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Abstract
Kriging surrogate model has been widely used in engineering design optimization problems to replace computational cost 
simulations. To facilitate the usage of the Kriging surrogate model-assisted engineering optimization design, there are still 
challenging issues on the updating of Kriging surrogate model for the constraints, since there exists prediction error between 
the Kriging surrogate model and the real constraints. Ignoring the interpolation uncertainties from the Kriging surrogate 
model of constraints may lead to infeasible optimal solutions. In this paper, general sequential constraints updating approach 
based on the confidence intervals from the Kriging surrogate model (SCU-CI) are proposed. In the proposed SCU-CI 
approach, an objective switching and sequential updating strategy is introduced based on whether the feasibility status of 
the design alternatives would be changed because of the interpolation uncertainty from the Kriging surrogate model or not. 
To demonstrate the effectiveness of the proposed SCU-CI approach, nine numerical examples and two practical engineer-
ing cases are used. The comparisons between the proposed approach and five existing approaches considering the quality 
of the obtained optimum and computational efficiency are made. Results illustrate that the proposed SCU-CI approach can 
generally ensure the feasibility of the optimal solution under a reasonable computational cost.

Keywords  Kriging surrogate model · Sequential constraint updating · Prediction interval · Feasibility

1  Introduction

In practical engineering design, computer simulation models 
have often been employed to replace the costly controlled 
real-life experiments. However, running simulation models, 
e.g., computational fluid dynamics (CFD) and finite-element 
analysis (FEA), for complex engineering system with mul-
tiple inputs and outputs can be computationally prohibitive 

[1–3]. Just take the airfoil simulation case as an example, it 
is reported that it takes the designer about 7–10 h to produce 
a single output using the CFD model [4]. It is unrealistic to 
directly use these simulation models to evaluate a large num-
ber of design solutions when optimizing the design space. A 
promising way to address this issue is to adopt the surrogate 
model, also called the metamodel or approximation model, 
to replace the computational expensive simulation model 
[5–8]. There are several commonly used surrogate models, 
such as Kriging model [9–11], Support Vector Regression 
(SVR) model [12–14], Polynomial Response Surface (PRS) 
model [15], and Radial Basis Function (RBF) model [16, 
17]. Among these surrogate models, Kriging model is the 
most thoroughly studied surrogate model to improve the 
computational efficiency of engineering design optimization, 
because it has several interesting characteristics compared to 
other surrogate models [18, 19]. First, the Kriging model can 
provide the prediction bias of each un-sampled point. The 
prediction bias obtained can reflect the level of prediction 
confidence at the un-sampled point. The lower the prediction 
bias, the higher the degree of confidence in the prediction, 
and vice versa. Second, although different surrogate models 
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perform well under different situations, preliminary results 
illustrate that in most cases, Kriging model performs better 
than other surrogate models regarding modeling accuracy, 
especially when the number of sample points is small and 
the black-box functions exhibit strong nonlinearity [20–23].

As reported in the literature, the Kriging model-assisted 
engineering design optimization can be classified into two 
types: off-line type and on-line type. In the off-line type, a 
pre-specified amount of sample points is employed to build 
a Kriging model, which is used for replacing the simulation 
analysis in the engineering optimization subsequently [24]. 
The main shortcoming of the off-line type is that it is dif-
ficult to predetermine the proper sample size for obtaining 
an accurate Kriging model [25, 26]. On the other hand, the 
on-line type generates an initial Kriging model first and then 
adaptively updates the Kriging model following certain met-
rics, the distance criteria [27], prediction variance [28, 29], 
cross-validation error [30], etc. Compared with the off-line 
type, the on-line type can make use of the knowledge from 
the previous iterations and is reported to be more efficient for 
engineering design optimization. So far, most of the existing 
on-line Kriging model-assisted engineering design optimiza-
tion focus on sequential updating of the objective function. 
The most famous method, called efficient global optimization 
(EGO), was proposed by Jones et al. [31], where the Krig-
ing surrogate model is updated by selecting the point that 
maximizes the expected improvement (EI) over the present 
best solution. Furthermore, Sóbester et al. [32] proposed a 
weighted expected improvement criterion, which is designed 
to allow a more flexible way to balance the exploration and 
exploitation in global searching. Wang et al. [33] developed a 
boundary and best neighbor searching (BBNS) approach for 
selecting sampling points that are not only in the neighbor-
hood of the present best solution but also near the boundary 
of the design space. Zhan et al. [34] proposed a parallel EGO 
algorithm, where multiple updating points were selected in 
each cycle by dynamically controlling the number of EI max-
ima and points around each EI maximum. Dong et al. [35] 
proposed a hybrid surrogate-based optimization algorithm, 
in which the update points need to satisfy a defined distance 
criterion. While a limited number of approaches consider 
the updating strategy for the constraints [36]. Schonlau et al. 
[37] proposed a probability of feasibility (PoF) approach to 
identify regions of feasibility, i.e., the probability of the pre-
diction at design alternatives will be larger or smaller than 
a constant limit. Li et al. [38] applied the PoF approach to 
finding initial feasible sample points in a Kriging-based 
constrained global optimization algorithm. Wang et al. [39] 
extended the PoF approach for the design optimization of the 
black-box stochastic systems. Zhang et al. [40] adopted the 
PoF approach to address the global constraint optimization, 
where multi-fidelity analysis models are available. Parr et al. 
[41] provided a review of three typical updating strategies for 

handling constraints and made a comparative among them, 
concluding that further improvements are needed, since these 
methods may discard solutions if the PoF of design alter-
natives close or equal to zero. Sasena et al. [42] illustrated 
that the expected violation (EV) method could address the 
shortcoming of the PoF approach. Bichon et al. [43] proposed 
an efficient global reliability analysis (EGRA) approach, 
which shares a similar idea with EV, for updating constraints 
with the value likely to be zero. Furthermore, Li et al. [44] 
adjusted it from the global design region to the local one in a 
honeycomb material design problem. However, it is reported 
that EV method evaluates design points from a finite set, 
which may not be able to locate the optimum of the original 
problem as accurately as solving the constrained one [42]. 
Recently, Shu et al. [45] developed a weighted accumulative 
error sampling (WAE) strategy for updating metamodels and 
then applied it to improve the quality of global optimization. 
Liu et al. [46] proposed a DIRECT-type constraint-handling 
technique that can separately handle feasible and infeasible 
cells. Dong et al. [47] developed a novel multi-start space 
reduction (MSSR) algorithm for solving computationally 
expensive black-box global optimization problems with 
bound constrains and nonlinear constrains. Shi et al. [48] 
developed a filter-based adaptive Kriging method, in which 
a probability of constrained improvement (PCI) criterion is 
developed based on the notion of filter to sequentially gener-
ate new samples for updating Kriging metamodels of objec-
tive and constraints. Wu et al. [49] extended the adaptive 
metamodel-based global optimization algorithm (EAMGO) 
to handle constrained global optimization problems, in which 
the updating strategy for the constraints can be used for dif-
ferent surrogate models. However, because the interpolation 
uncertainties are not considered in all updating iterations, 
the feasibility of the design alternatives that changed due 
to these interpolation uncertainties will mislead the global 
searching direction.

To address the issue-mentioned above, a general sequential 
constraint-updating approach based on the confidence inter-
vals from the Kriging surrogate model (SCU-CI) is proposed. 
In the developed SCU-CI approach, an objective switching 
and sequential updating strategy is introduced to determine, 
(1) whether the actual simulation models or the Kriging 
metamodel should be used to evaluate the feasibility of the 
design alternatives and (2) which design alternatives would 
be selected to improve the prediction accuracy of the Kriging 
metamodel. The developed updating strategy is mainly based 
on whether the feasibility status of the design alternatives 
would be changed because of the interpolation uncertainty 
from the Kriging surrogate model or not. The performance 
of the proposed approach is illustrated using nine numerical 
cases and two real-world engineering examples. The com-
parisons between the proposed approach and some existing 
approaches considering the quality of the obtained optimum 
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and computational efficiency are made. The merits of the pro-
posed approach are analyzed and summarized.

The rest of this paper is organized as follows. In Sect. 2, 
the background of the Kriging model and several typical 
constraint-updating strategies are presented. Details of the 
proposed are introduced in Sect. 3. In Sect. 4, the compari-
son results between the proposed approach and some exist-
ing approaches on a numerical benchmark case and two real-
world engineering design problems are presented. Finally, 
the concluding remarks are given in Sect. 5.

2 � Background

2.1 � Kriging model

Kriging model is a kind of interpolation model, which was 
developed by Danie G. Krige for forecasting the mining 
holes. Then, it was introduced to approximate the com-
puter experiments by Sacks et al. [50]. Supposing that 
there are N sample points X =

{
x(1), x(2),… , x(N)

}
 with 

x(1) =
{
x
(1)

1
, x

(1)

2
,… , x

(1)

k

}
 and the corresponding response 

is y =
{
y(1), y(2),… , y(N)

}
 . The Kriging model can be 

expressed as

where p(x) denotes the mean of the Gaussian process, indi-
cating the global property, Z(x) represents the local property 
with the mean value being equal to zero, and the variance 
is �.

The variables of the Kriging model were considered to 
be correlated with each other through the basis function:

where R is the correlation coefficient, R
[
y(x(i)), y(x(j))

]
 

denotes the correlation between x(i) and x(j) , �m , and pm are 
the hyper-parameters that influence the correlation of the 
sample points and the smoothness of the surrogate model.

The hyper-parameters can be obtained by the maximum 
likelihood estimation:

The value of � and � can be obtained by setting the deri-
vate of Eq. (3) to be zero

(1)f̂ (x) = p(x) + Z(x),

(2)

R
[
y(x(i)), y(x(j))

]
= Cor

[
y(x(i)), y(x(j))

]

= exp

(
−

k∑
m=1

�m
|||x

i
m
− xj

m

|||
pm

)
,

(3)

L
�
y(1), y(2),… , y(N)

����,�
�
=

1

(2��2)
n∕2

exp

�
−

∑
(y(i) − �)2

2�2

�
.

(4)𝜇̂ =
1TR−1y

1TR−11
,

Substituting Eqs. (4) and (5) to Eq. (3), an expression can 
be got for parameters are � and p

The maximum likelihood estimation should be maxi-
mized, so that the hyper-parameters can be got, which is the 
best fit to the Kriging model. It is difficult to get an analyti-
cal solution of Eq. (6); therefore, a global search algorithm, 
e.g., genetic algorithm, is used for finding the optimum of 
� and p.

Then, the predicted value at an un-sampled point x can 
be calculated as

where y is the response value of the sample points, R is the 
correlation matrix of the sample points, and r is a vector, 
whose dimension is N × 1. The elements of the vector r are 
ri = Cor

[
y(x), y(x(i))

]
.

The advantage of the Kriging model compared with other 
surrogate models is that it can provide the variance value of 
the predict points, which can be expressed as

The variance function can be calculated in every pre-
dicted point, so that a confidence interval can be got to fore-
cast the range of forecasting. A one-dimensional example is 
presented in Fig. 1. The function which is approximated has 
an expression of f (x) = (6x − 2)2 sin(12x − 4) . The sample 
points are X = [0, 0.25, 0.5, 0.75, 1]T . In Fig. 1, the solid line 
represents the real response value of the function, and the 
dashed line represents the predicted value through the Krig-
ing surrogate model; the dot lines denote the upper bound 
and lower bound. The predict response at sample points 
equal to the real response and the errors equal to zero. The 
bounds consist of the confidence interval of the Kriging 
model, of which has 95.5% probability that the points would 
fall into it.

2.2 � Descriptions of five typical constraint‑updating 
strategies

A general formulation of a constraint optimization problem 
is given as:

(5)𝜎̂2 =
(y − 1𝜇̂)R−1(y − 1𝜇̂)

N
.

(6)ln(L) = −
n

2
ln(

(y − 1𝜇̂)R−1(y − 1𝜇̂)

N
) −

1

2
ln |R|.

(7)f̂ (x) = 𝜇̂ + rTR−1(y − 1𝜇̂),

(8)s2(x) = 𝜎̂2

[
1 − rTR−1r +

(1 − 1TR−1r)2

1TR−11

]
.

(9)
min
x

f (x)

s.t. gj(x) ≤ 0, j = 1, 2… J

xlb ≤ x ≤ xub,
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where f (x) is the objective function, x = (x1, x2,… xN)
T 

is the design variable vector, xlb and xub are the lower and 
upper bounds of x , respectively, and g = (g1, g2,… , gJ) are 
the constraints.

In this work, we focus on the constraints, which involve 
expensive simulations, i.e., we assume that the evaluation of 
the objective is cheap. This is common in the design of engi-
neering structure, i.e., the minimum weight design of struc-
tures. Therefore, in this section, brief introductions of five 
typical constraint-updating strategies, including EV, PoF, 
maximum MSE (MAX-MSE) method, WAE, and EAMGO 
methods, are introduced.

(1) EV method
EV method is one of the most commonly used constraint-

handling strategies. The typical characteristic of this method 
is that the constraints are checked before the sampling crite-
rion is taken into consideration. For every candidate point, 
the expected violation is calculated as [42]

where ĝi refers to the predicted mean of constraint i , and 
ŝi is the standard deviation. It is worth mentioning that the 
expected violation plays a similar role as the EI function. 
When the constraint has prominent uncertainty or is likely to 
be violated, the expected violation trends to be large. As to 
the problem with several constraints, the EV can be a vector.

(10)EVi =

{
(ĝi − 0)𝛷

(
ĝi−0

ŝi

)
+ ŝi𝜙

(
ĝi−0

ŝi

)
, if ŝi > 0

0, if ŝi = 0
,

(2) PoF method
The PoF approach is based on the feasible probability of 

the candidate design points, and the constraint functions are 
classified into two types (i.e., “inexpensive” and “expen-
sive”) according to computing time. The feasible probability 
of inexpensive constraints is 0 or 1, because it is quite easy 
to verify whether the candidate points satisfy the constraints 
or not. It can be expressed as [41]

As to expensive constraint functions, the feasible prob-
ability needs to be estimated from the statistical models. 
The estimated the feasible probability could be expressed as

where � refers to the Gaussian cumulative distribution func-
tion. ĝ(x) and ŝi(x) are Kriging predicted mean and stand-
ard deviation, which are obtained from Eqs. (7) and (8), 
respectively.

(3) MAX-MSE method
The MAX-MSE method is a general updating strategy not 

only for handling constraints but also for objective functions. 
The main idea of The MAX-MSE method is that adding the 
sample point with the largest variance is the most beneficial 
to improve the prediction accuracy of the Kriging model. 
Since the Kriging model assumes that the correlations 
between the design points are dependent on their distances, 

(11)Pinexp =

{
1, if g(x) ≤ 0

0, otherwise
.

(12)Pexp = 𝛷

(
0 − ĝ(x)

ŝ(x)

)
,

Fig. 1   Illustration of the Krig-
ing model with its confidence 
interval



997Engineering with Computers (2020) 36:993–1009	

1 3

the accuracy of the Kriging model for the constraints in the 
neighborhood of the selected samples will also increase 
obviously. The formula can be expressed as [51]

where s2(x) is the variance value, which can be obtained 
by Eq. (9). The MAX-MSE value is found through an opti-
mization method such as Direct Search when dealing with 
practical problems.

(4) WAE method
In the WAE method, the optimization objective is to find 

a sample point with the maximum weighted accumulative 
predicted error obtained by analyzing data from the previous 
iterations, and a space-filling criterion is also introduced and 
treated as a constraint to avoid generating clustered sample 
points. To some extent, the WAE method is an extension of 
the MAX-MSE method, which can be expressed as

where ŷ(x) denotes the Kriging model constructed using the 
current sample set, while ŷ−i(x) is the Kriging model con-
structed using the current sample set without the ith sample. 
The value of wi reflects the influence of different sample 
points on the error on x.

In addition, the WAE method limits the minimum dis-
tance between a new point and existing points by the fol-
lowing criterion:

where d denotes the threshold distance, which is calculated 
by the average value of the minimum distance between each 
pair of the sample points.

(5) EAMGO method
EAMGO is different from adaptive metamodel-based 

global optimization (AMGO) for its constrains updat-
ing strategy. During each iteration, the updating point is 
obtained by minimizing the summation of predicted con-
straint values subject to the approximate constraints and the 
distance limitation. The constraints updating strategy in the 
EAMGO method can be described as

(13)max s2(x),

(14)eWAES(x) =

√√√√ n∑
i=1

wi(ŷ−i(x) − ŷ(x))2

(15)min‖‖x − xi
‖‖ ≥ d,

(16)

min
x

J∑
j=1

ĝk
j
(x)

s.t. ĝk
j
(x) ≤ 0, j = 1, 2… J

‖‖x − xi
‖‖ ≥ 𝜁iterdmax

xlb ≤ x ≤ xub,

where k is the current iteration number, dmax denotes the 
maximum distance between two sample points in the current 
sampling set, �iter is a distance coefficient obtained from a 
constant array, and xi denotes the ith sample in the current 
sample set.

3 � Proposed approach

In this work, a genetic algorithm (GA) from Coello [52] is 
used to solve the optimization problems. If the constraints 
are calculated by running the computational expensive sim-
ulation models, it will be unrealistic to directly use these 
simulation models to evaluate a large number of design 
solutions when optimizing the design space. To improve 
the effectiveness of solving this problem, the Kriging surro-
gate model instead of the actual constraints can be used. As 
mentioned in Sect. 2.1, there are prediction errors between 
the Kriging surrogate model and the real constraint values, 
which may lead to infeasible optimal solutions. The purpose 
of the proposed approach is to sequentially update the Krig-
ing surrogate models to ensure the feasibility of the opti-
mization solutions. The flowchart of SCU-CI approach is 
demonstrated in Fig. 2. The Step 4 and Step 5 are the cores 

Begin

Generate initial sample points and obtain the response values

Construct initial Kriging model

Initial the population of GA, Set N=1,evaluate fitness values 
of initial  individuals by Kriging model

Select the individuals whose feasibility may change due to the 
Kriging model uncertainty

Determine the new sample points by a distance criterion 

Stop

Yes

Satisfy the Convergence condition?
NoStep 8

Step 1

Step 2

Step 3

Step 4

Step 5

Update the Kriging model. Generate new population and 
update the count number  N=N+1

Step 6

Step 7
Evaluate the responses of the new individuals by Kriging 

model

Output the optimization solutions

Step 9

Fig. 2   Flowchart of the proposed approach
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of SCU-CI and will be described in details in Sects. 3.1 and 
3.2.

3.1 � The developed objective switching criterion

Prediction values from Kriging surrogate models have pre-
diction uncertainty, which may lead to infeasible optimi-
zation solutions. Therefore, the SCU-CI approach is pre-
sented to take the interpolation uncertainty of the Kriging 
surrogate model into consideration. Note that as long as the 
feasibilities of the design alternatives may not change due 
to the Kriging surrogate model uncertainty, the feasibilities 
of the individuals can be predicted by the Kriging surrogate 
models instead of expensive simulation models. However, if 
the feasibilities of the design alternatives may change, then 
the feasibilities of the individuals should be evaluated by 
simulation models. Thus, an objective switching criterion is 
introduced in SCU-CI to determine whether the simulation 
models or the Kriging surrogate models should be used to 
evaluate the feasibilities of individuals.

In each generation of GA, when the effects of interpola-
tion uncertainty from the Kriging surrogate model are taken 
into consideration, there are four possible scenarios for a 
design alternative, as shown in Fig. 3.

In the first scenario, as shown in Fig. 3a, point A is a 
feasible design alternative and the confidence interval does 
not intersect the constraint boundary. It means that point A 
would be feasible at the given confidence probability. Simi-
larly, in the fourth scenario, point D would be an infeasible 
solution at the given confidence probability, as shown in 
Fig. 3d. In summary, for these two scenarios, although the 
Kriging surrogate model has prediction errors at point A and 
point D, these prediction errors do not affect the feasibilities 
of the two points. Therefore, there is no need to add these 
points as new sample points for updating the Kriging sur-
rogate model in the subsequent optimization process.

In the second scenario, as shown in Fig. 3b, point B is fea-
sible, while its confidence interval intersects the constraint 
boundary. This means that point B may be infeasible at the 
given confidence probability. Similarly, in the third scenario, 
point C is infeasible, while it may become feasible due to the 

A

D

C

B

Feasible Region

Infeasible Region

Feasible Region

Infeasible Region

Feasible Region

Infeasible Region

Feasible Region

Infeasible Region

2σ
-2σ

2σ
-2σ

2σ
-2σ

2σ
-2σ

(a) (b)

(c) (d)

Fig. 3   Four possible scenarios for a design alternative
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prediction error from the Kriging surrogate model. For these 
two scenarios, the feasibilities of points B and C are uncer-
tain. Therefore, the new sample points should be selected 
from the points, whose feasibilities are uncertain. The condi-
tions that these points satisfy can be described as:

where ĝi(x) are the predicted constraint value of the opti-
mization problem; s(x) is the standard deviation of the cor-
responding Kriging surrogate model.

3.2 � Distance metric

It is noted that it may cause unnecessary computational cost 
if the points selected according to the criterion in Sect. 3.1 
are all evaluated by simulation models. This is because (1) 
these sample points may be very close in the design space, 
resulting in the oversampling for Kriging surrogate model 
[45, 53] and (2) when a new sample point is used to update 
the Kriging surrogate model, the prediction error at an unob-
served point near the new sample point will be significantly 
reduced. It indicates that the points, which are very close to 
other existing sample points, should not be selected as new 
sample points.

To prevent the cluster of sample points, the points that 
satisfy the following constraint are selected as new sample 
points:

where � is the distance threshold control parameter which is 
set to be 2 in this work, x is the sample points to be judged, 
and x(n)

i
 is the nth sample point in the current sample points 

set. The algorithm for determining new sample points that 
meet the requirements is listed in Table 1.

3.3 � Steps of the proposed approach

The detailed steps of the proposed approach are described 
as follows.

Begin

(17)
ĝi(xj) ≤ 0& ĝi(xj) + 2s(xj) ≥ 0 i = 1, 2,… , J

ĝi(xj) ≥ 0& ĝi(xj) − 2s(xj) ≤ 0 i = 1, 2,… , J,

(18)

d(x) >
d̄

𝛿

d(x) = min

(√(
x − x

(n)

i

)T(
x − x

(n)

i

))
(i = 1, 2,… ,N(n))

d̄ =

n∑
i=1

min

(√(
xi − x

(n)

j

)T(
xi − x

(n)

j

))
j = 1, 2,… , i − 1, i + 1,… , n,

Step 1: Generate initial sample points and obtain the 
response values. The essential requirement of initial sam-
pling is that sample points should distribute uniformly in 
whole design space. In this paper, the optimal Latin hyper-
cube design (OLHD) is used for initial sampling.

Step 2: Construct the initial Kriging surrogate model.
Step 3: Initialize the population of GA, Set gen = 1, evalu-

ate the fitness values of initial individuals by Kriging sur-
rogate model.

Step 4: Select the individuals whose feasibility may 
change due to the interpolation uncertainty from the Krig-
ing surrogate model according to Eq. (17).

Step 5: Determine the new sample points by a distance 
criterion according to Eq. (18).

Step 6: Update the Kriging surrogate model. Generate the 
new population and update the count number gen = gen + 1.

Step 7: Evaluate the responses of the new individuals by 
Kriging model

Step 8: Check whether the stopping criterion is satisfied: 
If yes, go to Step 9; otherwise, go back to Step 4. The stop-
ping criterion satisfies one of the following conditions:

where ygen−2 , ygen−1 , and ygen are the optimal solutions 
obtained in the (gen − 2)th , (gen − 1)th , and genth genera-
tion, �y is the relaxation factor, and MAXGEN is the maxi-
mum generation of GA.

Step 9: Output the optimization solutions.
End

(19)

{|||ygen − ygen−1
||| ≤ �y ,

|||ygen−1 − ygen−2
||| ≤ �y

gen = MAXGEN
,

Table 1   Algorithm for determining new sample points satisfying the 
distance constraint

Input: the selected points in Sect. 3.1

Begin

Selected individuals 
SI = {SI1 SI2 … SIl}

Existing sample points 
SP = {x1x2 … xn}

← Selected points in Sect. 3.1 are 
sorted in descending order of confi-
dence interval intervals.

for k = 1:l
d(SI

k
) ← Calculate the distance metric for SI

k

if d(SI
k
) >

d̄

n

← The individual which satisfy the 
constraint is determined as a new 
sample pointSP = {SP SI

k
}

end if
end for
Output: The new sample points
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4 � Examples and results

In this section, nine numerical examples and two practical 
engineering cases are used to demonstrate the effectiveness 
and merits of the proposed approach. In the test cases, all 
the five updating strategies are used in the framework of GA 
as the proposed SCU-CI strategy. A Kriging model with the 
same sample points is built in the initial stage of the GA 
method. Then, the Kriging model is used to evaluate the 
fitness value during the evolution process. The difference 
among all the approaches is the updating strategy, where 
the alternatives are selected. To provide a detailed descrip-
tion of the implementation process of the proposed SCU-
CI approach, one of the numerical examples is used as an 
illustrative example. The parameters set for the GA are as 
follows: the population size and max iterations are 40 and 
100, respectively. The crossover probability and mutation 
probability are 0.80 and 0.15, respectively. The generation 
gap is 0.95 to keep the elites in each generation.

4.1 � Illustration example

A numerical case from Zhou et al. [54] is used to describe 
the proposed approach steps by steps. The object is to find 
the minimum value of the objective function subject to two 
constraints. The expression of this optimization problem is 
given as

In this example, it is assumed that the original nonlinear 
constraint g2 is an expensive cost model, while the objective 
function f and g1 can be expressed explicitly. Two metrics, 
the obtained optimal solution and the required number of 
sample points (NS), are employed in this work to evaluate 
the accuracy and efficiency of the proposed method. Both 
of these two metrics are expected to be smaller values. For 
illustration, the proposed approach is compared with five 

(20)

min f = x3
1
sin(x1 + 4) + 10x2

1
+ 22x1 + 5x1x2 + 2x2

2
+ 3x2 + 12

s.t. g1 = x2
1
+ 3x1 − x1 sin(x1) + x2 − 2.75 ≤ 0

g2 = − log2(0.1x1 + 0.41) + x2e
−x1+3x2−4 + x2 − 3 ≤ 0

−3 ≤ x1 ≤ 1.5, − 4 ≤ x2 ≤ 1.5.

approaches: (1) EV method [42], (2) MAX-MSE method, 
(3) PoF method [37, 40], (4) WAE method [45], and (5) 
EAMGO method [49]. Since the true optimal solution for 
a numerical example can be obtained, the stopping crite-
ria used for the numerical example are different from those 
for the engineering problems for a better comparison of the 
performance of different approaches. The stopping criterion 
satisfying one of the following conditions:

where ygen is the optimal solution obtained in the genth gen-
eration; y ∗ is the true optimal solution of the numerical 
example, and MAXGEN is the maximum generation of GA. 
� is set to be 0.02 in this example.

For the initial Kriging surrogate model, 20 initial sample 
points are generated by OLHD for different approaches. The 
comparison results are summarized in Table 2.

As can be seen in Table 2, although the proposed SCU-
CI approach required more sample points than those of EV, 
PoF, and WAE approaches, it can obtain the best optimal 
solution at the same time satisfying the constraints. Com-
pared to EAMGO, SCU-CI can obtain better optimal solu-
tion while requires fewer sample points. In addition, EV, 
PoF, and WAE approaches violate the constraint and lead to 
an infeasible optimal solution. The obtained optimal solu-
tions of the six methods are described in Fig. 4. From Fig. 4, 
it can be seen that only the optimal solutions obtained by 
the proposed SCU-CI approach and EAMGO fall into the 
feasible region and are very close to the constraint boundary, 
while the optimal solutions obtained by other approaches 
are infeasible.

To demonstrate the sequential updating process of the 
proposed SCU-CI approach, Fig. 5 provides the sample 
points and their confidence intervals of the constraint in dif-
ferent generations of GA.

As shown in Fig. 5a, the individuals in the first genera-
tion are randomly distributed in the design space, and the 
confidence intervals of the Kriging model of the constraint 
are large for most individuals. With the optimization process 

(21)

⎧
⎪⎨⎪⎩

����
ygen − y ∗

y ∗

���� ≤ �

n = MAXGEN

,

Table 2   Comparison results of 
the different approaches for the 
illustration example

x1 x2 ĝ2 Optimal solution g1 g2 NS

EV − 1.9178 0.7269 − 0.2514 − 3.2959 − 5.9021 0.0512 36
MAX-MSE − 1.8323 0.7523 − 0.1424 − 3.3288 − 5.9072 0.0588 74
PoF − 1.9083 0.7316 − 0.0075 − 3.3096 − 5.9023 0.0607 48
WAE − 2.1004 0.7458 − 5.3995 − 3.3446 − 5.7064 0.4011 42
EAMGO − 1.7512 0.7456 − 0.0689 − 3.2219 − 5.9384 − 0.0689 77
SCU-CI − 1.9013 0.7164 − 0.0220 − 3.2514 − 5.9209 − 0.0154 62
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goes on, the new sample points are added around the con-
straint boundary. It can be seen in Fig. 5b that the individuals 
in the sixth generation are closer to the constraint boundary 

and the confidence intervals are becoming smaller. As 
shown in Fig. 5c, all the individuals are near the constraint 
boundary with small confidence intervals (most of them 

Fig. 4   Optimal solutions from 
different approaches

Fig. 5   Individuals, selected 
sample points, and their confi-
dence level in different genera-
tions of GA
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close to being 0) in the last generation of GA. The newly 
added sample points of the proposed SCU-CI approach are 
plotted in Fig. 6. In Fig. 6, the red triangles represent the 
newly added sample points, the black dash line and the red 
dash-and-dot line denote the two constraints, and the blue 
domain is the feasible region of the optimization problem. 
As illustrated in Fig. 6, the newly added sample points of 
the proposed SCU-CI approach are distributed around the 
constrained boundary.

It can be concluded from Figs. 5 and 6 that the search-
ing space of the proposed SCU-CI approach can adaptively 
locate the regions, in where the feasibility states of the indi-
viduals could be changed due to the prediction uncertainty 
from the Kriging surrogate model. This can result in a large 
probability to get a more desirable solution.

4.2 � Additional numerical test cases

In this section, eight additional numerical test cases from 
Wang et al. [55] are used to illustrate the effectiveness of the 
proposed SCU-CI approach. The formulations of these test 
cases are described as follows. A more detailed description 
of these examples, e.g., characteristics, actual optimal solu-
tions, can be found in Wang et al. [55]:

Gomez

Constrained Branin
(22)

min f =

(
4 − 2.1x2

1
+

1

3
x4
1

)
x2
1
+ x1x2 +

(
− 4 + 4x2

2

)
x2
2

s.t.

g = − sin(4�x1) + 2 sin2(2�x2) ≤ 0

−1 ≤ xi ≤ 1 for i = 1, 2.

New Branin

Sasena

Qcp4

(23)

min f =
1

51.95
((ax2 − bx2

1
+ cx1 − d)2 + h(1 − ff ) cos(x1) − 44.81)

s.t.

g = max
j∈{1,2}

{gj} ≤ 0

g1 =
1

10
(x1(1 − x2) − x2)

g2 =
1

10

(
1 −

(
(x1−5)

2

8
+

(x2−15)
2

4

))

a = 1, b =
5.1

4�2
, c =

5

�
, d = 6, h = 10, ff =

1

8�

−5 ≤ x1 ≤ 10, 0 ≤ x2 ≤ 15.

(24)

min f =
1

80

(
−(x1 − 10)2 − (x2 − 15)2

)
s.t.

g =
1

51.95
((ax2 − bx2

1
+ cx1 − d)2 + h(1 − ff ) cos(x1) − 5 + h) ≤ 0

a = 1, b =
5.1

4�2
, c =

5

�
, d = 6, h = 10,

ff =
1

8�
− 5 ≤ x1 ≤ 10, 0 ≤ x2 ≤ 15.

(25)

min f = −(x1 − 1)2 − (x2 − 0.5)2

s.t.

g = max
j∈{1,2,3}

{gj} ≤ 0

g1 = ((x1 − 3)2 + (x2 + 2)2)e−x
7
2 − 12

g2 = 10x1 + x2 − 7

g3 = (x1 − 0.5)2 + (x2 − 0.5)2 − 0.2

0 ≤ xi ≤ 1 for i = 1, 2.

Fig. 6   Added sample point dia-
gram of the proposed sequential 
sampling method
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G4

G24

(26)

min f = −2x1 + x2 − x3
s.t.

g = max
j∈{1,2,3}

{gj} ≤ 0

g1 = x1 + x2 + x3 − 4

g2 = 3x2 + x3 − 6

g3 = −x′A′Ax + 2y′Ax − y2 + 0.25b − z2

A = [0, 0, 1;0,−1, 0; − 2, 1,−1],

b = [3;0; − 4], y = [1.5; − 0.5; − 5], z = [0; − 1; − 6]

x = [x1;x2;x3].0 ≤ x1 ≤ 2, 0 ≤ xi ≤ 3 for i = 2, 3.

(27)

min f =
5.3578547x2

3
+0.8356891x1x5+37.293239x1−40792.141

2000

s.t.

g = max
j∈{1,2,3,4,5,6}

{gj} ≤ 0

g1 = 0 − u

g2 = u − 92

g3 = 90 − v

g4 = v − 110

g5 = 20 − w

g6 = w − 25

u = 85.334407 + 0.0056858x2x5 + 0.0006262x1x4 − 0.0022053x3x5
v = 80.51249 + 0.0071317x2x5 + 0.0029955x1x2 + 0.0021813x2

3

w = 9.300961 + 0.0047026x3x5 + 0.0012547x1x3 + 0.0019085x3x4
78 ≤ x1 ≤ 102, 33 ≤ x2 ≤ 45, 27 ≤ xi ≤ 45 for i = 3, 4, 5.

(28)

min f =
5

7
(−x1 − x2)

s.t.

g = max
j∈{1,2}

{gj} ≤ 0

g1 =
1

4
(−2x4

1
+ 8x3

1
− 8x2

1
+ x2 − 2)

g2 =
1

4
(−4x4

1
+ 32x3

1
− 88x2

1
+ 96x1 + x2 − 36)

0 ≤ x1 ≤ 3, 0 ≤ x2 ≤ 4.

Angun

Since the actual optimal solutions for these numerical 
examples are known, the stopping criteria used are the same 
as that of the illustration example, i.e., the max iterations 
reach or the difference between the optimal solution and the 
true solution is in the predefined domain, the algorithm will 
stop. To consider the randomness of the GA, 30 different 
runs are carried out for each numerical example. As men-
tioned before, the obtained optimal solution may violate the 
actual constraints due to the interpolation uncertainties from 
the Kriging surrogate models. For constrained optimization 
problems, it is known that satisfying the constraints is the 
first condition followed by the optimal objective function 
and solving efficiency. Therefore, the ratios of the feasibility 
in 30 runs for each numerical case are recorded and com-
pared. A high ratio of the feasibility denotes a greater abil-
ity to guarantee the feasibility of the solutions in surrogate 
model-assisted optimization design problems. Table 3 sum-
maries the ratios of the feasibility of the different approaches 
for the additional numerical test cases. An intuitive conclu-
sion can be made from Table 3 that the proposed SCU-CI 
approach can ensure the feasibility of the solution for most 
numerical test cases, which is not the case for other five 
approaches. Table 4 summarizes the average ranking results 
for the six approaches considering the additional numerical 
test cases. As observed in Table 4, the average ranking of 

(29)

min f =
5

34.8
(5(x1 − 1)2 + (x2 − 5)2 + 4x1x2)

s.t.

g = max
j∈{1,2}

{gj} ≤ 0

g1 =
5

17.1544
((x1 − 3)2 + x2

2
+ x1x2 − 4)

g2 =
5

17.1544
(x2

1
+ 3(x2 + 1.061)2 − 9)

0 ≤ x1 ≤ x3,−2 ≤ x2 ≤ 1.

Table 3   Ratios of the feasibility 
of the different approaches for 
the additional numerical test 
cases

Test cases EV MAX-MSE PoF WAE EAMGO SCU-CI

Gomez 0.000 (4) 0.000 (4) 0.000 (4) 0.333 (3) 1.000 (1) 0.900 (2)
Constrained Branin 0.967 (3) 0.933 (4) 1.000 (1) 0.367 (5) 0.000 (6) 1.000 (1)
New Branin 0.933 (2) 0.867 (3) 0.867 (3) 0.200 (6) 0.867 (3) 1.000 (1)
Sasena 0.000 (4) 0.000 (4) 0.000 (4) 0.733 (2) 1.000 (1) 0.133 (3)
qcp4 0.833 (1) 0.700 (3) 0.000 (5) 0.067 (4) 0.000 (5) 0.833 (1)
G4 0.667 (3) 0.700 (2) 0.300 (4) 0.200 (5) 0.000 (6) 0.733 (1)
G24 0.333 (4) 0.733 (2) 0.467 (3) 0.167 (5) 0.000 (6) 0.833 (1)
Angun 1.000 (1) 1.000 (1) 1.000 (1) 1.000 (1) 1.000 (1) 1.000 (1)

Table 4   Average ranking results 
for the six approaches for the 
additional numerical test cases

EV MAX-MSE PoF WAE EAMGO SCU-CI

Ranking 2.750 2.875 3.125 3.875 3.625 1.375
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the proposed SCU-CI approach is 1.375, which is the best 
among all approaches. EV ranks the second, followed by the 
MAX-MSE. The average rank of WAE is the worst.

In addition, p values are used to test the differences 
between approaches over multiple data sets regarding the 
ratio of the feasibility. The Bergmann–Hommel procedure 
is adopted to calculate adjusted p values [56], as listed in 
Table 5. The p values for WAE vs. SCU-CI, EAMGO vs. 
SCU-CI, and PoF vs. SCU-CI are less than 0.05, indicat-
ing that there are significant differences in the ability to 
guarantee the feasibility of the solutions between the pro-
posed SCU-CI approach and these three constraint-updating 
techniques. The differences between the proposed SCU-CI 
and the rest two approaches (MAX-MSE and EV) are not 
significant.

To further compare the efficiency of MAX-MSE, EV, and 
the proposed SCU-CI, the mean values of NS are recorded. 
Notice that the quality of the optimal solution (objective 
function value) is considered in the convergence condi-
tions. The comparison results of the NS are summarized 
in Table 6. As shown in Table 6, the proposed SCU-CI 
approach required the smallest NS in six of the eight test 
cases, indicating that SCU-CI approach is the most effective 
approach among these three constraint-updating techniques. 
The p values are also used to test the differences between 
approaches over multiple data sets regarding the efficiency. 
The adjusted p values are listed in Table 7. It is concluded 

from Table 7 that there are significant differences in effi-
ciency between the proposed SCU-CI approach and MAX-
MSE and EV.

4.3 � Design optimization of lattice structure design 
of an L‑shaped bracket

The proposed SCU-CI approach is applied to the design opti-
mization of lattice structure design of an L-shaped bracket. 
The bracket is a simplified version of a proprietary aircraft 
component. The bracket consists of three vertical walls and a 
base. There are four support beams between the three walls. 
The bracket is fixed along the back side and subjected to a 
distributed load of 0.065 N/mm2 at the bottom surface. The 
structure and the loading of the bracket are plotted in Fig. 7.

The lattice model of the bracket is established using a 
cross lattice type with a size of 10 mm. In this paper, the 
ANSYS 18.0 is used for getting the simulation results, and 
the computational platform with a 3.70 GHz AMD Ryzen 7 
2700X Eight-Core Processor and 8 GB RAM is used. The 
lattice model and the simulation result can be seen in Fig. 8. 
The material properties are listed in Table 8.

In this design optimization problem, the objective is to 
minimize the total volume of the bracket while keeping the 

Table 5   Adjusted p values for ratios of the feasibility obtained in the 
additional numerical test cases by Bergmann–Hommel’s dynamic 
procedure

i Hypothesis pi value

1 WAE vs. SCU-CI 0.0111
2 EAMGO vs. SCU-CI 0.0134
3 PoF vs. SCU-CI 0.0231
4 MAX-MSE vs. SCU-CI 0.0614
5 EV vs. SCU-CI 0.0948

Table 6   NS of the EV, MAX-MSE, and SCU-CI for the additional 
numerical test cases

Test cases EV MAX-MSE SCU-CI

Gomez 49.633 100.000 64.900
Constrained Branin 100.000 63.133 61.367
New Branin 2.333 1.933 1.367
Sasena 86.800 96.700 54.700
qcp4 100.000 100.000 93.667
G4 74.300 86.700 59.533
G24 16.667 26.933 10.333
Angun 13.367 12.067 12.833

Table 7   NS of the EV, MAX-MSE, and SCU-CI for the additional 
numerical test cases

i Hypothesis pi value

1 MAX-MSE vs. SCU-CI 0.0075
2 EV vs. SCU-CI 0.0450

Fig. 7   Structure and the loading of the bracket
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maximal stress and displacement below the threshold values. 
The mathematical formulation of the problem is given as

where u is the maximal displacement of the bracket, and Smax 
is the maximum equivalent stress. d1, d2, d3, d4, d5 and d6 are 
the design variables, where d1 represents the radius of the 
frame pillar, d2 represents the radius of the frame cross pil-
lar, d3 represents the radius of the cross pillar, and d4, d5, d6 
represent the radius of the frame cross, pillars cross, and 
upper beams, respectively.

In this case, the constraints are obtained from the expen-
sive simulation models, while the objective function can be 
calculated by arithmetic expression. The proposed SCU-
CI approach and the existing five approaches are used to 
solve this design optimization problem. For the engineering 
problem, we also compare the proposed SCU-CI approach 
with the direct simulation-based approach (DSBA), in which 
simulation model instead of Kriging surrogate model is 
directly used during the design optimization process. 60 

(30)

find d1, d2, d3, d4, d5, d6
min V

s.t. u ≤ 5mm

Smax ≤ 36MPa

0.7 mm ≤ d1 ≤ 1.5 mm, 0.3 mm ≤ d2 ≤ 1.0 mm, 0.1 mm ≤ d3 ≤ 0.7 mm

1.0 mm ≤ d4 ≤ 2.5 mm, 0.5 mm ≤ d5 ≤ 2.0 mm, 0.1 mm ≤ d6 ≤ 1.5 mm,

initial sample points are generated for the initial Kriging 
metamodel. The comparison results are listed in Table 9.

As shown in Table 9, the proposed approach can obtain a 
feasible solution, which is very close to the solution obtained 
by DSBA. However, the computation cost of simulation-
based approach is about 17 times more than the proposed 
approach, which is unacceptable for complex engineering 
problems. The EV approach and PoF approach can also 
obtain feasible solutions. However, the obtained solutions 
are inferior to that from the proposed SCU-CI. Concern-

ing computational efficiency, the computational cost of 
these two approaches is 146 and 150% higher than the pro-
posed approach, respectively. In addition, the MAX-MSE 
approach, EAMGO approach, and the WAE approach failed 
to obtain a feasible solution. The results indicate that the 
SCU-CI shows a better ability to handing the constrained 
optimization problem.

4.4 � Lightweight design optimization of conical 
shell with longitudinal and circumferential 
stiffeners

In this section, the proposed approach is applied to the 
design optimization of a conical shell with longitudinal 
and circumferential stiffeners. The conical shell is a non-
pressures underwater structure. Figure 9 plots the structure 
profile.

Fig. 8   Lattice model and the simulation results of the bracket

Table 8   Material properties of the bracket

Material property Value

Elasticity modulus 1478 N/mm2

Poisson ratio 0.28
Yield stress 36 MPa
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As illustrated in Fig. 9, the structure of the conical shell 
consists of an outer plate and the inner stiffened ribs. In this 
work, the fixed parameters are the radius of the small end 
of the conical shell R1 = 500 mm, the radius of the big end 
of the conical shell R2 = 2000 mm, and the length of the 
conical shell is 600 mm. The number and the distribution of 
the stiffeners are fixed. The geometry model constructed by 
ANSYS 18.0 is shown in Fig. 10.

The design variables are the dimension of the longitu-
dinal and circumferential stiffeners which are T section, 
the thickness of the shell plate for the former five rib space 
t1, and the thickness of the remainder shell plate t2. In this 
work, the optimizing problem is a constrained problem that 
minimizes the weight of the conical shell and the design 
constrains are the vibration performance of the conical shell 
and the dimensions’ matches of the ribs. Thus, the optimiza-
tion problem of the shell can be specified as

where x1–x10 are the design variables, whose physical mean-
ing and boundaries are presented in Table 10. w(x) denotes 

(31)

findx =
[
x1, x2, , , x10

]
minimize w(x)

subject to g1 = 180Hz − f ≤ 0; g2 = az − 90 dB ≤ 0

g3 =
x1

20x2
− 1 ≤ 0; g4 =

x3

8x4
− 1 ≤ 0

g5 =
x5

20x6
− 1 ≤ 0; g6 =

x7

8x8
− 1 ≤ 0,

the total weight of this conical shell, f  is the frequency of 
the first-order modal in the air, and az is the gross stage of 
the acceleration ranging from 100 Hz to 250 Hz at the small 
end of the conical shell, which can be calculated as

(32)az = 10 log

[
fw

k∑
1

(
ai

a0

)2
]
,

Table 9   Comparison results of 
the different approaches for the 
engineering case

D1 D2 D3 D4 D5 D6 V u Smax NS

DSBA 1.23 0.65 0.48 1.27 0.53 0.35 95,992 4.908 35.961 1840
EV 1.33 0.66 0.16 1.26 0.63 0.30 97,016 4.738 35.242 256
PoF 1.45 0.72 0.12 1.69 0.62 0.58 115,580 3.607 31.748 260
MAX-MSE 1.48 0.34 0.56 1.41 0.66 0.26 101,209 4.843 37.996 188
WAE 1.17 0.50 0.32 1.40 0.73 0.73 74,920 5.580 52.160 110
EAMGO 1.31 0.57 0.25 1.30 0.52 0.32 88,097 5.056 38.550 120
SCU-CI 1.29 0.62 0.44 1.19 0.69 0.14 96,328 4.892 35.675 104

Fig. 9   Structured profile of the conical shell

Fig. 10   Geometry model constructed by ANSYS

Table 10   Design variables and their ranges for the design optimiza-
tion of conical shell

Design variable Ranges (mm)

The web height of the circumferential stiffeners x
1

200–340
The web thickness of the circumferential stiffeners x

2
10–24

The panel width of the circumferential stiffeners x
3

100–240
The panel thickness of the circumferential stiffeners x

4
10–24

The web height of the longitudinal stiffeners x
5

100–240
The web thickness of the longitudinal stiffeners x

6
6–20

The panel width of the longitudinal stiffeners x
7

40–180
The panel thickness of the longitudinal stiffeners x

8
6–20

The thickness of the former shell plate x
9

6–20
The thickness of the remainder shell plate x

10
6–20
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where k is the number of the calculated frequencies, ai is 
the acceleration response under the ith order calculated fre-
quency, a0 = 10−6m/s2 is the basis acceleration, and fw is the 
interval of sweep frequency. In this case, the constraints g1 
and g2 are obtained from the expensive simulation models, 
while the objective function and the rest constraints can be 
calculated by arithmetic expression.

The frequency of the first-order modal and the gross 
stage of the acceleration are assumed to be expensive to 
be obtained. In this simulation, the elastic modulus is 
E = 2.11 × 1011Pa , the Poisson ratio is � = 0.3 , and the den-
sity of the material is �=7850 kg/m3. A downward unit har-
monic force is applied at the small end of the conical shell. 
Element Beam 188 and Shell 181 are used to simulate the 
geometry model of this conical shell structure. The mapped 
grid model with 6180 elements is used for this problem. 
The FEA model and simulation results are shown in Fig. 11.

The proposed SCU-CI approach is compared with five 
existing approaches. 60 initial sample points are gener-
ated for constructing the initial Kriging metamodel. The 
optimal solutions of different approaches are summarized 
in Table 11. The corresponding objective functions, con-
straints, and the number of simulation calls are listed in 
Table 12.

As observed in Table 12, only the DSBA approach and 
proposed SCU-CI approach can obtain feasible solutions 
for this engineering case. The other approaches failed to 
obtain feasible solutions. In terms of the computational cost, 
the number of total sample points of DSBA is 5050, which 
is actually a computation-prohibitive process for complex 
engineering problems. The total sample points of SCU-CI 
approach are about 20 times less than that of DSBA, indicat-
ing that the proposed SCU-CI approach can obtain feasible 
optimal solution while significantly reduce the computa-
tional cost.

Fig. 11   FEA model and simulation results for the design optimization of the conical shell

Table 11   Optimal design points 
of different approaches

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

DSBA 240 16 100 14 100 6 40 6 20 8
EV 240 20 120 16 120 6 60 12 20 14
PoF 320 18 120 20 140 12 40 6 18 12
MAX-MSE 280 16 100 14 100 16 40 14 18 10
WAE 240 12 100 14 100 6 40 8 20 10
EAMGO 240 12 100 14 140 8 40 6 20 6
SCU-CI 300 16 100 18 120 12 40 12 20 10

Table 12   Corresponding objective functions, constraints, and the 
number of simulation calls for different approaches

Y G1 G2 NS

DSBA 8249 − 4 − 0.55 5050
EV 10,959 − 10 1.58 255
PoF 11,195 − 6 0.22 191
MAX-MSE 9566 − 12 0.02 215
WAE 8191 − 16 1.79 209
EAMGO 7481 6 − 0.29 392
SCU-CI 10,871 − 6 − 0.94 200
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5 � Conclusion

In this work, general sequential constraints updating 
approach based on the confidence intervals from the Kriging 
surrogate model, SCU-CI, is proposed, in which an objec-
tive switching and sequential updating strategy is introduced 
to address two issues in the updating of Kriging surrogate 
model. One issue is whether the actual simulation models 
or the Kriging metamodel should be used to evaluate the 
feasibility of the design alternatives. The other one is which 
design alternatives would be selected to improve the predic-
tion accuracy of the Kriging metamodel. The core idea is 
based on whether the feasibility status of the design alterna-
tives would be changed because of the interpolation uncer-
tainty from the Kriging surrogate model or not.

To demonstrate the applicability and efficiency of the pro-
posed SCU-CI approach, nine numerical examples and two 
practical engineering cases are tested. The observations are 
summarized as follows, (a) the proposed SCU-CI approach 
can generally obtain the optimum that meets the require-
ments of the actual feasibility, while it is not the case in other 
five existing approaches due to the prediction uncertainty 
from the Kriging surrogate model and (b) in terms of the 
computational efficiency, the proposed SCU-CI approach 
shows obvious advantages compared to DSBA and is more 
efficient than EV, PoF, MAX-MSE, WAE, and EAMGO 
approaches when all of them can obtain the feasible solu-
tions. It should be pointed out that the proposed SCU-CI 
approach is general in the sense that it can be integrated 
with any efficient global optimization approaches. As part 
of future work, combining the proposed approach with dif-
ferent sequential objective functions updating strategies for 
complex engineering optimization design problems will be 
investigated.
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