 element can be used for mem-
brane, bending and combined membrane-bending prob-
lems. Each node of the ACM-SQ4 element has all the 
six degrees of freedom that means by using this element 
there is not any limitation in imposed loads and bound-
ary conditions. The formulation of the proposed shell 
element is simple since it is based on the superposition 
of the US-Q4θ membrane and ACM plate bending ele-
ments which both have simple formulation. Due to the 

least number of nodes (four nodes in corners without any 
mid-side nodes) the computational cost of the proposed 
element is lowest.

To evaluate the performance of the proposed shell ele-
ment some numerical benchmark problems are employed. 
The results show that the ACM-SQ4 element for most 
problem provides acceptable accuracy with reasonable 
convergence in bending- and membrane-dominated prob-
lems with complex geometry and mixed deformations.

Some of the referenced elements like MITC4+ use 5 
degrees of freedom per each node that mean these ele-
ments have lower computational cost but they did not 
provide appropriate accuracy. The variation of errors for 
the ACM-SQ4 element is 0–2.1% ensuring that when the 
problem changes, using the proposed shell element require 
minor changes in geometry, load conditions, and boundary 
conditions. As should be noted, the variation of errors in 
such a narrow domain is one of the best among the refer-
enced shell elements in literature.

Appendix A

Natural coordinates for the plate bending element are shown 
in Fig. 14.

The shape function of the ith degree of freedom in the natu-
ral coordinate system is

Fig. 13  Convergence of normal-
ized displacement at point A for 
the Hook problem
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(27)

N1(�, �) = (1∕8)(1 − �)(1 − �)(2 − � − � − �2 − �2)

N2(�, �) = (b∕8)(1 − �)(1 − �)(−(1 − �2))

N3(�, �) = (a∕8)(1 − �)(1 − �)(1 − �2)

N4(�, �) = (1∕8)(1 + �)(1 − �)(2 + � − � − �2 − �2)

N5(�, �) = (b∕8)(1 + �)(1 − �)(−(1 − �2))

N6(�, �) = (a∕8)(1 − �)(1 − �)(−(1 − �2))

N7(�, �) = (1∕8)(1 + �)(1 + �)(2 + � + � − �2 − �2)

N8(�, �) = (b∕8)(1 + �)(1 + �)(1 − �2)

N9(�, �) = (a∕8)(1 + �)(1 + �)(−(1 − �2))

N10(�, �) = (1∕8)(1 − �)(1 + �)(2 − � + � − �2 − �2)

N11(�, �) = (b∕8)(1 − �)(1 + �)(1 − �2)

N12(�, �) = (a∕8)(1 − �)(1 + �)(1 − �2).

The element stiffness matrix in the natural coordinate sys-
tem is calculated by Eq. (28)

where dV  is the differential volume and its value in the natu-
ral coordinates of the element is equal to abtd�d� and B is a 
3 × 12 matrix shown in Eq. (29).

Matrix B elements in the natural coordinate system are 
defined as

(28)� = ∫
V

�T��dV ,

(29)

B =

⎡
⎢⎢⎣

B1,1 B1,2 B1,3 B1,4 B1,5 B1,6 B1,7 B1,8 B1,9 B1,10 B1,11 B1,12

B2,1 B2,2 B2,3 B2,4 B2,5 B2,6 B2,7 B2,8 B2,9 B2,10 B2,11 B2,12

B3,1 B3,2 B3,3 B3,4 B3,5 B3,6 B3,7 B3,8 B3,9 B3,10 B3,11 B3,12

⎤
⎥⎥⎦
.

Fig. 14  Geometry of the plate 
bending element in Local coor-
dinate system
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