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Abstract
An edge-based smoothed finite element method (ES-FEM) combined with the mixed interpolation of tensorial components 
technique (MITC) for triangular elements, named as ES-MITC3, was recently proposed to enhance the accuracy of the 
original MITC3 for analysis of shells. In this study, the ES-MITC3 is extended to the geometrically nonlinear analysis of 
functionally graded shells. In the ES-MITC3, the stiffness matrices are obtained using the strain smoothing technique over the 
smoothing domains that formed by two adjacent MITC3 triangular shell elements sharing an edge. The material properties of 
functionally graded (FG) shells are assumed to vary through the thickness direction by a power rule distribution of volume 
fractions of the constituents. The nonlinear finite element formulation based on the first-order shear deformation theory with 
the von Kármán’s large deflection assumption is used to describe the large deformations of the FG shells. Several numeri-
cal examples are given to demonstrate the performance of the present approach in comparison with other existing methods.

Keywords Geometrically nonlinear analysis · FGM shells · Edge-based smoothed finite element method (ES-FEM) · 
Mixed interpolation of tensorial components (MITC)

1 Introduction

Functionally graded materials (FGM) are inhomogeneous 
composites formed by a mixture of distinct material phases, 
e.g., ceramic and metal, in which their volume fraction is 
gradually varying along a certain dimension of the struc-
ture. It is well known that the ceramic materials can survive 
in environments with high-temperature gradients, while 
the metal materials give structural strength and fracture 
toughness. Based on the great mixture of ceramic and metal 
materials, the FGM have been successfully applied to use 
in aircraft, space vehicle, and nuclear plants. In the FGM 

study, analysis and simulation behavior of the FGM plate/
shell structures have been studied by many researchers.

For analysis of the FGM plate structures, Reddy [1] used 
finite element (FE) model based on the third-order shear 
deformation theory (TSDT) to solve nonlinear geometric 
problems under thermos-mechanical loadings. Praveen 
and Reddy [2] investigated the nonlinear static and tran-
sient responses of the FGM plates subjected to thermal and 
mechanical loadings. In this study, a combination between 
the first-order shear deformation theory (FSDT) and von 
Kármán assumptions is used to establish equations of 
motion. Ferreira et al. [3] proposed the meshless method 
relied on the radial basis functions and the TSDT to analyze 
a simply supported FGM plate. Mantari et al. [4] presented 
an exact solution to study the static response of simply sup-
ported FGM plates subjected to bi-sinusoidal and distrib-
uted loads using a new high-order shear deformation theory 
(HSDT). Nguyen-Xuan et al. [5, 6] developed a smoothed 
finite element method (SFEM) based on the FSDT to inves-
tigate static, free vibration and buckling of the FGM plates 
under thermal and mechanical loads. Tran et al. [7, 8] car-
ried out isogeometric analysis (IGA) combining with the 
HSDT to study linear and nonlinear thermomechanical sta-
bility of the FGM plates. Phung-Van et al. [9] proposed a 
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cell-based smoothed three-node Mindlin plate element based 
on the HSDT for geometrically nonlinear analysis of the 
FGM plates under thermal and mechanical loadings.

For analysis of the FGM shell structures, Arciniega and 
Reddy [10] presented a geometrically nonlinear analysis 
of the FGM shells using a tensor-based FE method with 
high-order Lagrange interpolation and the FSDT based 
on seven parameters. Tornabene and Viola [11, 12] devel-
oped the generalized differential quadrature (GDQ) method 
combined with the FSDT theory to investigate the dynamic 
behavior of the moderate and thick FGM parabolic and cir-
cular shells. An analytical solution for the nonlinear post-
buckling behavior of the FGM cylindrical shells under 
external pressure in thermal environments is proposed by 
Shen [13, 14]. In this research, the classical shell theory 
with von Kármán–Donnell-type of kinematic nonlinearity is 
used to deal the governing equations of the FGM shell. Zhao 
and Liew [15] introduced a nonlinear analysis of the FGM 
shells subjected to thermomechanical loading based on the 
element-free kp-Ritz method with Sander’s nonlinear shell 
theory [16]. Pradyumna and Bandyopadhyay [17] obtained 
the FE method relied on the HSDT to investigate for free 
vibration of the FGM shells. Shell structures in this work are 
discretized using an eight-node element with nine degrees 
of freedom (df) and the strain displacement relations of the 
doubly curved shell using Sanders’ approximation [18]. In 
addition, some novel approaches for shell analysis can be 
found in Refs. [19–25].

It has long been known that the classical shell theories 
are limitary for thin shells thus the most of investigations in 
recent years have used Reissner–Mindlin theory to analyze 
for both thick and thin shells. However, the shear-locking 
phenomenon can arise in the case of a very small thick-
ness of shells. To eliminate the shear-locking phenomenon, 
there were many improved techniques which have been pro-
posed such as the reduced integration method [26], discrete 
shear gap (DSG) [27], assumed natural strains (ANS) [28], 
SFEM [29–36], mixed interpolation of tensorial components 
(MITC) [37–45] and so on.

Recently, to enhance the performance of the original 
MITC3 triangular element, a combination between the edge-
based smoothed finite element method (ES-FEM) [31, 46–50] 
and the MITC3, named ES-MITC3, is proposed [51–54]. In 
the formulation of the ES-MITC3, the strain smoothing tech-
nique is used to smooth the strains on the adjacent MITC3 
triangular elements, wherein a smoothing domain is formed 
by two adjacent MITC3 triangular elements sharing an edge. 
The numerical results showed that (1) the ES-MITC3 elements 
are often found fast convergent and much more accurate than 
an original MITC3 element with the same of df; (2) the shear-
locking is eliminated even the ratio of thickness reaches 10−8 . 
Motivated by the advantages of the ES-MITC3 elements, 
geometrically nonlinear analysis of functionally graded shell 

structures is solved in this study. The continuous and smooth 
material properties through the thickness of functionally 
graded shells are assumed in this study based on a simple 
power law of the volume fractions of the constituents. The 
nonlinear FE formulation is based on the FSDT of the shell 
with the von Kármán’s large deflection theory which considers 
a small strain and large deformations assumptions. The solu-
tion of the nonlinear equation system is accomplished using 
the cylindrical arc-length method combined with an automatic 
incremental algorithm [55] to obtain the full load–displace-
ment path. Several numerical results show that the present 
method is a strong competitor to other existing methods.

2  Theoretical formulation

2.1  Functionally grade material

In the composite materials field, functionally grade material is 
made from a mixture of distinct material phases, e.g., ceramic 
and metal, as shown in Fig. 1. The material properties change 
continuously from a surface to the other surface according to 
a simple power law in terms of the volume fractions of the 
constituents as

where Vc and Vm are the volume fractions of ceramic 
and metal constituents, respectively, h is the thickness 
of structure; n ≥ 0 is the volume fraction exponent; and 
z ∈ [− h∕2, h∕2] is the thickness coordinate of the structure. 
Thus, the effective material properties such as Young’s 
modulus E , Poisson’s ratio v and mass density � , can be 
expressed as the following rule:

where Pc and Pm are the properties of the ceramic and 
metal, respectively. Figure 2 illustrates the volume fraction 
of ceramic and metal varying through the non-dimensional 

(1)Vc(z) =
(
1

2
+

z

h

)n

, Vm(z) = 1 − Vc(z),

(2)P(z) = PmVm(z) + Pc Vc(z),

Fig. 1  A functionally graded material



1071Engineering with Computers (2020) 36:1069–1082 

1 3

thickness (z∕h) via the volume fraction exponents n . It is 
clear to see that the value of the power n = 0 when the struc-
ture is fully ceramic. In contrast, the homogeneous metal is 
retrieved at the power n = ∞. 

2.2  The FGM shell model

In the FSDT theory [56], the displacement field of a shell ele-
ment in the local coordinate system Oxyz can be defined as 
follows:

where u0 , v0 and w0 are, respectively, the displacements of 
the middle surface in the x , y and z directions; �x and �y 
indicate the rotations in the xz and yz plane, respectively, 
see Fig. 3. A vector of in-plane Green–Lagrangian strain for 
large deformation analysis at any point in a shell element is 
formed as

 
Using the von Kármán’s large deflection assumption [57], 

the nonlinear strain–displacement relationship can be rewrit-
ten as

(3)

u(x, y, z) = u0(x, y) + z�x(x, y),

v(x, y, z) = v0(x, y) + z�y(x, y),

w(x, y, z) = w0(x, y),

(4)� =

⎧
⎪⎨⎪⎩

�
x

�
y

�
xy

⎫
⎪⎬⎪⎭
=

⎧
⎪⎨⎪⎩

u,x +
1

2
(u2

,x
+ v

2

,x
+ w

2

,x
)

v,y +
1

2
(u2

,y
+ v

2

,y
+ w

2

,y
)

u,y + v,x + (u,xu,y + v,xv,y + w,xw,y)

⎫
⎪⎬⎪⎭
.

where

The constitutive relationship of FGM shells can be 
expressed as

where N , M and Q denote for the in-plane force resultants, 
moment resultants and shear force resultants, respectively, 
and are given by

In Eq. (8), A , D , B and C∗ represent for the matrices of 
extensional, bending, bending–extensional coupling, and 

(5)

� =

⎧
⎪⎨⎪⎩

�x
�y
�xy

⎫
⎪⎬⎪⎭
= �m + z� and � =

�
�xz
�yz

�
=

�
w0,x + �x
w0,y + �y

�
,

(6)�m = �
L
m
+ �

NL
m
,

(7)

� =

⎧
⎪⎨⎪⎩

�
x,x

�
y,y

�
x,y + �

y,x

⎫
⎪⎬⎪⎭
; �L

m
=

⎧
⎪⎨⎪⎩

u0,x

v0,y

u0,y + v0,x

⎫
⎪⎬⎪⎭

and �NL
m
=
1

2

⎡⎢⎢⎣

w0,x 0

0 w0,y

w0,y w0,x

⎤⎥⎥⎦
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

H

�
w0,x

w0,y

�

⏟⏞⏟⏞⏟
�

=
1

2
H�.

(8)

⎧
⎪⎨⎪⎩

N

M

Q

⎫
⎪⎬⎪⎭

⏟⏟⏟
�

=

⎡⎢⎢⎣

A B 0

B D 0

0 0 C∗

⎤
⎥⎥⎦

⏟⏞⏞⏞⏟⏞⏞⏞⏟

D

⎧
⎪⎨⎪⎩

�m

�

�

⎫
⎪⎬⎪⎭

⏟⏟⏟
�

; � = D�,

(9)N =

⎧⎪⎨⎪⎩

Nx

Ny

Nxy

⎫⎪⎬⎪⎭
, M =

⎧⎪⎨⎪⎩

Mx

My

Mxy

⎫⎪⎬⎪⎭
, Q =

�
Qx

Qy

�
.

Fig. 2  Variation of the volume fraction versus the non-dimensional 
thickness

middle surface

Fig. 3  The three-node triangular element
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transverse shear stiffness matrices, respectively, which are 
defined as

where Aij , Bij , Dij and Cij are given by

where � = 5∕6 is the transverse shear correction coefficient 
and

in which E and v are the elastic moduli and the Poisson’s 
ratios, respectively.

2.3  Finite element formulation for geometrically 
nonlinear shell analysis

2.3.1  Finite element analysis

The bounded domain is discretized into ne finite three-node 
triangular elements with nn nodes such that � ≈

∑ne

e=1
�e 

and �i ∩�j = �, i ≠ j . Then the FE approximation 
ue =

[
ue
j
, ve

j
,we

j
, �e

xj
, �e

yj

]T
 for elements of the shell can be 

expressed as

(10)

A =

⎡
⎢⎢⎣

A11 A12 A16

A21 A22 A26

A61 A62 A66

⎤
⎥⎥⎦
, B =

⎡
⎢⎢⎣

B11 B12 B16

B21 B22 B26

B61 B62 B66

⎤
⎥⎥⎦
,

D =

⎡
⎢⎢⎣

D11 D12 D16

D21 D22 D26

D61 D62 D66

⎤
⎥⎥⎦
, C∗ =

�
C55 C45

C45 C44

�
,

(11)(Aij,Bij,Dij) =

h

2

∫
−

h

2

Qij(1, z, z
2)dz, i, j = 1, 2, 6,

(12)Cij = �

h

2

∫
−

h

2

Qijdz, i, j = 4, 5,

(13)

Q11(z) = Q22(z) =
E(z)

1 − v(z)2
,

Q12(z) = Q21(z) = v(z)Q11(z),

Q16(z) = Q61(z) = Q26(z) = Q62(z) = 0

Q44(z) = Q55(z) = Q66(z) =
E(z)

2(1 + v(z))

Q45(z) = Q54(z) = 0,

(14)ue =

nne∑
j=1

�e
j
(�)I5d

e
j
=

nne∑
j=1

�
e
j
(�)de

j
,

where I5 is the unit matrix of fifth rank; nne is the number of 
nodes of the shell element; �e

j
(�) is the shape function at the 

jth node of the element and de
j
= [ue

j
, ve

j
,we

j
, �e

xj
, �e

yj
]T is the 

nodal degrees of freedom of ue associated with the jth node 
of the element.

The approximation of the linear membrane, the nonlinear 
membrane and the bending strains of a triangular element 
can be written in matrix forms as follows:

where

(15)�
eL
m

=
[
BeL
m1

BeL
m2

BeL
m3

]
de = BeL

m
de,

(16)�
eNL
m

=
1

2
BeNL
m

de,

(17)�
e =

[
Be
b1

Be
b2

Be
b3

]
de = Be

b
de,

(18)BeL
m1

=
1

2Ae

⎡⎢⎢⎣

b − c 0 0 0 0

0 d − a 0 0 0

d − a b − c 0 0 0

⎤⎥⎥⎦
,

(19)BeL
m2

=
1

2Ae

⎡⎢⎢⎣

c 0 0 0 0

0 −d 0 0 0

−d c 0 0 0

⎤⎥⎥⎦
,

(20)BeL
m3

=
1

2Ae

⎡⎢⎢⎣

−b 0 0 0 0

0 a 0 0 0

a −b 0 0 0

⎤⎥⎥⎦
,

(21)Be
b1

=
1

2Ae

⎡⎢⎢⎣

0 0 0 b − c 0

0 0 0 0 d − a

0 0 0 d − a b − c

⎤⎥⎥⎦
,

(22)Be
b2

=
1

2Ae

⎡⎢⎢⎣

0 0 0 c 0

0 0 0 0 −d

0 0 0 −d c

⎤⎥⎥⎦
,

(23)Be
b3

=
1

2Ae

⎡⎢⎢⎣

0 0 0 −b 0

0 0 0 0 a

0 0 0 a −b

⎤⎥⎥⎦
,

(24)BeNL
m

= HGwithG =
[
G

1
G

2
G

3

]
,

(25)G
1
=

1

2Ae

[
0 0 b − c 0 0

0 0 d − a 0 0

]
,
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in which a = x2 − x1 , b = y2 − y1,c = y3 − y1 and d = x3 − x1 
are pointed out in Fig. 4 and Ae is the area of the three-node 
triangular element.

For the shear strains field, the MITC3 triangular element 
[38] is used to eliminate the shear-locking phenomenon in 
this study. The explicitly transverse shear strain field [51, 
53] can be expressed as

where

with

Applying the principle of virtual work, the variation of the 
total energy of shell can be given by

(26)G
2
=

1

2Ae

[
0 0 c 0 0

0 0 −d 0 0

]
,

(27)G
3
=

1

2Ae

[
0 0 −b 0 0

0 0 a 0 0

]
,

(28)�
e =

[
Be
s1

Be
s2

Be
s3

]
de = Be

s
de,

(29)Be
s1
= J−1

[
0 0 −1

a

3
+

d

6

b

3
+

c

6

0 0 −1
d

3
+

a

6

c

3
+

b

6

]
,

(30)Be
s2
= J−1

[
0 0 1

a

2
−

d

6

b

2
−

c

6

0 0 0
d

6

c

6

]
,

(31)Be
s3
= J−1

[
0 0 0

a

6

b

6

0 0 1
d

2
−

a

6

c

2
−

b

6

]
,

(32)J−1 =
1

2Ae

[
c −b

−d a

]
.

where � is the total potential energy in the domain � and b 
is the external load vector. In Eq. (33), �̄e and �̄e are derived 
based on Eq. (8) as follows:

By substituting the discrete displacement field into Eq. (33) 
lead to the discrete system equations for shell now becomes

where

The transformation of the displacement fields of j th node 
of shell element between the local coordinate system Oxyz and 
the global coordinate system Ôx̂ŷẑ defined by

where de
j
 and d̂

e

j
 are the displacement fields of jth node of the 

shell element in local and global coordinates, respectively, 
and �e

0j
 is the transformation matrix [58, 59].

Substituting Eq. (37) into Eq. (35), the global system equa-
tion in Ôx̂ŷẑ for shell can be expressed as

where

2.3.2  Linearization of the nonlinear equations

Substituting Eqs. (14)–(17), (28) and (34) into Eq. (33) the 
principle of virtual work can be rewritten as

where

(33)𝛿𝛱 =

ne�
e=1

⎛
⎜⎜⎝∫𝛺e

𝛿�̄eT �̄ed𝛺 − ∫
𝛺e

𝛿ueTbd𝛺

⎞
⎟⎟⎠
= 0,

(34)�̄�
e =

⎧
⎪⎨⎪⎩

𝜺
eL
m
+ 𝜺

eNL
m

𝜿
e

𝜸
e

⎫
⎪⎬⎪⎭
, �̄�

e = ̄D�̄�
e
.

(35)
ne∑
e=1

Kede =

ne∑
e=1

Fe,

(36)Ke = KeL + KeNL.

(37)de
j
= �

e
0j
d̂
e

j
,

(38)K ̂d = F,

(39)K =

ne∑
e=1

�
eT
0
Ke

�
e
0
, F =

ne∑
e=1

�
eT
0
Fe.

(40)𝛿𝛱 =

ne�
e=1

𝛿deT
⎛⎜⎜⎝∫𝛺e

B̄
T
�̄
ed𝛺 − ∫

𝛺e

�
eTbd𝛺

⎞⎟⎟⎠
= 0,

x

y

3 (x3, y3)

2 (x2, y2)

1 (x1, y1)

a
b

c

d

Fig. 4  Three-node triangular element in the local coordinates
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Linearization of the principal of the virtual work to deter-
mine a tangent matrix for using a Newton–Raphson is iteration 
procedure to solve the geometric nonlinearity and assume for 
simplicity that loading is conservative so that 

d

(
∫
�e

�
eTbd�

)
= 0 , then Eq. (40) can be rewritten as [60]

The one to be linearized is the nonlinear part of the 
strain–displacement matrix, BeNL

m
 , the term ∫

𝛺e

d(B̄
T
)�̄ed𝛺 in 

Eq. (42) can be derived as follows:

Substituting Eq. (9) and Eq. (24) into Eq. (43), we can 
obtain

The term ∫
𝛺e

B̄
T
d(�̄e)d𝛺 in Eq. (42) can be derived as

Substituting Eq. (44) and Eq. (45) into Eq. (42) the vari-
ation of the principle of virtual work can be rewritten as

(41)

B̄ = BeL + BeNL withBeL =

⎡
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Be
b
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s

⎤
⎥⎥⎦
, BeNL =

⎡
⎢⎢⎣

BeNL
m

0

0

⎤
⎥⎥⎦
.

(42)d(𝛿𝛱) =

ne∑
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𝛿deT ∫
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[d(B̄
T
)�̄e + B̄

T
d(�̄e)]d𝛺.
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)TNd�.
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m
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G
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d(HT )

⎧
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N
x

N
y

N
xy

⎫
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d�

= ∫
�

e

G
T

�
N
x
N
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N
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N
y

�

⏟⏞⏞⏞⏟⏞⏞⏞⏟
Nm

�
d(w,x)

d(w,y)

�
d�

=

⎛
⎜⎜⎝∫�

e

G
T
N

m
Gd�

⎞
⎟⎟⎠
d(d

e
).

(45)

∫
𝛺e

B̄
T
d(�̄e)d𝛺 = ∫

𝛺e

[BeL + BeNL]TD̄[BeL + BeNL]d(de)d𝛺.

(46)d(��) =

ne∑
e=1

�deTKe
t
d(de),

in which Ke
t
 is the element tangent stiffness matrix defined as

where KeL represents for the linear stiffness matrix, KeNL 
denotes the nonlinear stiffness matrix which is a function of 
displacement and Ke

g
 is the geometric stiffness matrix. These 

matrices can be expressed as

2.3.3  Solution of the nonlinear equations using 
the arc‑length iterative algorithm and modified 
Newton–Raphson method

To solve the nonlinear equation system Eq. (38), a com-
bination of the arc-length iterative algorithm and modified 
Newton–Raphson method are used to track the full load–dis-
placement path. The governing Eq. (38) is rewritten as

The external load is assumed to be proportional to a fixed 
load F0:

in which � is the load scale factor. Substituting Eq. (52) 
into Eq. (51), the nonlinear equilibrium equation can be re-
expressed as

By updating increments both the scale factor � and the 
displacement vector d̂ , a new equilibrium state is obtained

Applying the Taylor series expansion to Eq. (54):

where Δ� and Δd̂ represent the increment load factor and the 
increment displacement, respectively, Kt is the tangent stiff-
ness matrix as given in Eq. (47). In the incremental-iterative 
method, the Eq. (55) can be expressed as

(47)Ke
t
= KeL + KeNL + Ke

g
,

(48)KeL = ∫
𝛺e

(BeL)TD̄BeLd𝛺,

(49)

K
eNL

= ∫
𝛺

e

(B
eL
)TD̄B

eNL
d𝛺 + ∫

𝛺
e

(B
eNL

)TD̄B
eL
d𝛺

+ ∫
𝛺

e

(B
eNL

)TD̄B
eNL

d𝛺,

(50)Ke
g
= ∫

�e

GTNmGd�.

(51)r(d̂) = K ̂d − F = 0.

(52)F = �F0,

(53)r(d̂, 𝜆) = K ̂d − 𝜆F0 = 0.

(54)r(d̂ + Δd̂, 𝜆 + Δ𝜆) = 0.

(55)r(d̂ + Δd̂, 𝜆 + Δ𝜆) = r(d̂, 𝜆) + KtΔd̂ − Δ𝜆F0 = 0,
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in which the subscript n and m are the load step number and 
the iteration cycle, respectively. The incremental displace-
ment vector Δd̂

m

n
 consists a part of the external increment 

and the other one from the residual force which is given by

In this paper, the increment of the external load Δ�m
n
 can 

be determined by arc-length method [55] and the conver-
gence is used the following criterion:

The tolerance for convergence constant � is taken to be 
0.001 in this study.

2.4  Formulation of an ES‑MITC3 method for FGM 
shells

To enhance the performance of the MITC3 triangular shell 
elements for static responses and free vibration of laminated 
composite shells, Pham et al. [53] recently proposed a com-
bination of the MITC3 and the edge-based smoothed method 
(ES-FEM), named ES-MITC3. In this method, the edge-based 
smoothed strain is calculated in the domain that constructed by 
two adjacent MITC3 triangular elements sharing an edge. On 
a curved geometry of shell models, the edge-based smoothed 
strain can be performed on the virtual plane based on strain 
transformation matrices between the global coordinate of two 
adjacent MITC3 triangular elements and this virtual coordi-
nate. The ES-MITC3 shell elements not only produce stable 
and accurate results for all tested problems but also are the best 
performance compared to the DSG3, ES-DSG3, MITC3, and 
MITC4 elements. Because of the above advantages, the ES-
MITC3 is applied in this study for geometrically nonlinear anal-
ysis of the functionally graded shells. Readers can find more 
detailed information about the ES-MITC3 method in Ref. [53].

In the ES-FEM, a domain � is divided into nk smoothing 
domains �k based on edges of elements, such as 
� =

⋃nk

k=1
�k and �k

i
∩�k

j
= � for i ≠ j . An edge-based 

smoothing domain �k associated with the inner edge k is 
formed by two sub-domains of two non-planar adjacent 
MITC3 triangular elements as shown in Fig. 5. These trian-
gular elements are defined by two local coordinate systems 
O1x1y1z1 and O2x2y2z2 . To compute edge-based smoothing 
strain the �k for two non-planar adjacent elements, the vir-
tual coordinate system Õx̃ỹz̃ is proposed as shown in Fig. 6, 
whereas the x̃-axis coinciding with the edge k , the z̃-axis 

(56)
[Kt]nΔd̂

m

n
= Δ𝜆m

n
F0 − rm−1

n
= Δ𝜆m

n
F0 −

[
K
(
d̂
m−1

n

)
d̂n − 𝜆m−1

n
F0

]
,

(57)
Δd̂

m

n
=
[
(Kt)n

]−1{
Δ𝜆m

n
F0 −

[
K
(
d̂
m−1

n

)
d̂n − 𝜆m−1

n
F0

]}
.

(58)
|g(d̂, 𝜆)|
|F(d̂, 𝜆)| < 𝜁 .

with the average direction between the z1-axis and z2-axis, 
and the ỹ-axis is given by the cross-product of the unit vec-
tors in the x̃-axis and z̃-axis. 

Now, applying the edge-based smoothed FE [61], the mem-
brane strain �L

m
 , the bending strain � , the shear strain � and 

the nonlinear strain �NL
m

 in Eqs. (5) and (6) are, respectively, 
used to create a smoothed membrane strain �̃kL , a smoothed 
bending strain �̃k , a smoothed shear strain �̃k and a smoothed 
nonlinear strain �̃kNL of the smoothing domain �k in the global 
coordinate system Ôx̂ŷẑ can be derived as

(59)�̃
kL = ∫

𝛺k

�
L
m
𝛷k(�)d𝛺,

Fig. 5  The smoothing domain �k is formed by triangular elements

Fig. 6  Global, local and virtual coordinates
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where �k(�) is a given smoothing function that satisfies at 
least unity property ∫

�k

�k(�)d� = 1 . In this work, we use 

the constant smoothing function:

in which Ak is the area of the smoothing domain �k and is 
given by

where nek is the number of the adjacent triangular elements 
in the smoothing domain �k ; and Ai is the area of the ith 
triangular element attached to the edge k.

Substituting Eqs. (15)–(17) and (28) into Eqs. (59)–(62), 
the smoothed membrane strain �̃kL , the smoothed bending 
strain �̃k , the smoothed shear strain �̃k and the smoothed 
nonlinear strain �̃kNL of the smoothing domain �k in the 
global coordinate system Ôx̂ŷẑ can be derived as

where nnk is the number of the neighboring nodes of edge 
k , dk

j
 is the nodal degrees of freedom at the jth node of the 

smoothing domain �k in Ôx̂ŷẑ ; B̃kL

mj
 , B̃kNL

mj
 , B̃k

bj
 and B̃k

sj
 are the 

membrane, the nonlinear, the bending and the MITC3 shear 
matrices at the jth node of the smoothing domain �k in the 
global coordinate system Ôx̂ŷẑ , respectively. The B̃kL

mj
 , B̃k

bj
 , 

B̃
k

sj
 and B̃kNL

mj
 can be computed by

(60)�̃
k = ∫

𝛺k

�𝛷k(�)d𝛺,

(61)�̃
k = ∫

𝛺k

�𝛷k(�)d𝛺,

(62)�̃
kNL = ∫

𝛺k

�
NL
m
𝛷k(�)d𝛺,

(63)�k(�) =

{ 1

Ak
x ∈ �k

0 x ∉ �k
,

(64)Ak = ∫
�k

d� =
1

3

nek∑
i=1

Ai,

(65)

�̃
kL =

nnk∑
j=1

B̃
kL

mj
d
k
j
, �̃

k =

nnk∑
j=1

B̃
k

bj
d
k
j
,

�̃
k =

nnk∑
j=1

B̃
k

sj
d
k
j
, �̃

kNL =

nnk∑
j=1

B̃
kNL

mj
d
k
j
,

(66)B̃
kL

mj
=

1

Ak

nek∑
i=1

1

3
Ai
�

k
m1
�

i
m2
BiL
mj
�

i
0j
,

in which �i
0j

 is the transformation matrix between the local 
coordinate system Oxyz at the jth node of the ith adjacent 
triangular element and the global coordinate system Ôx̂ŷẑ ; 
�

k
m1

 , �k
b1

 , and �k
s1

 are strain transformation matrices between 
the global coordinate system Ôx̂ŷẑ and the virtual coordinate 
system Õx̃ỹz̃ , respectively; �i

m2
 , �i

b2
 , and �i

s2
 are the strain 

transformation matrices between the local coordinate system 
Oxyz and the virtual coordinate system Õx̃ỹz̃ , respectively. 
More detailed information about these quantities can be 
found in [59].

As a result, Eq. (55) is rewritten as

where

In Eq. (71), the smoothed stiffness matrices K̃kL
, K̃

kNL and 
K̃

k

g
 in the smoothing domain �k are expressed as

where

(67)B̃
k

bj
=

1

Ak

nek∑
i=1

1

3
Ai
�

k
b1
�

i
b2
Bi
bj
�

i
0j
,

(68)B̃
k

sj
=

1

Ak

nek∑
i=1

1

3
Ai
�

k
s1
�

i
s2
Bi
sj
�

i
0j
,

(69)B̃
kNL

mj
=

1

Ak

nek∑
i=1

1

3
Ai
�

k
m1
�

i
m2
BiNL
mj

�
i
0j
,

(70)r(d̂ + Δd̂, 𝜆 + Δ𝜆) = r(d̂, 𝜆) + K̃tΔd̂ − Δ𝜆F0 = 0,

(71)K̃
t
= K̃

L
+ K̃

NL
+ K̃

g
=

nk∑
k=1

K̃
kL
+

nk∑
k=1

K̃
kNL

+

nk∑
k=1

K̃
k

g
.

(72)K̃
kL

= ∫
𝛺k

(B̃
kL
)T ̄D ̃B

kL
d𝛺k,

(73)

K̃
kNL

= ∫
𝛺k

(B̃
kL

)T ̄D ̃B
kNL

d𝛺k + ∫
𝛺k

(B̃
kNL

)T ̄D ̃B
kL

d𝛺k

+ ∫
𝛺k

(B̃
kNL

)T ̄D ̃B
kNL

d𝛺k,

(74)K̃
k

g
= ∫

𝛺k

(G̃
k
)TNmG̃

k
d𝛺k, G̃

k
=

1

Ak

nek∑
i=1

1

3
AiG�i

0j
,

(75)B̃
kL

=
[
B̃
kL

m
B̃
k

b
B̃
k

s

]T
, B̃

kNL
=
[
B̃
kNL

m
0 0

]T
.
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3  Numerical results

Several numerical examples are investigated in the section to 
show the performance of the proposed element where obtained 
results are compared to several other elements in the literature. 
For convenience, the non-dimensional central deflection w̄ , 
load parameter P̄ and normal stress �̄�xx are expressed as the 
following equations:

3.1  Geometrically nonlinear analysis of isotropic 
square plate (planar shell)

Let us consider that the models of the isotropic square plate 
are subjected to a uniform load q0 as shown in Fig. 7. The 
geometry data: length a = 300 in. , thickness h = 3 in. An 
elastic material with Young’s modulus E = 3 × 107 psi and 
Poisson’s ratio � = 0.3 is used for this example. A fully 
clamped (CCCC) boundary condition is considered for this 
example. The plate is discretized used into a mesh of 10 × 10 
triangular and quadrilateral elements. The results of the pre-
sent method are compared with several other elements such 
as MITC3 [38], DSG3 [27], MXFEM [62] and FEM-Q9 
[63]. In this example, the results of MXFEM [62] are used 
as the reference solutions. To demonstrate the performance 
of the numerical results, the relative non-dimensional central 
deflection error is defined by

where w̄ref is the reference solution. The relative non-dimen-
sional central deflection errors with different elements are 
plotted in Fig. 8. The results obtained using present method 
(ES-MITC3) are closer to the results of the reference solu-
tion (MXFEM) than those obtained using MITC3, DSG3 tri-
angular elements and a good competitor with the nine-node 

(76)w̄ =
w

h
; P̄ =

q0a
4

E2h
4
; �̄�xx =

𝜎xxh
2

Pa2
.

(77)e =
||w̄ − w̄ref||

w̄ref
× 100%,

quadrilateral element (FEM-Q9) [63]. The non-dimensional 
central deflections with different incremental load param-
eters are also plotted in Fig. 9. Table 1 shows detailed results 
of non-dimensional central deflection of the isotropic square 
plate that is subjected to a uniform load using different 
methods.

3.2  Geometrically nonlinear analysis of functionally 
graded square plate (planar shell)

The nonlinear response of simply supported FGM plate 
under uniform loading q0 = 1 × 104 N/m2 is investigated as 
the second example. The FGM square plate has a side length 
a = 0.2m , thickness h = 0.01m as shown in Fig. 7. The 

y
z

x

h

a

a

Fig. 7  Square plate model
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Fig. 8  Relative errors of central deflections of the clamped isotropic 
plate with different incremental load parameters
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Fig. 9  Non-dimensional central deflection of the clamped isotropic 
plate with different incremental load parameters using ES-MITC3 
element
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FGM plate in this example is a combination between alu-
minum (Al) and zirconia  (ZnO2) with the material proper-
ties: Em = 70 × 109 N/m2 ; vm = 0.3 ; Ec = 151 × 109 N/m2 ; 
vc = 0.3 . The plate is modeled with a mesh of 8 × 8 three-node 
triangular elements. The non-dimensional central deflection 
w̄ and the normal central axial stress �̄�xx distribution with dif-
ferent volume fraction exponents of the FGM plate Al–ZnO2 
are shown in Figs. 10 and 11, respectively. To demonstrate 
the performance of the present approach in comparison with 
other existing methods, the solutions of the element-free kp-
Ritz method proposed by Zhao and Liew [57] are used as the 
reference solutions. Figure 12 shows the non-dimensional 
central deflection w̄ with the volume fraction exponent n = 2 
of the present element (ES-MITC3) and DSG3 and MITC3 
triangular elements. As shown in this figure, the results of the 
present method are more accurate than those obtained using 
MITC3, DSG3 triangular elements. In addition, the results of 

ES-MITC3 element show a good agreement with the results 
of the element-free kp-Ritz method [57]. Table 2 presents non-
dimensional central deflection results with the load parameter 
for simply supported FGM plate Al–ZnO2 with volume frac-
tion exponents n = 2.   

3.3  Nonlinear analysis of hinged cylindrical shell 
under point load

Consider a cylindrical roof subjected to a point load at the 
center as shown in Fig. 13, wherein the longitudinal edges 
are hinged and the curved edges are free. In Fig. 13, the 
length of the cylindrical shell is L = 508mm , the radius 

Table 1  The central deflection of the clamped isotropic plate

Load param-
eter P̄

Method

ES-MITC3 MITC3 DSG3 FEM Q9 MXFEM

17.8 0.2308 0.2250 0.2186 0.2361 0.2392
38.3 0.4523 0.4425 0.4321 0.4687 0.4738
63.4 0.6743 0.6613 0.6483 0.6902 0.6965
95 0.8894 0.8743 0.8600 0.9015 0.9087
134.9 1.0978 1.0812 1.0662 1.1050 1.1130
184.0 1.2974 1.2797 1.2643 1.2997 1.3080
245.0 1.4937 1.4752 1.4594 1.4916 1.5010
318.0 1.6833 1.6640 1.6480 1.6775 1.6880
402.0 1.8632 1.8432 1.8268 1.8545 1.8660

Fig. 10  Non-dimensional central deflection with the load parameter 
for simply supported FGM plate Al–ZnO2 with different volume frac-
tion exponents

Fig. 11  Non-dimensional central axial stresses for simply supported 
FGM plate Al–ZnO2 with different volume fraction exponents

Fig. 12  The central deflection with the load parameter for simply sup-
ported Al–ZnO2 FGM plate with n = 2
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is R = 2540mm and open angle 2� = 0.2 rad . The mate-
rial properties are E = 3.10275 kN/mm2 , v = 0.3 . Owing to 
symmetry, a quarter of the cylindrical shell is modeled and 
uniformly discretized by 6 × 6 triangular elements as shown 
in Fig. 13. Figure 14 plots the load–deflection curves at the 
center of the cylindrical shell with two different thicknesses: 
h = 12.7mm and h = 6.35mm . As shown in this figure, the 
present ES-MITC3 solutions capture and close to the solu-
tions obtained by Sze et al. [64]. It can be concluded that the 
present element is successfully applied to the geometrically 
nonlinear analysis of shell structures. 

3.4  Nonlinear analysis of hinged functionally 
graded cylindrical shell under point load

Finally, the nonlinear response of functionally graded 
cylindrical shell subjected to point load is investigated. The 
geometry and the boundary conditions of the cylindrical 

shell in this example are the same as example 3.3. A quar-
ter of the cylindrical shell is also discretized using a 6 × 6 
mesh. The material properties of the functionally graded 
shell are aluminum-zirconia. Figures 15 and 16 plot the 
load–displacement response of the ES-MITC3 solutions 
with several different values of the exponent n for two dif-
ferent thicknesses: h = 12.7mm and h = 6.35mm . It can 
be seen that the limit points of the load–deflection curves 
of the volume faction exponent n = 0 (Zirconia) for both 
cases of thickness ( h = 12.7mm and h = 6.35mm ) are 
higher than others. A snap-through and snap-back phe-
nomenon are observed in this problem with respect to 
h = 12.7mm and h = 6.35mm . In addition, the magnitude 

Table 2  The central deflection of simply supported Al–ZnO2 FGM 
plate with the load parameter

Load param-
eter P̄

Method

ES-MITC3 MITC3 DSG3 Mesh free

0.5 0.0173 0.0168 0.0155 0.0182
1.0 0.0346 0.0337 0.0310 0.0348
1.5 0.0519 0.0505 0.0465 0.0508
2.0 0.0691 0.0672 0.0620 0.0690
2.5 0.0863 0.0840 0.0774 0.0850
3.0 0.1033 0.1006 0.0928 0.1033
3.5 0.1204 0.1172 0.1081 0.1198
4.0 0.1373 0.1336 0.1234 0.1364
4.5 0.1541 0.1500 0.1386 0.1546
5.0 0.1708 0.1663 0.1537 0.1707

h

R

L

P

Fig. 13  A hinged cylindrical shell panel under a point load

Fig. 14  Comparison of the load–deflection for a hinged-free isotropic 
shell panel under a point load

Fig. 15  Variation in the central deflection for a hinged-free FGM 
(aluminum/zirconia) shell panel under a point load with the thickness 
h = 12.7mm
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of the load decreases when the volume fraction exponent 
increases. As expected, due to a larger volume exponent 
of FGM shell, i.e., the smaller ratio of the ceramic com-
ponent, the stiffness of the FGM shell becomes weaker. 
To demonstrate the performance of the present ES-MITC3 
element, the solution proposed by Arciniega and Reddy 
[65] is used as the reference solution in this example. 
Figure 17 illustrates the load–displacement response of 
the volume fraction exponent n = 2 . It is observed from 
Fig. 17 that the result of the present method is in good 
agreement with the result that is given by Arciniega and 
Reddy [65]. It is pointed again that the present ES-MITC3 
element is able to offer good predictions in geometrically 
nonlinear analysis of the FGM shells.  

4  Conclusion

In this paper, the geometrically nonlinear analysis of FGM 
shells is studied using a combination between the ES-FEM 
and the MITCs technique, named as ES-MITC3. Herein, 
the stiffness matrices obtained based on the strain smooth-
ing technique over the smoothing domains associated 
with edges of MITC3 triangular elements. In this study, 
the FSDT with the von Kármán large deflection theory 
is applied for the nonlinear formulation of the shells. To 
obtain the full load–displacement path, the cylindrical arc-
length method combined with an automatic incremental 
algorithm is used. Through the numerical results, we can 
withdraw the following points:

• The present ES-MITC3 element is a simple and effi-
cient element based on a combination between the ES-
FEM technique and the MITC3 element.

• The results obtained by ES-MITC3 element are more 
accurate than those obtained using the MITC3, DSG3 
elements.

• The accuracy and reliability of the proposed ES-MITC3 
element for geometrically nonlinear analysis of FGM 
shells are also good agreement with most of the case 
which is compared to the reference and analytical solu-
tions.
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