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Abstract
In this research, thermal vibration analysis of a graphene oxide powder-reinforced (GOPR) nanocomposite embedded plate 
is carried out once the plate is exposed to different types of thermal loading. The plate is reinforced with various function-
ally graded (FG) distributions through the thickness, namely uniform, X, V, and O in a comparative way to find out the 
most efficient model of GOPs’ distribution for the purpose of improving vibrational behaviors of the structure. Also, the 
Halpin–Tsai micromechanical model is employed to describe the material properties of an FG nanocomposite plate. The 
shear deformation effects are taken into account using a refined higher order shear deformation plate theory. Moreover, the 
governing equations of the structure have been derived using Hamilton’s principle and then solved analytically for a simply 
supported GOPR nanocomposite plate. Besides, detailed parametric studies are procured to show the influences of different 
variants on the natural frequency of the nanocomposite plates. Presented results reveal that the frequency responses of the 
nanocomposite plates in a thermal environment dramatically depend on the distribution pattern of the GOPs.

Keywords  Thermal environment · Vibration analysis · Graphene oxide powder (GOP) · Nanocomposite · Refined shear 
deformation plate theory

1  Introduction

Nowadays in the modern engineering systems, one can 
rarely find industries free from the utilization of the compos-
ite materials due to their distinctive properties that cannot 
be achieved by any of the constituents alone. The primary 
reason that composites are chosen for components is their 
remarkable weight saving as well as their relative stiffness 
and strength. In common, composites are composed of at 
least two materials, combined to enrich material properties 
superior to those of the individuals. Also, they are typically 
categorized with respect to their matrix constituent and their 
reinforcements. Fiber-reinforced and -laminated composites 
are the two groups of composites with outstanding proper-
ties such as high strength, specific stiffness, high resistance 

to fatigue failure and a large coefficient of thermal expansion 
which can provide the required engineering properties for 
the structural purposes. According to the mentioned proper-
ties of these groups of composites and their potential to be 
used in evolving applications, scientists have tried to analyze 
these materials as more as possible for different mechani-
cal purposes. For example, Kant and Babu [31] surveyed 
the thermo-mechanical stability problem of fiber-reinforced 
composite (FRC) skew plates using a shear deformable theo-
rem coupled with the finite element method (FEM). Anlas 
and Göker [4] investigated the vibration analysis of a lami-
nated composite structure in which each layer was in a shape 
of a skew plate and reinforced with fibers to find out how 
skew angle can affect the natural frequency of this struc-
ture. In other researches, a combination of both analytical 
and experimental methods is utilized to study the buckling 
behavior of both cantilever I and open channel beams by 
considering shear effects [41, 42]. Also, many of the authors 
allocated their studies to the field of analyzing the mechani-
cal characteristics of laminated composites (LCs). Liu et al. 
[34] presented an investigation of the buckling analysis of 
LC plates via an element-free method to show the efficiency 
of this method in such a stability problem. A global higher 
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order plate theory was presented by Zhen and Wanji [68] 
to probe the free vibration problem of LCs. Urthaler and 
Reddy [55] investigated the bending response of LC plates 
to find out an accurate prediction of the global bending 
response of the plates subjected to large rotation. Shariyat 
[43] introduced a new theory for analyzing the thermally 
affected bending and vibration problems of sandwich plates 
to cover the continuity conditions between layers. Also, 
some investigations have been performed on LCs via non-
uniform rational B-spline (NURBS) method [48, 53]. Car-
rera unified formulation (CUF) was employed by Tornabene 
et al. [54] to analyze the stability problem of doubly curved 
shells in the framework of numerical solutions. Demir et al. 
[18] studied the buckling behavior of the LC conical panels 
based on Donnell’s shell theory to show some geometrical 
effects on the critical buckling loads of the structure. The 
Fourier–Ritz method was applied by Wang et al. [57] with 
the aim of analyzing the vibrational behavior of LC shells 
and panels by considering various boundary conditions 
(BCs). Sobhani et al. [49] solved the stability problem of an 
LC with respect to the delamination effects in the framework 
of acoustic emission and signal processing techniques.

Furthermore, once elements with at least one dimension in 
nanoscale are selected as reinforcements, the composite has 
named a nanocomposite. Indeed, the outstanding mechani-
cal properties of nanoparticles were appealing enough in 
the engineers’ opinion to be employed as reinforcement in 
composites. One of the most famous nanosize reinforcing 
elements is carbon nanotube (CNT) which is an important 
new class of technological materials that possess numerous 
novel and useful properties. Therefore, it is of high impor-
tance to analyze the mechanical behaviors of CNT-reinforced 
(CNTR) nanocomposites. In a remarkable endeavor, the 
Eshelby–Mori–Tanaka homogenization model was employed 
by Formica et al. [27] to investigate the vibration behavior 
of CNTR nanocomposites via FEM. Single-walled CNTs 
(SWCNTs) have attracted the attention of the researchers 
recently with their evolving applications such as reinforce-
ments in composites, additives in polymers, catalysts and 
so on. For example, Shen and Zhang [47] investigated both 
thermo-elastic pre- and post-buckling responses of nano-
composite plates reinforced with SWCNTs to show how the 
nanofillers’ distribution type can improve the stability lim-
its of nanocomposite plates. Also, Arani et al. [5] employed 
both FE and analytical methods to investigate effects of some 
variants such as aspect ratio, BCs and CNTs’ orientation on 
the buckling loads of SWCNTR multi-layered plates. Wang 
and Shen [58] presented a thermal analysis of the nonlinear 
vibrational behaviors of nanocomposite plates reinforced 
with SWCNTs via a higher order plate theory. Both static and 
dynamic FEM analyses of SWCNTR nanocomposite plates 
have been performed by Zhu et al. [69] by considering differ-
ent types of reinforcements’ distributions. In addition, Shen 

and Xiang [44] probed the nonlinear thermo-elastic vibra-
tion behaviors of CNTR nanocomposite shells with respect to 
various distribution patterns of nanofillers. Yas and Samadi 
[62] solved the vibration and buckling problems of the CNTR 
nanocomposite beams numerically by considering the influ-
ences of the elastic foundation. Moreover, Wattanasakulpong 
and Ungbhakorn [59] surveyed static and dynamic behav-
iors of the embedded nanocomposite beams reinforced with 
SWCNTs by the means of Navier method. Lei et al. [32] 
implemented the Eshelby–Mori–Tanaka homogenization 
technique to account for the nanotubes’ aggregation while 
investigating the buckling behaviors of CNTR nanocompos-
ite plates via an FE-based element-free method. In another 
research, Liew et al. [33] introduced a meshless approach for 
the purpose of studying the post-buckling responses of axi-
ally compressed CNTR nanocomposite panels. Also, Zhang 
et al. [65] employed first-order shear deformation plate the-
ory incorporated with Ritz method to analyze the vibrational 
behaviors of CNTR skew nanocomposites. Wu et al. [60] 
found it significant to account for the geometrical imperfec-
tions once examining the nonlinear vibration behaviors of 
FG-CNTR nanocomposite beams. Civalek [17] considered 
five types of CNTs’ distribution for reinforcing the compos-
ite cylindrical shells and annular plates with the purpose of 
analyzing the vibrational responses of these structures. He 
also derived the governing equations of the motion based on 
transverse shear deformation theory via discrete singular con-
volution method. Ebrahimi and Farazmandnia [23] employed 
a higher order shear deformation beam theory to analyze the 
thermo-mechanical vibrational characteristics of sandwich 
beams with FG-CNTR nanocomposite face sheets. Ebrahimi 
and Rostami [25] have just analyzed the wave propagation 
problem of CNTR nanocomposite beams via different shear 
deformation theories. Also, Bakhadda et al. [6] carried out 
the dynamic and bending analyses of the CNTR nanocom-
posites. On the other hand, CNTs are not the only nanosize 
reinforcement which is used in the nanocomposites. Boron 
nitride nanotube (BNNT) and silicon carbide nanotubes (SiC-
NTs) are two kinds of nanotubes with superior mechanical 
properties. The buckling analysis of these nanotube materials 
was investigated by some of the researchers to show the static 
stability of these materials [36, 37]. Nanofillers are consisted 
of other carbon-based materials utilized in nanocomposites, 
too. For instance, graphene platelets (GPLs) and graphene 
oxide powders (GOPs) are recently employed by researchers 
to design and analyze novel nanocomposites. Suk et al. [52] 
investigated the mechanical properties of the GO by combin-
ing the AFM measurement with the FEM in a new approach 
for evaluating the mechanical properties of ultrathin mem-
branes. The Halpin–Tsai model was employed by Shen et al. 
[45] for homogenization of the nanocomposites to investigate 
the effects of using GPLs, as reinforcements in a nanocom-
posite, on the nonlinear bending responses of a beam. Also, 
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a higher order plate model is incorporated with the nonlinear 
theory of von-Kármán by some of the authors to consider for 
the impacts of thermal environment and elastic medium on 
the nonlinear bending and vibration characteristics of func-
tionally graded graphene-reinforced composite (FG-GRC)-
laminated plates [45, 46]. Also, the issue of the post-buckling 
problem of a porous GPL-reinforced (GPLR) nanocomposite 
beam is undertaken and studied by Barati and Zenkour [8] 
with respect to the influences of geometrical imperfection. 
Yang et al. [61] carried out an analysis of the stability of 
FG nanocomposite beams reinforced with GPLs. Also, Zhao 
et al. [67] studied the bending and vibration behaviors of an 
FG trapezoidal plate reinforced with GPLs by employing the 
modified Halpin–Tsai model and the rule of the mixture to 
predict the effective material properties. In addition, some 
mechanical analyses such as damping vibration and wave 
propagation of the embedded graphene sheets have been 
recently conducted by authors [20, 21] in thermal environ-
ments. Besides, researchers have also probed the vibration, 
bending and compressive buckling of the GPLR polymeric 
nanocomposite plates via Mindlin–Reissner theory [50, 51]. 
Bouadi et al. [11] and Mokhtar et al. [39] both analyzed the 
static stability of the single-layer graphene sheet based on 
novel higher order shear deformation theories. Also, the wave 
propagation analysis of GPLR nanocomposite structures with 
different shapes such as plates and shells have been per-
formed in the recent years [22, 24]. Also, the GO is a novel 
nanofiller with astounding thermal [7, 16], mechanical and 
optical [63] properties. In the recent years, it is found that GO 
can be an excellent reinforcement for the plates with the poly-
mer matrix to enhance the mechanical and functional proper-
ties of the polymer materials due to its remarkable compat-
ibility with polymers [40]. The experiments on this novel 
nanofiller show that monolayer GO has the Young modulus 
of 0.25 ± 0.25 TPa [29]. Due to this fact, nanocomposites 
reinforced with GO have extraordinary tensile strength in 
addition to their low cost. GO has been also used in fab-
ricating flexible displays and transparent conducting films, 
accumulators, and supercapacitors [38]. Moreover, owing 
to the GOs’ hierarchical structure, it can be utilized as an 
adsorbent material. Most recently, Zhang et al. [66] surveyed 
the buckling, bending and vibration problems of the GOP-
reinforced (GOPR) nanocomposite beams via Timoshenko 
theory. To the best of the authors’ knowledge, the thermal 
vibration problem of an embedded FG-GOPR nanocomposite 
plate, subjected to different types of temperature rise, has 
never been studied up to now.

The present paper contains a free vibration analysis of 
GOPR nanocomposite plates under three types of thermal 
loadings and two different kinds of elastic foundations. The 
GOP nanoparticles are distributed through the thickness of 
the plates with various FG patterns according to the Hal-
pin–Tsai scheme. The governing equations of the problem 

are obtained via Hamilton’s principle on the basis of refined 
higher order plate theory. Afterward, the achieved differ-
ential equations are solved analytically via Navier method. 
Various illustrative results are provided to investigate the 
effects of geometric parameters (including aspect ratio and 
length-to-thickness ratio), material parameters (such as 
GOPs’ weight fraction and GOPs’ distribution type) and 
external effects (such as various thermal loadings and dif-
ferent substrates) on the dimensionless natural frequency of 
the structure.

2 � Theory and formulations

2.1 � Material homogenization

The studied structure, which is shown in Fig. 1, is consisted 
of an initial polymer matrix that is strengthened via a group 
of GOPs. The reinforcements are dispersed in the primary 
material via different patterns. These patterns can be gener-
ated by putting the nanofillers in a series of specified posi-
tions which can be calculated by following simple modeling:

in which V∗
GOP

 stands for the total volume fraction of GOPs 
and can be formulated as

(1)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

VGOP = V∗
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�z�
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�
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VGOP = 4
�z�
h
V∗
GOP
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�
1 + 2

z

h

�
V∗
GOP

GOPR-V

,

(2)V∗
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=
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(
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/
�M

)(
1 −WGOP

) ,

Fig. 1   The geometry of a nanocomposite plate rested on a Winkler–
Pasternak substrate
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where GOP and M subscripts are related to GOP reinforce-
ments and the matrix, respectively. In addition, ρ stands 
for mass density and WGOP denotes GOP weight fraction. 
Afterward, it is necessary to earn the effective Young’s 
modulus and the effective Poisson’s ratio of the nanocom-
posite. Herein, the Halpin–Tsai homogenization technique 
is extended for the derivation of the material properties [56, 
66]. Now, Young’s modulus can be written as

where El and Et account for longitudinal and transverse 
Young’s modulus of the composite, respectively. These 
elastic parameters can be calculated as [66]

where

in which EGOP and EM stand for GOPs and matrix Young 
modulus, respectively. Also, the geometry factors ( �l, �t ) 
can be computed in the following form [66]:

in which dGOP and hGOP are related to the diameter and thick-
ness of GOPs, respectively. Now, the effective Poisson’s 
ratio of the composite can be achieved using the rule of the 
mixture in the following form:

where VGOP and VM correspond with the volume fractions 
of GOPs and matrix, respectively. It is worth mentioning 
that the effective mass density can be computed in the same 
form as Poisson’s ratio is achieved in Eq. (7). The volume 
fractions are related to each other as

Now, it is time to calculate the coefficient of thermal 
expansion (CTE) for the GOPR nanocomposite in the fol-
lowing form of Van Es [56]:

in which K is the bulk moduli and α is the CTE. Also, the M 
and GOP subscripts are referred to the matrix and graphene 
oxide powder, respectively.

(3)Eeff = 0.49El + 0.51Et,

(4)El =
1 + �l�lVGOP

1 − �lVGOP

× EM, Et =
1 + �t�tVGOP

1 − �tVGOP

× EM,

(5)�l =

(
EGOP

/
EM

)
− 1(

EGOP

/
EM

)
+ �l

, �t =

(
EGOP

/
EM

)
− 1(

EGOP

/
EM

)
+ �t

,

(6)�l = �t =
2 dGOP

hGOP
,

(7)�eff = �GOPVGOP + �MVM,

(8)VGOP + VM = 1.

(9)�eff = �M +
�M + �GOP
1

KM

+
1

KGOP

[
1

Keff

+
1

KM

]
,

2.2 � Refined higher order plate theory

The classical theory of plates possesses some simplifying 
assumptions which lead to some limitations in modeling. For 
example, this theory cannot present reliable results whenever 
the length-to-thickness ratio is inside 10. Due to this fact, the 
researchers have introduced some mathematical modeling 
which is able to estimate the shear stress and strain of the 
plate [1, 14]. In addition, Belkorissat et al. [10] studied the 
free vibration behavior of nanoplates using refined four vari-
able plate theory. Also, Ahouel et al. [3] developed a new 
method for capturing both small scale and transverse shear 
deformation effect on the basis of shear deformation theory 
for the vibration, bending and buckling analysis of beams. 
In comparison with the other works in which the thickness 
stretching effect is taken into account [2, 13, 64], the very 
small difference was seen on the vibrational behavior of FG 
plates which could be negligible for the sake of simplicity. 
On the other hand, in some other researches, other versions 
of the classical kinematic theories are presented which are 
modified to be applicable in the cases that influences of the 
shear deformation cannot be ignored [9, 30]. For the purpose 
of capturing the shear effect in the higher order theorems, a 
shape function is presented in each theory. In this paper, the 
refined form of sinusoidal plate theory is utilized to achieve 
the kinematic relations of the plate. According to this theory, 
the displacement field of a plate can be written as

where u is longitudinal displacement, and wb and ws are 
bending and shear deflections, respectively. The correspond-
ing shape function of the employed theory can be expressed 
as

The non-zero strains of the plate can be expressed by the 
following equations:

where
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�wb

�x
− f (z)

�ws

�x
,

(11)uy(x, y, z) = v(x, y) − z
�wb

�y
− f (z)

�ws

�y
,

(12)uz(x, y, z) = wb(x, y) + ws(x, y),

(13)f (z) = z −
h

�
sin

(
�z

h

)
.
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2.3 � Hamilton’s principle

Now, to derive the Euler–Lagrange equation, Hamilton’s 
principle can be defined as

Here, U is the strain energy, V work done by external 
forces and K is the kinetic energy. The variation of strain 
energy is written as

(15)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
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.

(16)

t

∫
0

�(U + V + K)dt = 0.

In which the variables introduced in arriving at the last 
expression are defined as follows:

Now, the first variation of work done by applied forces 
can be stated as

In above relations, kw and kp are elastic foundation param-
eters and also it is assumed that the nanocomposite plate is 
under a biaxial thermal loading ( NT

x
= NT

y
= NT ); also, the 

shear loading is ignored ( N0
xy
= 0) . The thermal loading ( NT ) 

can be defined as

The variation of the Kinetic energy can be expressed as

where

By Substituting Eqs. (18), (21) and (23) into Eq. (16) and 
setting the coefficients of�u , �v , δ wb , and δ ws to zero, the 
following Euler–Lagrange equation can be obtained:
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Substituting Eqs. (10)–(15) in Eq. (17) yields:
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in which ∇2 is the Laplacian operator.

2.4 � Constitutive equations

The constitutive equations of the nanocomposite structure 
including the stress–strain relations of isotropic materials 
are expressed as follows to obtain the fundamental elastic 
equations of solids:

where σij and εkl are the components of second-order stress 
and strain tensors, respectively; whereas, Cijkl corresponds 
with the components of the fourth-order elasticity tensor. 
Whenever extending the aforementioned equation for a shear 
deformable plate, the following relations can be reached:

where

in which Eeff and Geff denote the Young and shear mod-
uli of the nanocomposite, respectively. Integrating from 
Eqs. (25)–(28) over the cross-section area of the plate, the 
following equations can be written for the stress resultants:
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(29)�ij = Cijkl�kl,
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In Eqs. (32)–(35), the cross-sectional rigidities are given 
by following relations:
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By substituting Eqs. (32)–(35) into Eqs. (25)–(28), the 
governing equations of nanocomposite plate can be directly 
written in terms of displacements (u, v, wb , and ws ) as

(36)
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3 � Solution procedure

Here, on the basis of the Navier method, an analytical solu-
tion of the governing equations for free vibration of a simply 
supported FG-GOPR nanocomposite plate is presented. To 
satisfy the simply supported boundary condition, the dis-
placement fields are in the following form:

where Umn , Vmn , Wbmn , and Wsmn are the unknown Fourier 
coefficients, � =
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a
 , and � =
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b
 . Once Eqs. (43)–(46) are 

inserted in Eqs. (39)–(44) respectively, the following rela-
tion can be obtained:
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in which K and M are the stiffness and mass matrix, respec-
tively. The kij and mij arrays can be calculated in the follow-
ing form:

4 � Thermal loadings

Applying the thermal effects to the structure is procured 
through considering the temperature rise as a function of 
thickness according to the previous works in the open lit-
erature [12, 15, 19, 26, 35].

4.1 � Uniform temperature rise (UTR)

By assuming an FG-GOPR nanocomposite plate at reference 
temperature T0 = 300 K (room temperature) and final tem-
perature T  , the uniform temperature change can be defined 
as ΔT = T − T0.

4.2 � Linear temperature rise (LTR)

The temperature of an FG-GOPR nanocomposite plate can 
be raised linearly through the thickness through the follow-
ing formulation by considering the plate to be thin enough:

where T  is the final temperature and T0 is the reference tem-
perature of the plate.

4.3 � Sinusoidal temperature rise (STR)

When the plate is subjected to sinusoidal temperature rise, 
the temperature distribution throughout the thickness can 
be expressed as
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where ΔT = T − T0 is the temperature change.

5 � Numerical results and discussion

Through this section, the effects of various parameters such 
as three kinds of thermal loading, GOPs’ weight fraction, 
aspect ratio, length to thickness ratio, two kinds of elastic 
foundation and different types of GOPs’ distribution on the 
critical buckling loads of GOPR nanocomposite plates will 
be figured out by interpreting the numerical results stated 
in the following. For the sake of simplicity, the dimension-
less form of the natural frequency, Winkler and Pasternak 
parameters are defined in the following form:

where �mn is the natural frequency of the nanocomposite 
plate and m and n refers to the mode numbers in x and y 
directions, respectively. The material properties of the con-
stituent materials are chosen as same as those presented by 
Zhang et al. [66]. Figure 1 shows the geometry parameter 
of the plate embedded on a Winkler–Pasternak founda-
tion. The validity of the presented results can be realized 
from Table 1, where a reliable agreement can be observed 
between the results of our modeling with those reported by 
García-Macías et al. [28] and Song et al. [50].

The effect of different types of thermal loading on the 
frequency responses can be figured out from Fig. 2 in which 
the dimensionless natural frequency of the nanocomposite 
plate is plotted against temperature rise for each type of GOP 
distribution. It can be seen that during the increment of the 
temperature change, the value of natural frequency will be 
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decreased owing to the fact that the stiffness of the con-
stituent material will be reduced in thermal environments. 
However, this negative effect can be reduced by changing 
the way that the thermal loadings are applied. As shown in 
this figure, the STR is a better alternative because the natural 
frequency of the plate decreases under this type of thermal 
loading lesser followed by LTR and UTR. This trend is due 
to the function of the temperature distribution for each type 
of thermal loading. For the UTR, the thermal loading will 
be applied all over the structure uniformly with the same 
intensity which can affect the structure more. However, for 
the LTR and STR, the temperature will be raised through the 

Table 1   Comparison of the dimensionless fundamental frequency 
of SSSS GPLR nanocomposite square plates for various distribution 
patterns of nanofillers

Distribution type García-Macías 
et al. [28]

Song et al. [50] Present

Pure epoxy 0.058 0.058 0.057
UD 0.121 0.122 0.118
FG-O 0.097 0.102 0.100
FG-X 0.141 0.138 0.128
FG-A 0.117 0.112 0.118

Fig. 2   Variation of the dimensionless natural frequency of a GOPR nanocomposite plate versus temperature rise for a X, b U, c V and d O dis-
tribution types with respect to various types of thermal loading through the thickness
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thickness via linear and sinusoidal functions, respectively. 
These kinds of applying thermal loadings to the structure 
can remarkably decrease the influence of the thermal effects. 
Through perusing the values of frequency for each pattern 
of GOP distribution in Fig. 2a–d, it can be found that the 
X distribution has the highest values of natural frequency 
followed by UD, V and O distribution type. This is due to 
the fact that the maximum moments of the forces which are 
applied to the structure around the neutral surface of the 
plate occur at the places which have the most distances from 
the neutral surface. Hence, the edges of the plate are the 
places in which the moments possess their maximum value. 

These moments can significantly intensify the stiffness of 
the structure. So, it is concluded that the existence of the 
nanofillers at the edges of the plate through the thickness 
will lead to a better reinforcement. From this sense, it can 
be figured out that why the structure with X distribution of 
GOPs has the highest values of natural frequency followed 
by UD, V and O distribution types.

Figures 3 and 4 show the variations of dimensionless nat-
ural frequency against Winkler and Pasternak coefficients, 
respectively, for each GOP distribution pattern by consider-
ing three types of temperature rise. As can be seen in these 
figures, for all types of temperature rise, an increase in the 

Fig. 3   Variation of dimensionless natural frequency versus Pasternak coefficient of elastic foundation for a X, b U, c V and d O distribution 
types through the thickness with respect to various types of thermal loading



889Engineering with Computers (2020) 36:879–895	

1 3

foundation parameters’ stiffness will improve the dimension-
less natural frequency of the nanocomposite plate gradually. 
Moreover, comparing these figures, it can be also concluded 
that the Pasternak parameter can affect the structure fan-
tastically more than Winkler parameter due to the fact that 
Winkler foundation interacts with the nanocomposite plate 
in a discontinuous way, whereas Pasternak foundation inter-
acts with the plate continuously. From this sense, it can be 
found that Pasternak parameter can improve the vibrational 
behavior of the GOPR nanocomposite plates in a more effi-
cient manner than Winkler parameter. Also, it is interesting 
to note that applying an STR lessens the flexibility of the 
structure; hence, the natural frequency of the plates under 

this type of thermal loading possesses a higher range in com-
parison with other types of thermal loading. Also, as same 
as Fig. 2, the nanocomposite plate with X distribution has 
the greatest natural frequency.

Furthermore, Fig. 5 is allocated to study the influence 
of aspect ratio on the dimensionless natural frequency of 
the nanocomposite plate by considering different types of 
GOPs’ distribution to compare the vibrational behavior of 
the structure with and without thermal effects. In this figure, 
the decreasing effect of natural frequency can be seen as a 
result of increment in amounts of plate’s aspect ratio for each 
type of GOPs’ distribution and thermal loadings. The reason 
for this trend is that the structural stiffness of the structure 

Fig. 4   Variation of dimensionless natural frequency versus Winkler coefficient of elastic foundation for a X, b U, c V and d O distribution types 
through the thickness with respect to various types of thermal loading
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decreases when the plate gets out from the square model and 
one of its dimensions becomes larger than the other one. It 
is obvious that without regarding thermal effects, the struc-
ture will have a higher range of natural frequency related to 
the stiffness-softening effect of thermal loadings. Although 
the differences between the natural frequency under sinu-
soidal and linear temperature changes are small, STR is still 
the most efficient one. Also, by comparing the four plots of 
Fig. 5 together, it can be clearly observed that reinforcing 
the plate with O distribution type of GOPs will result in the 
lowest range of natural frequency while the X distribution 
type has the highest range of natural frequency.

Also, the simultaneous effects of GOPs’ weight fraction, 
different types of temperature rise and elastic foundation on 
the dimensionless natural frequency of the plate are covered 
in detail in Fig. 6. As expected, the stiffness of the struc-
ture will be improved by adding the GOPs’ weight fraction 
which causes the natural frequency to be increased. This 
is because of the high strength of the GOPs’ nanoparticle 
that improved the structures’ stiffness as a novel reinforce-
ment. This trend will be seen in all subfigures of this figure 
except Fig. 6d with O-type distribution. According to this 
figure, the plate with elastic foundation subjected to UTR 
has a lower range of natural frequency compared to the 
plate without elastic foundation subjected to either LTR 

Fig. 5   Variation of dimensionless natural frequency versus plate’s aspect ratio for a X, b U, c V and d O distribution types through the thickness 
with respect to various types of thermal loading
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or STR, which means the thermal loading with UTR pre-
vails over the elastic foundation’s effects. According to this 
diagram, for the O-type distribution, it can be figured out 
that an increase in the amount of weight fraction generates 
a decrease in the dimensionless natural frequency of the 
plate under UTR. This trend reveals that in such cases the 
softening influence of negative thermal expansion of the 
nanoparticles defeats the stiffness enhancement which is 
generated from dispersing nanoparticles in the media. Also, 
it is worth mentioning that in all subfigures whenever the 
weight fraction of the GOPs is around 5%, the embedded 
plate under LTR type of thermal loading behaves approxi-
mately the same with the plate without elastic foundation 

under STR type of thermal loading; means, the effect of the 
embedding the plate in elastic foundation is approximately 
equal to the effect of changing the type of thermal loading 
from LTR to STR.

Figure 7 indicates the influences of length-to-thickness 
ratio on the dimensionless natural frequency of the FG-
GOPR nanocomposite plates with respect to various types 
of GOPs’ distribution. The figure is included from four parts 
devoted to various types of thermal loading. By taking a brief 
look at this figure, it can be deduced from first three plots 
that for all types of GOPs’ distribution, the reduction range 
of the natural frequency under UTR is remarkably greater 
than other types of thermal loading followed by LTR and 

Fig. 6   Variation of the dimensionless natural frequency of a GOPR nanocomposite plate versus weight fraction of GOPs for a X, b U, c V and d 
O distribution types through the thickness with respect to various types of thermal loading as well as the influence of elastic foundation
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STR. In other words, the structure can be exposed to higher 
frequencies in an equal length-to-thickness ratio by applying 
the STR. Also, by neglecting the thermal effects as shown in 
Fig. 7d, the influence of the length-to-thickness ratio on the 
natural frequency of the plate would be negligible.

Finally, it is time to investigate how the GOPs’ negative 
coefficient of thermal expansion affects the structure. For 
this purpose, the variation of the dimensionless natural fre-
quency of the plate is plotted versus length-to-thickness ratio 
in Fig. 8 with respect to different values of GOPs’ weight 
fraction and various types of thermal loadings. Through a 
rational trend, as illustrated in Fig. 8, the stiffness-hardening 
effect is occurred via increasing the amount of GOPs’ weight 

fraction which can improve the vibrational behavior of the 
structure. As seen in all subfigures, the plates with more 
amounts of GOPs’ weight fraction have a higher range of 
natural frequencies except Fig. 8d. By comparing this sub-
figure to the other sub figures of Fig. 8, it was expected that 
in the highest rate of length-to-thickness ratio (a/h = 30), 
the plate with 4% of GOPs’ weight fraction under UTR type 
of thermal loading should possess greater dimensionless 
natural frequency than the plate with 1% of GOPs’ weight 
fraction under STR type of thermal loading, but as seen, it 
does not happen in this figure and an addition in the amount 
of GOPs’ weight fraction causes a reduction in the value 
of dimensionless natural frequency. It can be inferred from 

Fig. 7   Variation of dimensionless natural frequency versus plate’s length-to-thickness ratio for a UTR, b LTR, cSTR thermal loading and d 
without thermal effect with respect to various types of GOPs’ distribution
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this sense that the GOPs’ negative CTE is the reason for this 
reverse trend. It means that the GOPs’ negative CTE defeats 
the stiffness enhancement which is generated from dispers-
ing nanoparticles in the media. Also, as it was mentioned in 
the previous figures, the UTR causes a significant reduction 
in the stiffness of the structure.

6 � Conclusion

This paper was concerned with the free vibration analysis 
of the GOPR nanocomposite embedded plates under three 
types of thermal loadings. Different types of temperature 
rises including uniform, linear and sinusoidal were captured. 
The governing equations of the plate were achieved through 
the incorporation of Hamilton’s principle with a refined 
higher order shear deformation theory. By implementing 
Navier’s method, the governing equations were solved ana-
lytically. Now, the outcomes of this vibrational investigation 
are going to be reviewed as follows:

Fig. 8   Variation of the dimensionless natural frequency of a GOPR 
nanocomposite plate versus plate’s length-to-thickness ratio for a 
X, b U, c V and d O distribution types through the thickness with 

respect to various types of thermal loading as well as the influence of 
GOPs’ weight fraction
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•	 It was discovered that UTR was the most powerful type 
in stiffness softening and consequently caused the struc-
ture to have a lower range of natural frequencies.

•	 It was observed that embedding the structure on an elas-
tic foundation is able to dramatically improve the vibra-
tional behavior of the nanocomposite plate. Moreover, it 
was understood that the Pasternak parameter can affect 
the structure fantastically more than Winkler parameter.

•	 It was found that the nanocomposite plate under STR 
has a higher range of dimensionless natural frequencies 
followed by LTR and UTR, respectively.

•	 It was also revealed that natural frequencies decrease 
gradually as aspect ratio grows which is meant that the 
more the plate is got out from the square model, the plate 
gets lower values of dimensionless natural frequencies.

•	 It was deduced that reinforcing the plate with X-type 
distribution leads to a higher range of the dimensionless 
natural frequencies followed by U, V and O types.

•	 It was inferred that the natural frequency of the plate with 
O distribution will be unexpectedly decreased through 
the increment of the GOPs’ weight fraction under uni-
form thermal loading according to the GOPs’ negative 
coefficient of thermal expansion.
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