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Abstract
The movement that occurs due to landslide is one of the most important issues in the field of geohazard. Determination of 
the movement of landslide is considered as a problematic task due to the fact that there are many effective parameters on 
movement of landslide that need to be investigated/observed carefully. In this study, various methods based on artificial 
intelligence were implemented and developed to evaluate and control this phenomenon. The gene expression programming 
(GEP) model is one of the newest models in artificial intelligence technique that can build the proper models for solving 
engineering issues based on the tree expression. Realistic data were used to design these models, where five model inputs 
including the groundwater surface, antecedent rainfall, infiltration coefficient, shear strength, and slope gradient of the area 
monitoring were considered as the input data. Many GEP models were constructed based on the most influential factors on 
GEP and according to two evaluation approaches, the best GEP model was selected. The obtained results of coefficient of 
determination (R2) for training and testing of GEP were 0.8623 and 0.8594, respectively, which indicate a high a capability 
of this technique in estimating real values of landslide movements. In optimization section of this study, artificial bee colony, 
as one of the powerful optimization algorithms was used to minimize risk induced by movement of landslide. According 
to the obtained results, no movement in landslide can be achieved if values of − 10.5, 400.1, 89.8, 59.65 and 24.95 were 
reported for groundwater surface, antecedent rainfall, infiltration coefficient, shear strength and slope gradient, respectively.

Keywords GEP · Landslide · Optimization · ABC · Predictive model

1 Introduction

Ground movement is one of the important topics in land-
slide researches. Prevention and control of this phenomenon 
can reduce the risks for facilities and humans [1–4]. How-
ever, the phenomenon of landslide is not easily predictable 
because of the various parameters affecting it. Important 
parameters affecting landslide can be referred to the geologi-
cal and climate conditions according to several scholars such 
as Crosta and Agliardi [5]. So far, various models for assess-
ing landslide have been developed based on the mechanism 
that governs this phenomenon [2, 5–9]. In general, these 
studies can be categorized as statistical models, numerical, 
physical, and non-linear simulations [10]. Due to the fact 
that the landslide phenomenon has several complications 

and the relationship between them is really complex, non-
linear models are able to provide better performance than 
other available techniques. In non-linear and simulation 
techniques, an indirect assessment will be introduced to 
predict problems that are complicated in nature [11, 12].

Nowadays, more modern and advanced methods have 
been introduced in science and engineering fields, among 
which artificial intelligence techniques can be mentioned 
[13–18]. These intelligent computational methods are able 
to present various models in different fields of engineering 
and present appropriate relations and predictions using 
those models [19]. In civil engineering, artificial intelli-
gence approaches have been employed/proposed for vari-
ous predictions and optimizations purpose [13, 16, 20–45]. 
Several intelligent studies have been proposed for solving 
problems related to landslide [3, 6, 10, 46]. Developing 
artificial neural networks (ANNs) can provide a solution 
that increases accuracy level of predictive models [47–52]. 
However, different models on the basis of artificial intelli-
gence can affect the performance of different calculations. 
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One of these new methods, called gene expression pro-
gramming (GEP), received an excellent capability in 
solving problems in engineering sciences [53–55]. This 
method, which is a combination of genetic algorithm (GA) 
and genetic programming (GP), can present/provide a 
mathematical equation for prediction as well as solving 
complex problems and increasing accuracy of predictive 
models [24, 56]. Several researchers highlight the success-
ful application of GEP in various fields of civil engineer-
ing such as environmental issues of blasting [39, 57], pil-
ing [58], tunneling and rock mechanics [59, 60], concrete 
technology [61, 62], highway construction [63] and river 
engineering [64, 65].

The aim of this research is to propose proper models 
of artificial intelligence for predicting and subsequently 
optimizing the movement of landslide. To gain predic-
tion models, different data were collected and the effective 
parameters on ground movement were investigated. Then, 
using these data, different models of GEP were developed 
and implemented. Afterward, their performance with ANN 
networks was investigated for comparison purposes. Even-
tually, to obtain the minimum risk level, the artificial bee 
colony (ABC) algorithm was employed and the optimum 
values were introduced.

2  Methodology

2.1  Data collection

In the present research, various data which have been used 
for movement determination of landslides in study con-
ducted by Neaupane and Achet [66] were collected and 
considered. The effective parameters on landslide/slope 
movement include groundwater surface (m), antecedent 
rainfall (mm), rainfall intensity (mm/h), infiltration coef-
ficient, shear strength (kN/m2), and slope gradient of the 
area monitoring (°). It is important to mention that these 
parameters were selected based on previous researches 
[46, 66]. These data were used to train and test prediction 
networks, and values of the movement in landslide were 
predicted and evaluated using these parameters. Figure 1 
shows a map which includes the geology structure/forma-
tion of the studied area. The statistical distribution of the 
utilized data in modelling process is given in Table 1. In 
the following sections, different models will be developed 
from these data for predicting landslide movement and 
their modelling procedures will be explained. The statisti-
cal distributions of data are presented in Figs. 2, 3, 4, 5, 
6, and 7. More details regarding data collection and study 
area are available in the original study [66].

2.2  Artificial neural network

The concept of neural networks was first introduced in 
1950s by the well-known psychologist, Donald Hebb [67], 
after the introduction of simple learning mechanism. He 
introduced this method by investigating brain neurons and 
the effect of learning on them. Since these neurons do 
not have a specific instruction for data processing, they 
investigate the relations they obtain between input and 
output data for learning [68–70]. Neural networks func-
tion like a biological neuron. In fact, in each neuron, den-
drites receive information from the previous neuron, and 
axons transfer the results to the next section (i.e., next 
neuron) after an initial processing. Chemical signaling is 
done through synopses between the cells. The performance 
of a computational neuron, which is used in neural net-
works, is similar to a biological neuron (including inputs 
and outputs). An ANN contains two or more layers, and 
each layer has a series of neurons. The relation between 
the layers is associated with the weights constituting a 
network. These different coefficients in each layer are mul-
tiplied by each other and connect to other layers using the 
functions known as activation functions (see Fig. 8). Two 
algorithms, i.e., feed-forward multilayer and back-propa-
gation are used in neural networks. Back-propagation is 
more common and is recommended by different research-
ers [71–73]. Using the pathway of its method in each layer, 
this algorithm trains the amounts of weights and functions 
it uses to reach the minimum error in the system. This 
training process is repeated for a few times so that it can 
reach the amount determined by the system or termination 
criterion (see Fig. 9). The back-propagation phase is asso-
ciated with conditions in which gradient is calculated for 
non-linear multilayer networks (the networks that are used 
to solve most of the engineering problems). The sigmoid 
transfer function receives the input values and presents it 
as an interval of 0–1 regardless of the initial input interval 
[50, 51, 68, 74]. 

2.3  Gene expression programing

Gene expression programing (GEP) is one of the new meth-
ods in artificial intelligence which is, in fact, the developed 
version of genetic algorithm (GA) and genetic programing 
(GP). GEP, which presents proper solutions for various prob-
lems, is based on different parts [75]. GEP benefits from two 
main chromosomes, and the expression tree provides solu-
tions for removing the limitations of two older algorithms. 
The codifications are shown in the form of a string in GEP, 
which is in fact obtained from Karva programing language 
and can present a behavior like ETs. One of the interesting 
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functions of GEP is that it can present its own models using 
mathematical equations. In fact, mathematical equations 
create relation between independent parameters. Creating 
models that can provide equations will be very helpful and 
practical in engineering. Therefore, these methods can be 
utilized in the place of ANN models in problems. These 
problems have caused researchers to conduct and develop 
more work to expand such methods. In GP method, different 
mathematical functions such as −, +, × and sin are written 
and implemented for variables so that a mathematical set can 

be obtained from a combination of them for problem exami-
nation. In multigene chromosomes, each gene expresses a 
sub-ET and consists of a head and a tail. These parts are 
the areas to which genetic operators are applied to create 
new solutions. According to Fig. 10, like other EAs, the 
GEP modeling process begins with the random creation of 
chromosomes for determined numbers, which follows Karva 
language (Karva is a symbolic language to introduce chro-
mosomes). These symbolic chromosomes should be then 
defined as trees with different sizes and shapes [expression 
trees]. These points are investigated by the functions that 
are responsible for controlling models and their adaptabil-
ity. These functions have different types that can be defined 
by different criteria. Some examples are root mean square 
error (RMSE), mean absolute error (MAE), and root rela-
tive squared error (RRSE). Next, if the termination crite-
rion (in other words, maximum iteration or appropriate fit-
ness value) does not occur, the best chromosomes that have 
been selected through the Roulette Wheel method for the 
first process enter the next structure. Afterward, the main 
genetic operators consisting of mutation, transfer (RIS, IS, 

Fig. 1  Geology structure of studied area [66]

Table 1  The statistical distribution of the used data

Parameter Unit Min Max Average

Groundwater surface mm − 17.5 − 4.4 − 10.77
Antecedent rainfall mm 0 720 401.96
Infiltration coefficient – 0 2.03 28.57
Shear strength KN/m2 53.97 60.42 59.65
Slope gradient degree 24.8 25.1 24.95
Slope movement cm 0 4.3 0.82
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and gene transfer), and reconstruction (one point, two points, 
and gene reconstruction) are applied to the chromosomes 
based on their proportions, which can be defined using the 
codes and experts of GP method. This way, the new chro-
mosomes replace the remains, and the process goes on until 
termination criteria or conditions are reached [76–78]. Given 
the expansion of this method, more information and details 
about GEP method and the way of its initial implementation 
can be found in previous studies [79–81].

2.4  Artificial bee colony

One of the new optimization methods which was developed 
based on bees group life is the artificial bee colony (ABC) 
algorithm. This algorithm was first introduced and imple-
mented by Karaboga [82] to optimize complicated science 
and engineering problems. Three important parts of this 
algorithm include employed, onlookers, and scouts [83, 
84]. In the first stage, searching for food sources is done 

Fig. 2  Statistical distribution of used data (Groundwater surface)

Fig. 3  Statistical distribution of used data (antecedent rainfall)
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by two scouts. During these searches, a large number of 
bees are assumed as onlookers. A type of movement, called 
waggle dance, is made by the bees to make connections. In 
this movement, the scouts inform the employed bees of the 
quality of food sources (problem solutions). In these condi-
tions, different bees can use the obtained information and 
select the required sources of the beehives. Quality of the 
presented solution is evaluated based on the amount nectar 
available as food source.

Different parameters can be effective in ABC algorithm 
including the number of scout bees (N), amount of food 

source (M), number of elected food source, number of bees 
dispatched to the elected food source (Nre), number of bees 
dispatched to other food source (Nsp), radius of the search 
area (Ngh), and number of iteration (Imax). With these con-
ditions, the initial solutions (locations of food source) are 
presented within the defined problem for this algorithm:

where i = 1,…, N and j = 1,…, D area is defined in the equa-
tion. Parameters N and D are the amount of food source and 

(1)Xij = Xmin

j
+ ran(0, 1)

(

Xmax

j
− Xmin

j

)

,

Fig. 4  Statistical distribution of used data (infiltration coefficient)

Fig. 5  Statistical distribution of used data (shear strength)
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number of variables, respectively. In the following, ABC 
algorithm creates a new solution Vjk within Xk area for every 
presented solution:

where the two parameters �jk and Xjk represent the uniform 
distribution of random numbers and the jth solution from 
among the solutions set of the kth parameter. However, 

(2)Vjk(t + 1) = Xjk(t) + �jk(t)
(

Xjk(t) − Xwk(t)
)

,

(3)K = int(rand × N) + 1,

Fig. 6  Statistical distribution of used data (slope gradient)

Fig. 7  Statistical distribution of used data (slope movement)

Fig. 8  The structure of different coefficients in ANN network
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the �jk area and parameter k are randomly selected from 
domains [1 and − 1] and [1 and N], respectively. Under these 
conditions, each solution that can solve the problem in a bet-
ter way will replace the previous one. If the new solution is 
more adaptable, it will replace the previous one. After that, 
the scout bee selects a solution per each bee using Eq. 34 
and possibility of the calculations. This problem is provided 
by the onlooker bee, and from among these solutions, the 
one presenting the most appropriate result will be selected. 
Figure 11 presents a flowchart of ABC algorithm.

3  Prediction results

3.1  ANN modeling

As explained in the previous sections, the neural network 
can solve linear and non-linear engineering problems by 
presenting appropriate solutions [47, 48, 52, 83]. In this 
section, neural network models have been presented so that 
their results can be compared with new GEP models that are 
implemented in the following. To design the networks, 80 
percent of all of data were dedicated to the training section 
and 20 percent of them were allocated to the testing section. 
Using this classification, the performance of artificial mod-
els can be assessed for predicting movement of landslides.

In general, one of the important criteria used for ANNs 
is root mean square error (RMSE) which is used for the ini-
tial termination criterion of the process of network training. 
RMSE is obtained from the values that are from the network 
and measured values. The best value is when RMSE is equal 
to zero.

(4)Δ = t − Est,

where parameters t, Est, Δ, and k are the predicted values, 
measured values, error, and number of network outputs, 
respectively. In addition to this criterion, the regression 
value is also used, which determined the correlation between 
the predicted and measured values. This criterion is in the 
best condition when its value is equal to 1, and the closer 
it gets to zero, the lower prediction ability these models 
have. To investigate the prediction models developed in this 
research, these two criteria are employed. The results of the 
ANN section presented to be compared with the new method 
have been given in the following. Considering various expla-
nations, a variety of models of ANN have been designed and 
created so that the solutions obtained from this model can 
be used to predict movement of landslide. Models of this 
method have been shown in Figs. 12 and 13. As can be seen, 
the best performance has been reached when the iteration 
value is 400 and the number of neurons is set as 10. Investi-
gating the main model developed through this research will 
be discussed later.

(5)RMSE =

√

√

√

√

Average

[

NT
∑

k=1

Δ2

k

]

,

Fig. 9  The multilayer structure of ANN

Fig. 10  A view of GEP system
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3.2  GEP modeling

After obtaining the results of ANN network, GEP predic-
tion models are implemented in this stage. The used data 
are similar to those of the previous stage. The purpose is to 
determine/estimate the movement values in landslides. The 
values and way of implementing them until obtaining the 
results of GEP models as well as presenting the relations will 
be in mathematical route. The process used in this research 
for implementing GEP is as follows:

1. In the first step, the fitness function is selected as a cri-
terion for each chromosome’s merit occurrence. RMSE 
is the common fitness function that is used in modeling 
process of GEP. However, based on the problem’s con-
ditions, different modes can be used for investigating 
the models’ performance more accurately. Hence, each 
chromosomes’ fitness is determined as follows:

(6)RMSE
� =

1

1 + RMSE
× 1000.

Fig. 11  The presented flowchart 
for ABC algorithm [51] Initial food locations

Determine nectar amounts

Determine Nectar amounts

Selection

Determine food sources in the 
neighborhood by employed bees

Any onlooker left?
Determine a neighbor of the 
selected food source by the 

onlooker

Generate new locations for the 
abandoned food sourcesFinal food locations

Memorize the location of the best 
food source

Determine nectar amounts

Stopping criteria met?

Find the abandoned food sources

No

Yes

Yes

No

Fig. 12  Performance of ANN 
prediction model for training



1125Engineering with Computers (2020) 36:1117–1134 

1 3

2. The second step is to allocate two important sections 
called the set of terminals (T) and functions (F) to the 
chromosomes’ structure, which creates a mixture of 
them. The independent variables (parameters of Table 1) 
are considered as the terminal set, and the function set is 
usually defined according to the main core of the prob-
lem. In the current study, trigonometry and mathemati-
cal functions have been used as follows:

3. In the third step, structural parameters of GEP (i.e., head 
size, number of genes, and number of chromosomes) 
have to be introduced and applied to the system. The 
number of gene parameter is introduced for ET subsec-
tions specified for each chromosome. According to Fer-
reira’s investigation [78, 80, 81] and some other stud-
ies, the best way to obtain proper values for structural 
parameters of GEP is the method of trial and error. In 
other words, the analysis starts with the increasing val-
ues of abovementioned parameters of GEP, and then the 
prediction of GEP models’ performance is checked in 
both training and testing phases. This way, several GEP 
models are designed and implemented with different 
parameters for predicting compressive strength of com-
posite columns. Finally, after executing these processes 
several times, values of the number of chromosomes, 
head size, and number of genes are found to be 40, 5, 
and 3, respectively, for this section.

4. The fourth step is to select the rates of genetic operators. 
In this step, assuming the proposed values by previous 
researchers ([78, 80, 81]), some other GEP models are 
created using the trial and error method. The obtained 
values of GEP parameters are presented in Table 2.

(7)F = {+,−,×, ∕, Sin, Cos, ArcTan, tanh, sqrt}.

5. In the final step, defining the linking function for con-
necting the created genes is required. There are various 
linking functions such as subtraction (−), addition (+), 
division (÷), and multiplication (×). In the present study, 
addition of different sections has been used to connect 
sub-ETs because it provides a better connection in com-
parison with other functions.

To evaluate the prediction performance of GEP models, 
R2 was used as well as RMSE values. These functions were 
selected because they had been used by different researchers 
for artificial networks and identified to be an appropriate cri-
terion. Several parameters of the GEP model were examined 
in this section to determine its impact on the performance 
of models. One of the most important parameters of GEP 
model is the number of generations. Figure 14 shows their 
changes in predicting landslide movements. The effect of 
gene and size of head parameters on the performance of the 
GEP model is shown in Figs. 15 and 16.

Fig. 13  Performance of ANN 
prediction model for testing

Table 2  GEP model parameters

Description of parameter Value

Mutation rate 0.035
Inversion rate 0.1
IS transposition rate 0.1
RIS transposition rate 0.1
Gene transposition rate 0.3
One-point recombination rate 0.3
Two-point recombination rate 0.1
Gene recombination rate 0.1
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According to the results presented in these figures, gen-
eration, gene and size of head parameters were consid-
ered as 3500, 5 and 5, respectively. Eventually, after the 

aforementioned implementation, the results of five differ-
ent models are presented in Table 3. Two different scoring 
techniques were used to select superior models. The first 

Fig. 14  The changes result of generation in predicting landslide movements

Fig. 15  The effects of number of genes in predicting landslide movements
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technique is based on the sum of scores for sections of train-
ing and testing. In this way, if R2 achieves the high value, the 
higher score is given and vice versa. The same process will 
be applied for RMSE. If the amount of RMSE is lower, it 
will get a higher score. The same two parameters were also 
used for the second scoring technique. In this technique, if 
the parameter is more suitable, the more color (red) assign 
it. At the end, model number 4 was chosen as the selected 
model based on two scoring techniques.

According to Fig. 17, the expression tree of each gene 
of model 4 has been presented in which d(0) = groundwa-
ter surface, d(1) = antecedent rainfall, d(2) = infiltration 
coefficient, d(3) = shear strength and d(4) = slope gradi-
ent. In addition to the variables, several constant values are 
obtained as shown in Table 4. All functions and terminal sets 

have been illustrated in the circles. To extract mathematical 
equations, reading the circles from left to right and top to 
bottom is recommended. After extracting the equation of 
each gene, the final predicting model of GEP is obtained by 
adding all of model 4. Figures 18 and 19 show the results of 
model 4 for training and testing sections, respectively. As 
presented, GEP model can provide high level of accuracy 
level for prediction of landslide movement.

4  Optimization process

To examine ABC algorithm, which is used in this research 
for minimizing movement values in landslides, the selected 
functions were employed. Here, two functions are presented 

Fig. 16  The effects of size of head in predicting landslide movements

Table 3  The presented models 
for the prediction of landslide 
movement using GEP model

Model Model no. Train Test Train rating Test rating Total rank

R2 RMSE R2 RMSE R2 RMSE R2 RMSE

GEP 1 0.8379 0.4982 0.8347 0.498 1 1 1 1 4
2 0.8567 0.4681 0.8359 0.4878 3 3 2 2 10
3 0.8471 0.4762 0.8540 0.4689 2 2 4 4 12
4 0.8623 0.4497 0.8594 0.4569 5 5 5 5 20
5 0.8599 0.4561 0.8488 0.4849 4 4 3 3 14
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according to Figs. 20 and 21 as follows. The minimum val-
ues of these functions in the mentioned intervals are 0 and 
− 5, respectively. Figures 20 and 21 illustrate the three-
dimensional graph of these two functions in the specific 
interval. These figures demonstrate results obtained through 
ABC algorithm, which is for these two figures. As can be 
seen, the written code of this algorithm can identify the 
minimums well. That is why this code can be run for this 
research’s conditions obtained in the previous section.

To optimize the movement values, the previous sec-
tion’s prediction models were used. As it was mentioned, 
the best model of the previous section is model 4 of GEP. 
This model is considered as a function. Different models of 

Fig. 17  The tree expression of model 4

Table 4  Values and parameters of the tree expression for the selected 
mode

Parameter Value

G2C1 6.75160985137486
G2C4 − 4.36078981902524
G2C9 8.67872467796539
G3C1 − 7.02735460302124
G3C4 − 5.65981841486862
G3C6 0.930094655432537
G4C8 2.46231969258629
G4C9 − 4.18364709991078
G5C4 − 6.28985222327971
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ABC algorithm were designed, each of which was executed 
by adjusting the parameters of the optimization algorithm.

After a set of analyses were carried out, the most appro-
priate parameters of ABC algorithm were obtained. The best 
parameters that can deliver well the performance of ABC 
algorithm for optimizing this problem have been achieved 
in Table 5.

Using the results of the best model, the optimum param-
eters that can provide movement were determined. The best 
cost function is presented in Fig. 22 for this problem. The 
proposed parameters are given in Table 6. It should be noted 
that the changes in these parameters are assumed to be the 
values considered for modeling (Table 1). As can be seen, in 
cases where optimization has been done, appropriate minimum 

Fig. 18  The GEP result of 
model 4 for training section

Fig. 19  The GEP result of 
model 4 for testing section
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Fig. 20  The three-dimensional graph of sample 1

Fig. 21  The three-dimensional graph of sample 2
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value has been gained in performance of the problem. As an 
example, optimum values of − 10.5, 400.1, 89.8, 59.65 and 
24.95 for groundwater surface, antecedent rainfall, infiltration 
coefficient, shear strength and slope gradient, respectively, will 
cause no movement (or movement of zero) in landslide. So, 
different patterns of designing can be applied under various 
conditions and the best performance can be reached. In this 
way, the risks of landslide can be controlled.

5  Conclusions

Assessing and controlling the risks that occur due to land-
slide is one of the most important discussions in this field. 
For this reason, this research used new intelligent methods 
to predict and propose different models for this value. The 
data used in this research were collected from several real-
case studies. These data included parameters of the ground-
water surface, antecedent rainfall, infiltration coefficient, 
shear strength, and slope gradient. The neural networks and 
new model (GEP) were used for prediction. The GEP model 

was implemented and developed with different conditions 
to predict movement of landslide. Each model finally ended 
in an equation. To investigate the performance of this new 
model, ANN networks were also implemented in a devel-
oped way. The models were compared with each other, 
and the best model was selected for optimization. The best 
model (with R2 = 0.8623 and 0.8594 for training and testing 
section), which was developed through GEP method, was 
combined with ABC optimization algorithm, and the opti-
mum conditions for specifying movement in landslide were 
applied. The optimum parameters allow engineers to reach 
the best performance for decrease the movement of land-
slides. Finally, the results showed that the ABC algorithm 
can control the risk level of landslide movements according 
to their effective parameters.

Table 5  The effective parameter 
for optimization of the problem

Parameter Value

Iteration 500
Number of bee 60

Fig. 22  The best cost of ABC 
for optimization the problem

Table 6  The proposed values for optimization the problem

Parameter Unit Optimum value

Groundwater surface mm − 10.5
Antecedent rainfall mm 400.1
Infiltration coefficient – 89.8
Shear strength KN/m2 59.65
Slope gradient degree 24.95
Slope movement cm 0
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