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Abstract
The nonlinear time-dependent displacement values of the curved (single/doubly) composite debonded shell structure are 
examined under different kinds of pulse loading in this research. The structural curved panel model is derived mathematically 
using the higher-order displacement theories containing the thickness stretching effect, whereas the sub-laminate approach is 
adopted for the inclusion of delamination between the subsequent layers. The structural geometry distortion under variable 
loading has been included in the current theoretical analysis through Green–Lagrange type of strain kinematics. Further, the 
governing differential equation order has been reduced with the help of 2D finite element formulation via the nine-noded 
isoparametric Lagrangian elements with variable degrees of freedom (eighty-one and ninety) for two different higher-order 
kinematics, respectively. The final equation of motion is solved computationally to evaluate the transient responses through 
an original computer code including the direct iterative technique and Newmark’s average acceleration method. The con-
vergence criteria of the current numerical solution are established as a priori and the subsequent validity is demonstrated 
via comparing the current responses with available published data. Further, the comprehensive behavior of the debonded 
structure under the influence of the variable loads (time and area dependent) is evaluated by solving different numerical 
illustrations for variable geometrical configuration and described in detail.

Keywords  Nonlinear deflection · Debonded composite shell panel · Blast load · Green–Lagrange strain · HSDT · Finite 
element analysis

1  Introduction

Engineering structural components such as domes, rocket 
motor casings, space vehicles, nuclear reactors, submarine 
hulls and pressure vessels experience sonic boom/blast pres-
sure including the variable time-dependent loading during 
their service life. Hence, the designer’s quest is to evolve 
sophisticated methodologies for the modeling and analy-
sis of the dynamic behavior of such components including 
the variable load pattern to imitate the actual cases. How-
ever, the improvement of the existing methodology and 

the introduction of new techniques are implemented every 
now and then to achieve a step closer to the exact case. The 
mathematical implementation of the exact profile of the 
time-dependent loading is not only complicated but also 
challenging to achieve the desired case. Additionally, the 
composite structural model with and without defect adds 
an extra amount of the complexity too. The fiber-reinforced 
composite structures are well known for their tailor-made 
orientational characteristics and can easily be altered accord-
ing to the design requirement.

Further, to model the elastic and the deformation behavior 
of the layered structure under the influence of variable load-
ing pattern, different theoretical models have been proposed 
in the past considering the effect of time and position. In 
this regard, the classical plate theory (CLPT), the first-order 
shear deformation theory (FSDT) [1–6] and the higher-order 
shear deformation theory (HSDT) [7–10] are proposed to 
model the mid-plane displacements. Similarly, a few solu-
tion techniques have also been proposed and implemented 
for the evaluation of desired responses namely, hyperbolic 
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shear deformation beam theory [11], the 3D finite element 
analysis (FEA) [12], analytical methodologies [13–15], 
closed form [16] solutions. Additionally, the geometri-
cal configuration including the structural distortion (large 
deformation) [17, 18] is modeled via either the von Karman 
strain–displacement relation [19, 20] or the Green–Lagrange 
strain kinematics [21, 22]. Subsequently, the research related 
to the large deformation analysis indicates that the von Kar-
man strain–displacement relations [23] are unable to count 
the geometrical distortion (quadratic and cubic terms) cor-
rectly, since the kinematic theory assumed moderate rotation 
( 10◦ ≪ ) only. However, the Green–Lagrange strain is capa-
ble of modeling the layered structure appropriately including 
the full geometrical nonlinearity.

The review of research articles related to the displace-
ment-based mid-plane theories and the nonlinear strain 
kinematics including the solution techniques was mainly 
for the intact layered structures. However, these structural 
components may be associated with the internal defect in 
the real condition, i.e., the debonding between the adjacent 
layers which may arise due to manufacturing defects such 
as air trapping and foreign particle insertions. It is important 
to note that the propagation of debonding between the lay-
ers during the service period may lead to the catastrophic 
failure of either the structural component or the full struc-
ture. Hence, the analysis of the layered structure without 
considering these common type of internal defect may not 
give a complete understanding. Therefore, a significant effort 
[24–35] has been made by different parts of the world related 
to the modeling of the laminated structure considering the 
debonded type of defect and unlike loading effect.

The review of research articles indicates that modeling of 
the laminated structure including the debonding defect and 
subsequent dynamic characteristics mainly utilized the FSDT 
type of mid-plane displacement kinematics. Additionally, the 
analysis of the curved panel composite structure including 
the effect of either single or the double curvature based on 
the HSDT kinematics has not yet been reported in the open 
literature. Moreover, von Karman type of strain kinematics 
is adopted by the majority to model the structural distortion 

instead of Green–Lagrange nonlinear strain for the evaluation 
of the large deformation performance. Hence, the authors of 
the current article made an effort for the first time to inves-
tigate the nonlinear dynamic behavior of the delaminated 
composite shell structures under blast/pulse loading using two 
types of the HSDT mid-plane theories and Green–Lagrange 
strain–displacement relations. The present generic model is 
derived considering the single (cylindrical) and double curva-
ture (hyperboloid, elliptical and spherical) including all of the 
nonlinear higher-order terms. Also, the sub-laminate approach 
is adopted to model the inter-laminar debonding effect. The 
time-dependent structural responses are evaluated computa-
tionally with the help of an original MATLAB code by solv-
ing the equation of motion using the direct iterative technique 
including the average acceleration method (Newmark’s time 
integration) and the finite element (FE) steps. The conver-
gence rate of the dynamic responses of the debonded structure 
including the model validity is established a priori. The effect 
of the loading amplitude and the loading time on the nonlinear 
dynamic responses of the delaminated structure including the 
geometrical configurations is computed via solving different 
numerical examples and discussed in detail.

2 � Mathematical expression of structural 
panel

2.1 � Geometrical configuration

An orthogonal curvilinear coordinate system ( �x, �y, �z ) is 
employed in the current work to define the pre-damaged com-
posite curved panel structure (Fig. 1). The axis system is con-
sidered in such a way that, the �x and �y are lines of curvature 
on a surface 

(
�z = 0

)
 and �z is the line perpendicular to the 

surface 
(
�z = 0

)
 . The shell model is assumed to be composed 

of finite ‘N’ numbers of equally thick orthotropic laminas, ori-
ented at an angle “ � ” with the corresponding coordinate axes. 
The length ‘a’; breadth ‘b’ and thickness ‘h’ are the parameters 
associated with the panel geometries along �x, �y and �z, 
respectively. Similarly, r�x and r�y are the principal radii of cur-

Fig. 1   Geometry and layup 
sequence of the curved shallow 
shell structure
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vature along the �x and �y , respectively. In addition, the differ-
ent geometries of the panel can be achieved by setting the 
appropriate radii of curvature as: 

(
r�x = ∞, r�y = ∞

)
, plate; (

r�x = r, r�y = r
)
, spherical; 

(
r�x = r, r�y = ∞

)
, cylindrical; (

r�x = r, r�y = −r
)
, hyperboloid and 

(
r�x = r, r�y = 2r

)
, 

elliptical.
The top view of the debonded panel including the zoomed 

view of the laminated and delaminated portions is presented 
in Fig. 2. The presence of delamination at a certain interface/
plane divides the delaminated zone into upper and lower sub-
laminates. Therefore, the entire laminate can be divided into 
three zones: (i) laminated zone, (ii) lower delaminated zone 
and (iii) upper delaminated zone. Now, all the zones, i.e., lami-
nated, lower delaminated and upper delaminated are meshed 
separately via Element-I, Element-II and Element-III, respec-
tively. It is important to discuss that Element-I, Element-II 
and Element-III are the same type of element, i.e., nine-noded 
isoparametric Lagrangian elements, but they have been given 
separate name zone-wise for the sake of brevity and better 
readability. Further, the mathematical expressions for the 
laminated and delaminated zones are derived separately and 
presented in the following lines.

2.2 � Displacement field kinematics

Two different types of higher-order mid-plane kinematics are 
used in the current work to model the displacement kinematics 
of the shell panel. The first (HSDT-I) and second (HSDT-II) 
kinematic models are associated with nine and ten space vari-
ables, respectively, as in the references [36, 37] for different 
kinematic models:

HSDT-I:

(1)

Ux

�
�x, �y, �z

�
= ux + �z�x + �2

z
�x + �3

z
�x

Uy

�
�x, �y, �z

�
= uy + �z�y + �2

z
�y + �3

z
�y

Uz

�
�x, �y, �z

�
= uz

⎫⎪⎬⎪⎭
.

HSDT-II:

where Ux, Uy and Uz denote the displacement variable of any 
general point along the corresponding coordinate axes, i.e., 
�x, �y and �z , respectively. In continuation to that, the other 
individual space variables associated with both the deforma-
tion kinematics are the displacements ( ux, uy and uz ), rotation 
of the transverse normal to the mid-plane ( �x and �y ) and the 
remaining ( �z, �x, �y, �x, �y ) are the higher-order terms 
defined on the mid-plane.

2.3 � Stress–strain constitutive relations

The generalized form of the stress–strain relation for any kth 
lamina, oriented at an angle ‘ � ’ about any arbitrary axis can 
be expressed mathematically as:

where 
{
�ij
}
 , 
[
Qij

]
 and 

{
�ij
}
 are the stress tensor, the elastic 

property matrix, and the strain tensor, respectively. The 
elaborated form of the constitutive relation can be seen in 
Jones [38].

(2)

Ux

�
�x, �y, �z

�
= ux + �z�x + �2

z
�x + �3

z
�x

Uy

�
�x, �y, �z

�
= uy + �z�y + �2

z
�y + �3

z
�y

Uz

�
�x, �y, �z

�
= uz + �z�z

⎫
⎪⎬⎪⎭
,

(3)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜎𝜉x𝜉x
𝜎𝜉y𝜉y

𝜎𝜉z𝜉z
𝜎𝜉y𝜉z
𝜎𝜉x𝜉z
𝜎𝜉x𝜉y

⎫⎪⎪⎪⎬⎪⎪⎪⎭

k

=

⎡⎢⎢⎢⎢⎢⎢⎣

Q̄11 Q̄12 Q̄13 0 0 Q̄16

Q̄12 Q̄22 Q̄23 0 0 Q̄26

Q̄13 Q̄23 Q̄33 0 0 Q̄36

0 0 0 Q̄44 Q̄45 0

0 0 0 Q̄54 Q̄55 0

Q̄16 Q̄26 Q̄36 0 0 Q̄66

⎤⎥⎥⎥⎥⎥⎥⎦

k ⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜀𝜉x𝜉x
𝜀𝜉y𝜉y

𝜀𝜉z𝜉z
𝜀𝜉y𝜉z
𝜀𝜉x𝜉z
𝜀𝜉x𝜉y

⎫⎪⎪⎪⎬⎪⎪⎪⎭

k

,

(4)
{
�ij
}
=
[
Qij

]{
�ij
}
,

Fig. 2   Top view of the delaminated shell panel structure
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2.4 � Strain–displacement relation

Further, the strain can be elaborated using the generalized 
strain–displacement relations for any material continuum via 
Green’s strain (Reddy [39]) for the inclusion of the geometri-
cal distortion and their mathematical form can be presented 
as:

where 
{
�l
}
 and 

{
�nl

}
 are the linear and nonlinear strains, 

respectively. Now, the individual mid-plane strain terms 
are derived by substituting the corresponding displacement 
fields, i.e., Equations (1) and (2) into Eq. (5). For the sake 
of brevity, only the one case has been provided, i.e., the 
expanded form by substituting Eqs. (2) in (4) and conceded 
as:

(5)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

��x�x
��y�y

��z�z
��y�z
��x�z
��x�y

⎫⎪⎪⎪⎬⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

�
�Ux

��x
+

Uz

r�x

�

�
�Uy

��y
+

Uz

r�y

�

�
�Uz

��z

�

�
�Uy

��z
+

�Uz

��y
−

Uy

r�y

�

�
�Ux

��z
+

�Uz

��x
−

Ux

r�x

�

�
�Ux

��y
+

�Uy

��x
+ 2

Uz

r�x�y

�

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

+

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1

2

��
�Ux

��x
+

Uz

r�x

�2

+

�
�Uy

��x
+

Uz

r�x�y

�2

+

�
�Uz

��x
−

Ux

r�x

�2
�

1

2

��
�Ux

��y
+

Uz

r�x�y

�2

+

�
�Uy

��y
+

Uz

r�2

�2

+

�
�Uz

��y
−

Uy

r�2

�2
�

1

2

��
�Ux

��z

�2

+
�

�Uy

��z

�2

+
�

�Uz

��z

�2
�

�
�Ux

��y
+

Uz

r�x�y

��
�Ux

��z

�
+

�
�Uy

��y
+

Uz

r�y

��
�Uy

��z

�
+

�
�Uz

��y
−

Uy

r�y

��
�Uz

��z

�
�

�Ux

��x
+

Uz

r�x

��
�Ux

��z

�
+

�
�Uy

��x
+

Uz

r�x�y

��
�Uy

��z

�
+

�
�Uz

��x
−

Ux

r�x

��
�Uz

��z

�
�

�Ux

��x
+

Uz

r�x

��
�Ux

��y
+

Uz

r�x�y

�
+

�
�Uy

��x
+

Uz

r�x�x

��
�Uy

��y
+

Uz

r�y

�
+

�
�Uz

��x
−

Ux

r�x

��
�Uz

��y
−

Uy

r�y

�

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

,

(6)
{
�ij
}
= {�l} + {�nl},

(7)

�
�ij
�
=

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

�0
�x�x

�0
�y�y

�0
�z�z

�0
�y�z

�0
�x�z

�0
�x�y

⎫
⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

+ �z

⎧⎪⎪⎪⎨⎪⎪⎪⎩

k1
�x�x

k1
�y�y

0

k1
�y�z

k1
�x�z

k1
�x�y

⎫⎪⎪⎪⎬⎪⎪⎪⎭

+ �2
z

⎧⎪⎪⎪⎨⎪⎪⎪⎩

k2
�x�x

k2
�y�y

0

k2
�y�z

k2
�x�z

k2
�x�y

⎫⎪⎪⎪⎬⎪⎪⎪⎭

+ �3
z

⎧⎪⎪⎪⎨⎪⎪⎪⎩

k3
�x�x

k3
�2�2

0

k3
�y�z

k3
�x�z

k3
�x�y

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

�l

+
1

2

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

�
nl0
�x�x

�
nl0
�y�y

�
nl0
�z�z

2�
nl0
�y�z

2�
nl0
�x�z

2�
nl0
�x�y

⎫
⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

+ �z
1

2

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

k
nl1
�x�x

k
nl1
�y�y

k
nl1
�z�z

2k
nl1
�y�z

2k
nl1
�x�z

2k
nl1
�x�y

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

�nl

+�2
z

1

2

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

k
nl2
�x�x

k
nl2
�y�y

k
nl2
�z�z

2k
nl2
�y�z

2k
nl2
�x�z

2k
nl2
�x�y

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

+ �3
z

1

2

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

k
nl3
�x�x

k
nl3
�y�y

k
nl3
�z�z

2k
nl3
�y�z

2k
nl3
�x�z

2k
nl3
�x�y

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

+ �4
z

1

2

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

k
nl4
�x�x

k
nl4
�y�y

k
nl4
�z�z

k
nl4
�y�z

k
nl4
�x�z

k
nl4
�x�y

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

+ �5
z

1

2

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

k
nl5
�x�x

k
nl5
�y�y

k
nl5
�z�z

2k
nl5
�y�z

2k
nl5
�x�z

2k
nl5
�x�y

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

+ �6
z

1

2

⎧⎪⎪⎪⎨⎪⎪⎪⎩

k
nl6
�x�x

k
nl6
�y�y

0

0

0

2k
nl6
�x�y

⎫⎪⎪⎪⎬⎪⎪⎪⎭
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

�nl

where 
[
Hl

]
 and 

[
Hnl

]
 are used to represent the thickness coor-

dinate matrices associated with the linear and nonlinear 
mid-plane strains. The complete details of the thickness 
coordinate matrices can be seen in the references [40, 41]. 
It is noteworthy to discuss that the present formulation has 

been derived for the FE model HSDT-II, while the neces-
sary mathematical expression for another model HSDT-I can 
easily be derived by dropping the appropriate terms from the 
given expression (the displacement and the strain–displace-
ment relation).

(8)or {�} =
{
�l
}
+
{
�nl

}
=
[
Hl

]{
�l
}
+
[
Hnl

]{
�nl

}
,
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2.5 � Energy equations

The total strain energy of the shell panel due to the time-
dependent deflection of the panel is computed with the help 
of the stress and strain tensors and reported as:

Similarly, the kinetic energy of the shell panel is obtained 
due to the mass density of the panel and expressed as:

where the expression � and 
{
𝛿̇
}
 denotes mass density and the 

velocity vector, respectively.

2.6 � Introduction of finite element steps

The displacement type of FEM is introduced in the current 
analysis via the state space field variables to obtain the non-
linear algebraic equation from the derived governing equa-
tions for the mathematical simplification. The current intact 
and debonded shell structure domains are discretized with the 
help of a Lagrangian element (81 and 90 degrees of freedom 
per elements according to the type of kinematics models, i.e., 
HSDT-I and HSDT-II, respectively). Details about the nodal 
polynomial functions and implementation steps can be seen in 
Cook et al. [42]. The displacement vector over each element 
can be expressed as follows:

(9)U =
1

2 ∬
{

N∑
k=1

∫
�zk

�zk−1

{
�ij
}T{

�ij
}
d�z

}
d�xd�y.

(10)V =
1

2 ∬
{

N∑
k=1

∫
𝜉zk

𝜉zk−1

𝜌k
{
𝛿̇
}T{

𝛿̇
}
d𝜉z

}
d𝜉xd𝜉y

(11){�} =

9∑
i=1

[
Ni

]{
�i
}
,

where 
[
Ni

]
 and 

{
�i
}

 are the nodal interpolating func-
tions and nodal displacement vectors, respec-
tively. The nodal displacement vectors for the pro-
posed models, i.e., the HSDT-I and the HSDT-II are 
represented as 

{
�i
}
=
{
uxiuyiuzi �xi �yi �xi �yi �xi �yi

}T and {
�i
}
=
{
uxiuyiuzi �xi �yi �zi �xi �yi �xi �yi

}T , respectively.
After introducing the FE steps, the linear and nonlinear 

mid-plane strain vectors can be expressed further using the 
nodal displacement vectors and conceded to the following 
form:

where [Bl] and [Bnl] are the linear and nonlinear mid-plane 
strain–displacement expressions. Additionally, the nonlinear 
strain ( [Bnl] = [A][G] , where [A] is displacement dependent 
and [G] similar to the linear case) is linearized for the sake 
of mathematical simplification.

Now, the elemental stiffness ([k]) and the elemental mass 
([m]) can be calculated as:

(12)
{
𝜀̄l
}

=
[
Bl

]{
𝛿i
}
,

{
𝜀̄nl

}
=

[
Bnl

]{
𝛿i
}
,

(13)

[k] = ∫
A

⎛
⎜⎜⎜⎝

n�
k=1

�zk

∫
�zk−1

[B]T[D][B]d�z

⎞
⎟⎟⎟⎠
dA

+
1

2 ∫
A

⎛⎜⎜⎜⎝

n�
k=1

�zk

∫
�zk−1

[B]T[D2][A][G]d�z

⎞⎟⎟⎟⎠
dA

+ ∫
A

⎛⎜⎜⎜⎝

n�
k=1

�zk

∫
�zk−1

[G]T[A]T[D3][B]d�z

⎞⎟⎟⎟⎠
dA

+
1

2 ∫
A

⎛⎜⎜⎜⎝

n�
k=1

�zk

∫
�zk−1

[G]T[A]T[D4][A][G]d�z

⎞⎟⎟⎟⎠
dA,

Fig. 3   a Element distribution in 
the laminated shell with lower 
delaminated section; b element 
distribution in the upper delami-
nated section
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2.7 � Mathematical model of debonded curved panel 
structure

The concept of modeling delamination is based on sub-lami-
nate approach as described in the Ref. [43, 44]. First of all, the 
meshing/element numbering of the laminated section with 
lower delamination zone and upper delamination are provided 
in Fig. 3a, b, respectively. In the current investigation, three 
sizes of debonding are considered including the intact one and 
defined in a ratio of their side lengths c and a (c/a = 0, 0.25, 
0.5 and 0.75), where c is the side length of the delamination. 
Further, the earlier provided mathematical expression is appli-
cable for all elements except the element attached to the con-
necting boundary of the delaminated section (Kumar and 
Shrivastava [45]). These elements need to satisfy the continu-
ity criteria. To derive the same two elements, Element-I and 
Element-II as in Fig. 4 are considered with the coordinate (
0, �x, �y, �z

)
 and 

(
0′, �′

x
, �′

y
, �′

z

)
 , respectively. The displace-

ments, as well as higher-order terms, can be written as:

where u′
xi
, u′

yi
, u′

zi
, �′

xi
, �′

yi
, �′

zi
,� ′

xi
,� ′

yi
, �′

xi
, �′

yi
 are the 

degrees of freedom associated with the delaminated element 

(14)
[k] =

[
kl
]

⏟⏟⏟
kL

+
[
knl1

]
+
[
knl2

]
+
[
knl3

]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

kNL

,

(15)[m] = ∫
A

⎛
⎜⎜⎜⎝

n�
k=1

�zk

∫
�zk−1

[N]T[N]�d�z

⎞
⎟⎟⎟⎠
dA.

(16)

u�
xi
= uxi + EL�xi + E2

L
�xi + E3

L
�xi

u�
yi
= uyi + EL�yi + E2

L
�yi + E3

L
�yi

u�
zi
= uzi; �

�
xi
= �xi; �

�
yi
= �yi; �

�
zi
= �zi;

� �
xi
= �xi;�

�
yi
= �yi; �

�
xi
= �xi; �

�
yi
= �yi

⎫
⎪⎪⎬⎪⎪⎭

i = 1, 4 and 8

Element-II. Similarly, EL denotes the distance between mid-
plane of laminate and lower delaminated section as shown 
in Fig. 4. The sign convention must be taken for the distance, 
as in the current case EL is negative.

Equation (16) can be further written as:

where 

The nodal displacement for the delaminated element Ele-
ment-II can be expressed as:

On substituting Eq. (16) into Eq. (17):

where I represents the identity matrix of (10 × 10). For 
HSDT-I, it will be reduced to a size of (9 × 9).

(17)
{
�i
}�

L
= [�L]

{
�i
}
,

[�L] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 EL 0 0 E2
L
0 E3

L
0

0 1 0 0 EL 0 0 E2
L
0 E3

L

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(18)
{
�i
}�

L
=
{
��
1
��
2
��
3
��
4
��
5
��
6
��
7
��
8
��
9

}T
.

(19)
{
�i
}�

L
=
{
�L�1 ��

2
��
3
�L�

�
4
��
5
��
6
��
7
�L�

�
8
��
9

}T
,

(20)

{
�i
}�

L
= diag[�L I I �L I I I �L I]

{
�1 ��

2
��
3
�4 �

�
5
��
6
��
7
�8 �

�
9

}T
,

(21)
{
�i
}�

L
= [TL]

{
�1 ��

2
��
3
�4 �

�
5
��
6
��
7
�8 �

�
9

}T
,

Fig. 4   Connectivity of the 
Element-I and Element-II
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Further, the necessary transformation of elemental stiffness, 
as well as mass matrix for the delaminated element Element-II, 
can be written as:

Similar steps [from Eqs. (16 to 23)] can be applied to obtain 
the elemental stiffness and mass matrix for the delaminated 
element Element-III, except the distance EL. After obtaining 
the necessary elemental stiffness and mass matrix for lower 
and upper delaminated element, it can be used to obtain the 
desired global stiffness and mass matrices.

2.8 � System governing equation

To obtain the time-dependent deflection of the panel structure, 
the governing equation of motion is derived from the Lagran-
gian equation of motion [46] and presented in the following 
form:

where [M] , [K] and {F} are the global mass matrix and 
global stiffness matrix and applied force vector, respec-
tively. Similarly, 𝛿 and � represent the acceleration and dis-
placement vectors, respectively. The robust direct iterative 
technique is employed to solve Eq. (24). To get the desired 
nonlinear deflection, the following convergence criterion is 
adopted:

√
(�n − �n−1)

2∕(�n)
2 ≤ � where �, n and � are the 

nondimensional deflection, number of iteration and con-
vergence tolerance limit (≈ 10−3) , respectively. Further, the 
time-dependent deflection is obtained using the Newmark 
time integration scheme as presented in [47].

2.9 � Constraints condition for the edges

The constraints condition used in the present article is as 
follows:

Simply support:

Clamped:

3 � Results and discussion

An original MATLAB code is derived using the current non-
linear HSDT model for the numerical analysis. The required 
elastic properties of the layered structure utilized for the 

(22)[k̄]L = [TL]
T[k]L[TL],

(23)[m̄]L = [TL]
T[m]L[TL].

(24)[M]𝛿 + [K]𝛿 = {F},

(25)
uy = uz = �y = �z = �y = �y = 0 at �x = 0 and a

ux = uz = �x = �z = �x = �x = 0 at �y = 0 and b

(26)
ux = uy = uz = �x = �y = �z = �x = �y = �x

= �y = 0 at �x = 0 and a; at �y = 0 and b.

computational purpose are provided in Table 1. In general, 
Material-II is adopted throughout for the computation unless 
stated otherwise. Similarly, transient responses are obtained 
for two different types of loading: (i) uniformly distributed 
load (UDL) and (ii) sinusoidally distributed load (SDL) and 
the load distribution is provided mathematically in the fol-
lowing lines, i.e., in Eqs. (27) and (28), respectively. Addi-
tionally, the magnitude of both the loading configurations 
varies with time and the details are provided in Table 2. The 
symbols ‘t’ and ‘t1’ represent the instantaneous and total 
loading time. The value of ‘t1’, � and � is taken as 100 ms, 
330 and 2, respectively, for the current computation. The 
time step ‘Δt’ is chosen as 0.1 ms throughout the study and 
the nondimensional central deflection is obtained using 
Eq. (29) unless stated otherwise. In continuation to that, all 
different sizes of delamination are considered at the center 
mid-plane of the layered composite panel unless stated oth-
erwise. The delamination of size c/a = 0.5 and c/a = 0.25 is 
also considered in different positions (Fig. 5a) and locations 
(Fig. 5b), respectively, in a particular example and details 
are provided on the same.

(27)q = q0,

Table 1   Material property

Material properties Material-I Material-II Material-III

E�x
 (GPa) 131 181 172

E�y
= E�z

 (GPa) 8.55 10.3 6.9
G�x�y

= G�x�z
 (GPa) 6.67 7.17 3.45

G�y�z
6.67 GPa 3.58 G�1�2

1.38 GPa
��x�y = ��y�z = ��x�z 0.3 0.28 0.25
� (kg/m3) 1610 1600 16,000

Table 2   Different types of time-dependent loading

S. no. Types of loading Mathematical expression

1 Step load Q = q

2 Triangular load

Q =

⎧⎪⎨⎪⎩

q

�
1 −

t

t1

�
, for t ≤ t1

0, for t ≤ t1

3 Sine load

Q =

⎧⎪⎨⎪⎩

q sin
�t

t1
, for t ≤ t1

0, for t ≤ t1

4 Blast load-I
Q =

{
q e−�t, for t ≤ t1

0, for t ≤ t1

5 Blast load-II

Q =

⎧⎪⎨⎪⎩

q

�
1 −

t

t1

�
e

−�t

t1 , for t ≤ t1

0, for t ≤ t1
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3.1 � Element sensitivity and validation study

The convergence statistics of the currently derived nonlinear 
FE solutions of the dynamic responses are computed for dif-
ferent element densities. In this regard, a simply supported 
three-layer (0°/90°/0°) cylindrical shell panel (a = b=0.5 m, 
a/h = 50, r/a = 40) structural example has been solved for 
two types of step loading (UDL and SDL) by considering 
the amplitude as q = 1 kN. The nondimensional nonlinear 
central displacement values are with respect to the dynamic 
loading evaluated using both the higher-order models and 
provided in Figs. 6a, b. The figure shows that the responses 

(28)q = q0 sin

(
��x

a

)
sin

(
��y

b

)
,

(29)W = w∕h.

Fig. 5   a Positions of debonding. 
b Locations of debonding

Fig. 6   Convergence study of a HSDT-I; b HSDT-II-nonlinear dynamic responses of cylindrical shell panel under UDL and SDL step load

Fig. 7   Validation study-linear time-dependent deflection of plate 
structure under UDL blast load-II
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computed using both the models are converging well with 
each type of loading (UDL and SDL). Although, the deflec-
tion parameters are following a consistent behavior from the 
mesh refinement (6 × 6) onward, however, the mesh refine-
ment (8 × 8) is utilized for the computation of new responses 
throughout the analysis.

Now, the derived FE models are extended to check the 
validation behavior. In this regard, a clamped square 
(a = b=1.27 m and h = 0.0254  m) four-layer symmetric 
angle-ply [± 30°]s composite plate example is solved using 
the UDL type of blast load-II including the material (Mate-
rial-I) and the associated parameter, i.e., t1 = 0.004 s, 
� = 1.98, q = 68.95 kPa , time step Δt = 0.005 ms. The non-
dimensional time-dependent def lection parameter (
W = 100wE�y

h3∕qa4
)
 obtained using the current model 

and the source data is provided in Fig.  7. The present 
dynamic deflection values show good agreement with the 
reference data. However, the small differences between the 
response graph (Fig. 7) may arise due to the solution tech-
niques adopted in the references, i.e., the element strip 
method (SEM) in Wang et al. [48]. and the generalized dif-
ferential quadrature (GDQ) technique in Maleki et al. [49].

After showing the validation behavior for the linear 
dynamic values, the models are extended to check the degree 
of accuracy for the nonlinear time-dependent central deflec-
tion values. For the comparison purpose, a simply supported 
cylindrical shell panel [0°/0°/30°/− 30°]s example is solved 
considering the geometrical parameter as: a = b=0.5 m, 
a/h = 50, r/a = 10 under the UDL 

(
q = 104 Pa

)
 type of pres-

sure step load including Material-II type of elastic prop-
erties. The present nondimensional deflection parameters 
(W = w ∕h) are obtained via both the higher-order nonlinear 
FE models including Kundu and Sinha [50] data provided in 
Fig. 8. The figure clearly indicates that the time-dependent 

deflection parameter computed using the current models fol-
lows a similar kind of path as in the reference with small 
variation between the amplitude values. The differences 
between the results may arise due to the type of kinematic 
theories and nonlinear strain–displacement adopted in the 
current models and the reference. The current results are 
computed using the HSDT type of displacement models and 
Green–Lagrange nonlinear strain instead of the FSDT and 
von Karman strain–displacement relations as in the refer-
ence. In general, the FSDT displacement field kinematics 
overestimates the structural deflection values and von Kar-
man strain unable to count the exact structural flexure for the 
small (finite) strain and large deformation regime.

After completing the convergence and the subsequent 
comparison for the intact layered structure, the models are 
employed to show the validity of the delaminated struc-
ture. In this regard, the simply supported intact (c/a = 0) 
and the damaged (c/a = 0.25) plate structural example have 
been solved while subjected to a suddenly applied pulse 
load. The input geometrical parameters are taken as same 
as the reference, [51] i.e., a = b=0.5, a/h = 100, lamination 
scheme (0°/90°)10 and Material-III. The currently evalu-
ated responses including the Ref. [51] data are provided in 
Fig. 9 for comparison purpose. The figure shows that the 
present responses are slightly higher than that of the refer-
ence time-deflection data as in the earlier case. It is because 
of the difference between the assumed displacement field 
theories adopted in the reference (FSDT) and the present 
case (HSDT).

3.2 � Additional numerical illustration

After a comprehensive check of the currently developed 
nonlinear FE models, i.e., the convergence and the subse-
quent validity, the models are extended to solve different 
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 Kundu and Sinha [50]  HSDT-I  HSDT-II

Fig. 8   Validation study nonlinear central displacement of cylindrical 
shell panel subjected to UDL step load

Fig. 9   Validation study—linear deflection of intact (c/a = 0) and dam-
aged (c/a = 0.25) plate structure under uniform pressure load
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kinds of numerical illustrations. The numerical examples 
are solved to compute the nonlinear dynamic responses of 
the debonded curved composite panel structure under the 
influence of the variable loading (pulse and blast) and the 
discussed in detail. In general, the responses are computed 
for the square panel (a = b=0.5 m) including the Material-II 
properties (refer Table 1) if not stated otherwise.

3.2.1 � Effect of loading time

The time up to which the load is applied to the shell panel 
may affect the displacement profile. To have a clear under-
standing of the same, the example of simply supported sym-
metric eight-layer (0°/90°/45°/90°)s delaminated (c/a = 0.25) 
spherical shell panel (a/h = 60, r/a = 40) subjected to dif-
ferent (triangular, sine, blast-I and blast-II) time-dependent 
UDL (q = 1 kN) is examined. The nonlinear deflection is 
obtained via HSDT-I for different time-dependent loading 
(10, 20, 30, 50, 80 and 100 ms) and shown in Fig. 10. The 
figure indicates the gradual increase in the amplitude of 
nonlinear nondimensional displacement with the increase 
in loading time in most of the cases. However, in case of 
blast load-I, the displacements are almost identical for the 

entire range of loading time. It is important to discuss that 
the displacement amplitude at any instance purely depends 
on the amplitude of the load at that instant of time.

Fig. 10   Effect of loading time on nonlinear dynamic responses of simply supported spherical shell panel under different pulse load

Fig. 11   Effect of debonding sizes on nonlinear dynamic responses of 
simply supported elliptical shell panel under UDL blast load-I



1211Engineering with Computers (2020) 36:1201–1214	

1 3

3.2.2 � Effect of size of debonding

This example presents the influence of the debonding sizes 
on nonlinear time-dependent central deflection responses. 
In this regard, a simply supported symmetrical angle-ply 
(0°/0°/30°/− 30°)s elliptical shell panel (a/h = 50 and 
r/a = 30) under the influence of the blast load-I type is 
analyzed. The values are obtained for the different sizes 
of square debonding (c/a = 0, 0.25, 0.5 and 0.75) as pro-
vided in Fig.  3a and the responses plotted in Fig.  11. 
The dynamic deflections computed via both the models 
(HSDT-I and HSDT-II) and the nondimensional nonlinear 
deflection amplitude values are shown to be comparatively 
small for the intact shell (c/a = 0) when compared with the 
debonded structure. Further, the dynamic deflection values 
follow an increasing trend with the debonding sizes, i.e., 
c/a = 0.25, 0.5 and 0.75. However, the response frequency 
follows a reverse trend, i.e., decreases with the increase 
in debonding sizes. This kind of behavior may be due to 
the decrease in overall stiffness of the panel along with 
increase in the size of debonding which further increases 
the deflection values.

3.2.3 � Effect of debonding positions

Now, the debonding (c/a = 0.5) located at the center of the 
laminate is varied at different positions (P-I, P-II, P-III and 
P-IV as in Fig. 5 (a)) of the clamped hyperboloid shell panel 
(a/h = 40 and r/a = 50). The shell panel is composed of eight 
symmetric layers (0°/0°/30°/− 30°)s and subjected to the 
SDL triangular load (q = 10 kN). The nonlinear dynamic 
responses obtained using the proposed models and shown 
in Fig. 12, indicate that as the position changes from mid-
dle to outwards (P-I to P-II, P-III and P-IV), the nonlinear 

deflection response decreases irrespective of the models 
(HSDT-I and HSDT-II). From this analysis, it can be con-
cluded that the middle position of the delamination is more 
severe in comparison to other positions as discussed in this 
example. This is due to the decrement of the overall stiffness 
at position P-I while compared to the other positions.

3.2.4 � Effect of debonding location

Figure  13 shows the nonlinear nondimensional deflec-
tion responses of all sides simply supported symmetric 
(0°/0°/30°/− 30°)s delaminated (c/a = 0.25) spherical shell 
panel with the geometrical configuration (a/h = 60 and 
r/a = 40). The shell panel is subjected to SDL blast load-II 
(10 kN). The dynamic deflection values are obtained via 

Fig. 12   Effect of debonding positions on nonlinear time-dependent 
responses of clamped hyperboloid shell panel subjected to SDL tri-
angular load

Fig. 13   Effect of debonding locations on nonlinear time-dependent 
responses of simply supported spherical shell panel under SDL blast 
load-II

Fig. 14   Effect of load amplitude on nonlinear time-dependent 
responses of clamped debonded cylindrical shell panel subjected to 
UDL sine load
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the derived higher-order models for different locations, i.e., 
A, B, C, D and E as provided in Fig. 5b. The amplitude 
of the central deflection is highest for the location C while 
compared to other locations (A, B, D and E). Further, the 
dynamic deflection values are identical for the pair of loca-
tions, i.e., A, B and D, E, respectively. From the computed 
results, it is understood that the central debonding affects 
the structural stiffness significantly in comparison to other 
locations.

3.2.5 � Effect of load amplitude

The influence of loading amplitude on the nonlinear deflec-
tion values is examined in this current example by solv-
ing a debonded (c/a = 0.5) clamped cylindrical shell panel 
(a/h = 60 and r/a = 30) problem. A quasi-isotropic symmetric 
(0°/45°/− 45°/90°)s panel under the influence of UDL type 
of sine load is computed for five different amplitudes (q = 1, 
10, 20, 30 and 40 kN) and presented in Fig. 14. The fig-
ure indicates that the response frequency decrease and the 
deflection parameter increase, while the amplitude of the 
loading increases irrespective of the FE model types (HSDT-
I and HSDT-II) and the results follow an expected trend. 
This is because of the proportionality relation between the 
load and the corresponding deflection values.

3.2.6 � Effect of geometry

In this illustration, the influence of various geometrical 
configurations (plate, cylindrical, spherical, hyperboloid 
and elliptical) on nonlinear central deflection responses has 
been investigated. The analysis has been carried out using 
an eight-layer (0°/45°/− 45°/90°)s symmetric delaminated 
(c/a = 0.25)simply supported shell panel structure with the 

associated geometrical parameter (a/h = 65 and r/a = 50) 
under the influence of UDL type of blast load-II (q = 10 
kN). The nonlinear nondimensional dynamic responses are 
evaluated using the nonlinear HSDT models (HSDT-I and 
HSDT-II) and plotted in Fig. 15. The figure infers that the 
highest deflection is for the plate and lowest deflection is for 
the spherical shell geometry irrespective of the FE models. 
It indicates that the spherical and plate geometries have the 
highest and lowest overall stiffnesses, respectively.

3.2.7 � Effect of curvature ratio

This example investigates the influence of the curva-
ture ratios on the time-dependent deflection responses of 
the curved shell panel structure. The symmetric clamped 
(0°/0°/30°/− 30°)s laminated composite cylindrical shell 
panel (a/h = 50) with a small delamination (c/a = 0.25) under 
the SDL triangular load (q = 10 kN) is examined for differ-
ent curvature ratios (r/a = 10, 20, 30, 50, 70 and 100). The 
nonlinear nondimensional deflection values are presented 
in Fig. 16. The response figure indicates that the deflection 
values are shown to be smaller in amplitude for the low-
est curvature ratio (r/a = 10) and increased further when 
the curvature ratio increased. It is because of the fact that 
the flatness of the panel increased while the curvature ratio 
increased by keeping the panel length (a) constant.

4 � Conclusions

The nonlinear dynamic behavior of the debonded curved 
shell panel subjected to different time-dependent loading 
is analyzed in this present research article. The composite 

Fig. 15   Effect of different shell geometry on nonlinear time-depend-
ent responses of simply supported debonded shell panel under UDL 
blast load-II

Fig. 16   Effect of curvature ratio on nonlinear time-dependent 
responses of clamped delaminated cylindrical shell panel under SDL 
triangular load
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panel model including the internal defect has been mod-
eled using two higher-order kinematics and the sub-laminate 
approach. The large deformation behavior of the debonded 
structure is modeled via Green–Lagrange strain and all 
of the nonlinear strain terms included for maintaining the 
required generality. The direct iterative method in asso-
ciation with Newmark’s integration technique and the FE 
steps is adopted for the numerical computation of the results. 
Further, to compute the dynamic responses, a customized 
computer code was developed in the MATLAB environ-
ment with the help of the currently developed mathemati-
cal model. The model consistency and the accuracy were 
checked by solving different types of numerical examples for 
the intact and debonded structures. Further, the influences of 
the individual or the combined effect of the different input 
parameters (loading amplitude, loading type and geometri-
cal configuration) have been analyzed by solving different 
numerical illustrations. The final inferences on the dynamic 
deflection parameter are discussed in the following lines.

•	 With reference to the convergence and comparison study, 
it can be concluded that the present models are stable and 
capable of solving the desired time-dependent deflections 
with adequate accuracy.

•	 The presence of debonding affects (decrease) the over-
all integrity considerably. Hence, the overall integrity 
of the structural panel decreases while the debonding 
size increases, which, in turn, increases the deflection 
responses and decreases the response frequency simul-
taneously.

•	 The results related to the position of debonding indicate 
that presence of debonding at the mid-plane of the lami-
nate is severe in comparison to the other positions.

•	 Similarly, the debonding located in the middle of the 
panel refers to the higher displacement amplitude com-
pared to the other locations.

•	 With increasing the load amplitude, the nonlinear 
dynamic responses also increase.

•	 The spherical and the plate geometries show the low-
est and the highest values in nonlinear time-dependent 
deflection, respectively, regardless of the kinematic theo-
ries adopted for the computational purpose.

•	 The nonlinear deflection responses are higher for the 
HSDT-II in comparison to the HSDT-I for most of the 
cases. It is because the HSDT-II model has higher flex-
ibility compared to the HSDT-I.
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