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Abstract
The present study aimed to optimize the artificial neural network (ANN) with one of the well-established optimization 
algorithms called particle swarm optimization (PSO) for the problem of ground response approximation in short structures. 
Various studies showed that ANN-based solutions are a reliable method for complex engineering problems. Predicting the 
ground surface respond to seismic loading is one of the engineering problems that still has not received any ANN solution. 
Therefore, this paper aimed to assess the application of hybrid PSO-based ANN models to the calculation of horizontal 
deflection of columns in short building after being subjected to a significant seismic loading (e.g., The Chi-Chi earthquake 
used as one of the input databases). To prepare both of the training and testing datasets, for the ANN and PSO-ANN network 
models, a series of finite element (FE) modeling were performed. The used FEM simulation database consists of 8324 train-
ing datasets and 2081 testing datasets that is equal to 80% and 20% of the whole database, respectively. The input includes 
Chi-Chi earthquake dynamic time (s), friction angle (φ), dilation angle (ψ), unit weight (γ), soil elastic modulus (E), Poisson’s 
ratio (v), structure axial stiffness (EA), and bending stiffness (EI) where the output was taken horizontal deflection of the 
columns at their highest level (Ux). The result indicates higher reliability of the PSO-ANN model in estimating the ground 
response and horizontal deflection of structural columns in short structures after being subjected to earthquake loading.

Keywords ANN · Optimization · PSO-ANN · Earthquake · Short building

1 Introduction

Geotechnical earthquake engineering is recognized as the 
basis of civil engineering projects, so the study of ground 
response and its effect on the above structures is essential to 
soil mechanics and geotechnical engineering [1–6]. In addi-
tion, variation in soil properties beneath structures and com-
plex geological structure (e.g., soil stiffness, soil-interface 
interactions, and structural elements) are important to con-
sider into calculations [7–14]. Most traditional methods rely 
on complex solutions, i.e., using nonlinear seismic response 
analysis consideration [15] and extensive experimental 
methods [16]. In most cases, the proposed solutions illus-
trated how a specific ground motion affects the structures. 
In this regard, the structural deformations (e.g., located on a 
homogenous sandy soil layer) caused by earthquake loading 
have been proven a function in several key factors namely, 
ground characteristics [e.g., friction angle (φ), dilation angle 
(ψ), unit weight (γ), soil elastic modulus (E), Poisson’s ratio 
(v)], structure characteristics [e.g., axial stiffness (EA) and 
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bending stiffness (EI)], and seismic loading (e.g., variation 
of ground acceleration/velocity/displacement versus dynamic 
time). Different equations have been developed to compute 
the horizontal deflection of structures (e.g., for a particular 
earthquake) (e.g., Hajikhodaverdikhana et al. [17], Men [18], 
Arulmoli et al. [19], Gulkan and Yazgan [20], Qu et al. [21] 
and Thomas et al. [22]). The main concern of computing the 
horizontal displacement of vertical structural elements (e.g., 
such as columns as used in this study) is to minimize its like-
lihood of high deformation after real seismic loadings were 
applied. The most influential factors in calculating a correct 
value for the seismic response of ground and its effect on 
structural deformations, i.e., maximum horizontal displace-
ment of vertical columns, are (i) soil properties (e.g., soil 
stress–strain properties), (ii) structural stiffness (e.g., material 
properties and flexural stiffness of structural elements) and 
(iii) earthquake loading applied to the ground. Note that the 
soil characteristics such as internal friction angle and cohe-
sion, dilation angle, unit weight, elastic modulus, Poisson’s 
ratio as well as applied seismic loading on the above struc-
tures significantly affect the output.

In general, understanding the horizontal deformation of 
structures in a time of earthquake is a key factor in designing 
both short and high-rise buildings. For instance, different 
input parameters such as baseline material properties, foun-
dation flexibility, and type of soil will influence the struc-
tural displacement. Numerous researchers such as Funck 
et al. [23], Pijush [24], Latifi et al. [25] and Uncuoglu [26] 
as well as Ahmadi and Kouchaki [27] have argued and intro-
duced formulas to provide a reliable approximation of the 
horizontal deformation of short building structures. How-
ever, in reality, all these formulas are not reliable enough 
since they do not consider all influential parameters into 
their calculations. Artificial neural network (ANN) solu-
tions are well introduced to support the prediction com-
plex engineering problems [28–36] such as of horizontal 
displacement in structures built on single homogenous soil 
environments (e.g., Asadizadeh and Hossaini [37], Hasan-
zadehshooiili et al. [38], Gao and He [39]). In this study, to 
predict the maximum horizontal deformation of structures 
(maximum horizontal displacement at the highest level of 
columns) subjected to an earthquake (e.g., Chi-Chi earth-
quake), 84 different ANN models (6 iterations each with 14 
different number of neurons) and 29 hybrid PSO-ANN mod-
els (e.g., helping the ANN to provide a better performance 
result) were designed.

2  FEM simulation and data collection

To determine horizontal deformation of the columns (Ux), 
i.e., subjected to the Chi-Chi earthquake (occurred in Taiwan 
on 21 September, 1999), we conducted a series of plane 

strain finite element modeling (FEM) for a building (e.g., a 
width equal to 1.0 m) located on a single layer soil (Fig. 1). 
In practical civil engineering projects, the soil layers beneath 
the building are usually not homogeneous; however, in most 
scenarios, a single layer of soil with uniform characteris-
tics is used beneath the buildings. A commercial finite ele-
ment software called Plaxis 2D was used to calculate the 
effects of earthquake loading on deformation of a short 
building (e.g., a four-level story) placed on a single sandy 
layer environment (Fig. 1a). Based on several recommenda-
tions (e.g., [40–54]), the most influential parameters that 
affect the maximum displacement of building columns are 
structural bending and axial stiffness as well as soil proper-
ties, [e.g., (i) friction angle ( � ), (ii) dilation angle ( � ), (iii) 
unit weight(� ), (iv) elastic modulus ( E ), and (v) Poisson’s 
ratio ( �) ] (Table 1). It is important to note that cohesion was 
almost zero (e.g., the minimum possible value was equal to 
one as taken in the FEM) as the study aimed to predict the 
Ux in single-layered sandy soil. Needless to say that values 
of zero for cohesion (soil without any cohesive strength) 
supply sandy soil condition. Besides, values of H equal to 
5 m were used for the distance between the columns. How-
ever, for each iteration, only one of the columns (shown in 
Fig. 2b) was considered. Ten different points (e.g., A–J) 
were selected as the target points where the maximum dis-
placement occurred. Note that the displacement changes 
with time during the earthquakes. These changes were 
recorded for each point. For the dynamic loading, Chi-Chi 
1999 in Taiwan, one of the most devastating recorded earth-
quakes was used. The variation of the acceleration versus 
time for the 1999 Chi-Chi, Taiwan, Earthquake is presented 
in Fig. 2. In this study, eight different sandy soils with a 
considerable difference in their basic characteristics were 
used in this study. These properties cover almost most of 
the common types of cohesionless soils. In terms of dila-
tion angle and internal friction angle, ranges of 3.4–11.5° 
and 32–42° were considered and utilized in the modeling, 
respectively. In addition, the unit weight, elastic modulus 
and, Poisson’s ratio varied between 19.0 and 21.1 kN/m3, 
17,500–65,000 kN/m2 and 0.333–0.249, respectively. The 
properties of soils that were considered into network predic-
tion (e.g., shown as a descriptive view of the range of input 
database) including unit weight, friction angle, elastic modu-
lus, and Poisson’s ratio are shown in Fig. 3. Figure 4 also 
presents the graphical summary and the range of input data 
(e.g., axial stiffness and bending stiffness of the structure) 
versus structural type. To ensure the rigidity of the columns 
at their lowest points, a rigid footing was considered at the 
bottom point of each column. Since the footing properties 
were not changed during the FEM simulations, thus it is not 
considered as one of the influential parameters.
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3  Model development for distribution 
of building response estimation

The FEM simulation database that is used to train the ANN 
and PSO-ANN models were from a total of 10,403 full-scale 
models. The measured results from 8323 FEM calculations 
were chosen randomly to train the network. On the other 
hand, results from 2080 FEM simulations were used for the 
validation and testing datasets. The database provided for a 
short building with four stories rested on a single-layered 
soil condition. Note that the horizontal displacement values 
(Ux) varied with dynamic time (e.g., Chi-Chi time domain 

earthquake). In this study, the structural properties (e.g., 
column bending and axial stiffness), soil properties such 
as internal friction angle (φ), soil dilation angle (ψ), unit 
weight of the soil (γ), soil elastic modulus (E), and dynamic 
loading such as variation of acceleration with time (t)) 
selected as inputs and building response to earthquake (i.e., 
its deformation variation at their highest level) were taken 
as the output. A descriptive example of a database found 
from the FEM outputs and influential parameters affecting 
the Ux, as the model output, employed in ANN modeling is 
presented in Table 1.

Fig. 1  A view of the model for the short building. a schematic model, b FEM model
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4  Results and discussion

4.1  Measured building response

As stated earlier, short building structure was modeled on a 
single sandy soil layer. Note that the addition of soil layers 

will increase the complexity of the problem and multilayered 
baseline soil conditions are considered as the input database. 
To simplify the model, a single soil layer is modeled into 
the FEM calculations. Figure 5 presents the variation of the 
measured Ux versus time for two points of A and J. Note 
point A (e.g., highest elevation column no. 1) and point J 

Table 1  A small portion of the variables and database applied for modeling purpose

Input Output

Time (s) Friction 
angle (°)

Dilation 
angle (°)

Unit weight 
(kN/m3)

Elastic modulus 
(kN/m2)

Poisson’s 
ratio (V)

Axial stiffness (EA) Bending stiff-
ness (EI)

Ux (m)

0.000 30 3.4 19 17,500 0.333 546,000 945 0.0127
0.000 30 3.4 19 17,500 0.333 546,000 945 0.0168
0.000 30 3.4 19 17,500 0.333 546,000 945 0.0175
20.930 31 4.2 19.3 20,000 0.327 546,000 945 0.0053
21.060 31 4.2 19.3 20,000 0.327 546,000 945 0.0054
21.190 31 4.2 19.3 20,000 0.327 546,000 945 0.0050
21.320 31 4.2 19.3 20,000 0.327 546,000 945 0.0043
21.450 31 4.2 19.3 20,000 0.327 546,000 945 0.0034
21.580 31 4.2 19.3 20,000 0.327 546,000 945 0.0022
21.710 31 4.2 19.3 20,000 0.327 546,000 945 0.0008
21.840 31 4.2 19.3 20,000 0.327 546,000 945 -0.0006
21.970 31 4.2 19.3 20,000 0.327 546,000 945 -0.0021
20.280 33 5.8 19.9 25,000 0.313 546,000 945 0.0020
20.410 33 5.8 19.9 25,000 0.313 546,000 945 0.0030
20.540 33 5.8 19.9 25,000 0.313 546,000 945 0.0036
15.080 37 8.8 20.7 40,000 0.285 4,158,000 121,128 -0.0014
15.210 37 8.8 20.7 40,000 0.285 4,158,000 121,128 0.0017
15.340 37 8.8 20.7 40,000 0.285 4,158,000 121,128 0.0053
15.470 37 8.8 20.7 40,000 0.285 4,158,000 121,128 0.0090
15.600 37 8.8 20.7 40,000 0.285 4,158,000 121,128 0.0128
15.730 37 8.8 20.7 40,000 0.285 4,158,000 121,128 0.0165
28.600 42 11.5 21.1 65,000 0.249 5,670,000 359,100 0.0730
28.730 42 11.5 21.1 65,000 0.249 5,670,000 359,100 0.0739
28.860 42 11.5 21.1 65,000 0.249 5,670,000 359,100 0.0747
28.990 42 11.5 21.1 65,000 0.249 5,670,000 359,100 0.0756
29.120 42 11.5 21.1 65,000 0.249 5,670,000 359,100 0.0764
29.250 42 11.5 21.1 65,000 0.249 5,670,000 359,100 0.0772

Fig. 2  Variation of acceleration 
(g) versus time (s) of the 1999 
Chi-Chi, Taiwan, Earthquake 
(after Chang et al. [55])
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(e.g., column no. 10). Note that column no. 1 (with point A 
at its highest level) had the minimum stiffness values where 
column no. 10 (with point J at its highest level) had the 
maximum stiffness values. From this figure, it can be seen 
that point A in column no. 1, (e.g., the most flexible case) 
the column itself will have fluctuated behaviors rather than 
a rigid case (e.g., point J) with a smooth deformation.

4.2  Artificial neural network

The use of the artificial neural network in finding a solution 
for the highly complex problem is well established [56–59]. 
In this study, prediction of the short building response to 
earthquake loading [i.e., shown as the horizontal deflection 
of the columns at their highest level (Ux)] is the aim of the 

current study. As in the first step of the ANN optimization, 
different testing and training datasets were considered for 
the proposed models. During the calculation process, we 
separated two datasets including 80% of the whole dataset 
for the training dataset and 20% of the whole dataset for the 
testing dataset. The best structure of the ANN model found 
after some trial and error processes and by varying the num-
ber of neurons and the number of hidden layers [60–66]. In 
this regard, we built a total of 84 ANN-Tansig models. The 
performance of proposed networks was measured to assess 
their best network outputs. As a final result, we presented 
the average result from six different ANN model iterations 
in Tables 2 and 3, for the network performance R2 and 
RMSE, respectively. Two different ranking systems of total 
and color intensity ranking were used to rank the obtained 
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outputs from the ANN modeling. Based on the average 
network result from all 84 ANN constructed networks 
(i.e., from both of the testing and the training datasets), 
the proposed model with the highest total ranking values 
(i.e., 27 and 28 on the R2 and RMSE results, respectively) 
should designate as the best constructed model. However, 
after checking all network performance (as illustrated in 
Figs. 6, 7), the ANN model with eight hidden neurons in a 
single hidden layer resulted in a better network prediction 
result. This means the final ANN structure that was chosen 
for this model should have an 8 × 12 × 1 structure but look-
ing to the small changes in the network performance (as 
shown in Figs. 6, 7, respectively), the optimum value for 
the pre-defined number of nodes in a single hidden layer 
structure can be chosen to be four. In the case of this study 
and without simplification the best ANN structure for the 
calculation of the building response to earthquake loading 
was chosen to be 8 × 12 × 1.

4.3  Hybrid PSO‑ANN models

To measure the capability of both ANN and PSO-ANN 
methods, two ranking techniques were utilized (Table 4). 
These rankings are described well in other studies (e.g., 
Moayedi and Hayati [67], Moayedi et al. [68], Moayedi and 
Rezaei [69]). The accuracy results (i.e., shown by statisti-
cal indexes of R2 and RMSE) for different values used for 
PSO influential parameter such as (i) population sizes, (ii) 
values considered for the acceleration constants of C1 and 
C2 and (iii) values between 0.2 and 1.0 that are considered 
for the term called inertia weight are presented in Figs. 8, 
9, and 10, respectively. From these figures, it can be seen 
that the network performance (i.e., based on PSO-ANN 
model) that used swarm size equal to 400 (e.g., the swarm 
size that obtained the maximum total ranking), and both of 
the acceleration constants of C1 and C2 is equal to 2.0 (also 
in Table 5), respectively. Note that the inertia weight equal to 
1.0 (Table 6) leads to the most reliable and accurate predic-
tive PSO-ANN model.

Based on the obtained results, although all proposed 
models have satisfactory approximation results in estima-
tion Ux, the proposed hybrid PSO-ANN model can be pre-
sented as a more reliable and better ANN model in this field. 
Almost in all predictive models, the learning process was 
acceptable. Figure 11 shows the results of RMSE for differ-
ent acceleration constants and inertia weight. Based on R2, 
RMSE and VAF, values of (0.9997, 0.0170 and 99.9293) 
and (0.9997, 0.0168 and 99.9950) are obtained for randomly 
selected training and testing of the proposed PSO-ANN 
models, respectively. Similarly, in ANN, the R2, RMSE, 
and VAF for both of the training and the testing datasets 
were (0.99961, 0.01815 and 99.713) and (0.99963, 0.01748 
and 99.720), respectively. From all presented models, the 
PSO-ANN predictive model can provide higher performance 
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results regarding all statistical indices (e.g., RMSE, R2, and 
VAF) for both training and testing phases compared to the 
other two methods. Training and testing results of the ANN 
model in predicting Ux based on the ANN predictive model 
(e.g., with ten nodes) and PSO-ANN predictive models are 

presented in Figs. 12 and 13, respectively. This ANN-based 
equation with the 8 × 4 × 1 structure represents a reliable 
estimation model in predicting Fult. This equation along with 
the proposed PSO-ANN structure showed excellent conver-
gence as predictive networks (Eq. 1).

(1)Fult =
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Fig. 6  R2 outputs for 84 proposed ANN models with a change in the 
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where

(2)
Y1 = Tansig(1.6090 × A + ( 0.1264 )

× B + ( − 0.0121 ) × C + ( 2.0575 ))

(3)
Y2 = Tansig(3.6824 × A + ( − 0.5746 )

× B + ( − 0.5475 ) × C + ( − 1.4195 ))

(4)
Y3 = Tansig(−5.1603 × A + (−1.2555 )

× B + ( − 0.4726 ) × C + ( − 8.9539 ))

(5)
Y4 = Tansig(−5.6652 × A + (−1.1423 )

× B + ( − 0.4409 ) × C + ( − 13.7946 ))

(6)
Y5 = Tansig(1.6469 × A + ( 0.9256 )

× B + ( 0.6186 ) × C + ( 0.3377 ))

Table 4  PSO-ANN network results for different population sizes

Model number Swarm size Network result Ranking Total rank

Train Test Train Test

R2 RMSE VAF R2 RMSE VAF R2 RMSE VAF R² RMSE VAF

1 25 0.999642 0.017304 99.934 0.999607 0.01819 99.96 9 8 10 6 6 6 45
2 50 0.999603 0.018233 99.9214 0.999556 0.01902 99.96 6 6 5 1 3 2 23
3 75 0.999641 0.01724 99.9236 0.999621 0.01799 99.96 8 9 7 8 8 8 48
4 100 0.999802 0.012855 99.9580 0.999779 0.01358 99.98 12 12 12 11 11 11 69
5 150 0.99958 0.018768 99.9222 0.999584 0.0185 99.9 5 4 6 5 5 5 30
6 200 0.999553 0.019249 99.9089 0.999567 0.01928 99.963 2 2 1 2 1 3 11
7 250 0.999577 0.018751 99.913 0.999624 0.01786 99.96 4 5 4 9 9 9 40
8 300 0.999544 0.019662 99.9093 0.99962 0.01801 99.96 1 1 2 7 7 7 25
9 350 0.999564 0.018991 99.9119 0.999577 0.01909 99.96 3 3 3 4 2 4 19
10 400 0.999772 0.013782 99.9555 0.999779 0.01353 99.98 11 11 11 12 12 12 69
11 450 0.999659 0.016928 99.9309 0.999643 0.01729 99.970 10 10 9 10 10 10 59
12 500 0.999635 0.017514 99.9283 0.999569 0.0188 99.946 7 7 8 3 4 1 30
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Fig. 8  The results of network performance for various population 
sizes
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Fig. 9  Performance results for different C1 and C2 values
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Table 5  PSO-ANN network results for different C1 and C2

Model number C1 C2 Network result Ranking Total rank

Train Test Train Test

R2 RMSE VAF R2 RMSE VAF R2 RMSE VAF R2 RMSE VAF

1 0.67 3.33 0.999589 0.01862 99.918 0.999519 0.01961 99.959 10 10 10 1 2 2 35
2 1.33 0.67 0.999556 0.019292 99.910 0.999618 0.01801 99.967 6 5 6 10 9 10 46
3 2.67 1.34 0.999533 0.019779 99.905 0.999524 0.02046 99.960 2 2 1 2 1 3 11
4 3.33 0.67 0.999552 0.019512 99.908 0.999578 0.01885 99.964 4 4 4 5 5 6 28
5 2.50 2.50 0.999522 0.020004 99.907 0.999587 0.0184 99.965 1 1 3 7 7 8 27
6 2.00 2.00 0.999771 0.013875 99.95 0.999799 0.01291 99.983 12 12 12 12 12 12 72
7 1.75 1.75 0.999541 0.019615 99.905 0.999583 0.01886 99.965 3 3 2 6 4 7 25
8 1.50 1.50 0.999568 0.019027 99.914 0.999571 0.01884 99.964 9 9 9 4 6 5 42
9 1.25 1.25 0.999639 0.017348 99.925 0.999653 0.01714 99.97 11 11 11 11 11 11 66
10 1.00 1.00 0.999555 0.019244 99.912 0.999551 0.01951 99.962 5 6 8 3 3 4 29
11 0.50 0.50 0.999562 0.019112 99.91 0.999612 0.01824 99.967 8 8 7 8 8 9 48
12 0.25 0.25 0.99956 0.019216 99.909 0.999618 0.01766 99.939 7 7 5 9 10 1 39

Table 6  PSO-ANN network results for different inertia weight

Model 
number

Inertia weight Network result Ranking Total rank

Train Test Train Test

R2 RMSE VAF R2 RMSE VAF R2 RMSE VAF R2 RMSE VAF

1 0.2 0.9995 0.0217 99.9090 0.9995 0.0210 99.9573 1 1 1 2 1 1 7
2 0.4 0.9996 0.0178 99.9196 0.9996 0.0187 99.9663 3 3 4 3 3 3 19
3 0.6 0.9996 0.0178 99.9178 0.9996 0.0181 99.9672 4 4 3 4 4 4 23
4 0.8 0.9995 0.0194 99.9144 0.9995 0.0199 99.9608 2 2 2 1 2 2 11
5 1.0 0.9997 0.0170 99.9293 0.9997 0.0168 99.9950 5 5 5 5 5 5 30
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Fig. 11  RMSE results for different a acceleration constants and b inertia weight
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(7)
Y6 = Tansig(0.5167 × A + ( − 0.1137 )

× B + ( − 0.1865 ) × C + ( − 0.6806 ))

(8)
Y7 = Tansig(−4.7088 × A + (0.4517 )

× B + ( − 0.0639 ) × C + ( − 15.4673 ))

(9)
Y8 = Tansig(1.5396 × A + ( 1.3974 )

× B + ( − 0.0858 ) × C + ( − 0.6297 ))

(10)
Y9 = Tansig(−15.6196 × A + (−0.3360 )

× B + ( 0.2663 ) × C + ( − 6.2506 ))

where in Eqs. 2 to 13, the letters A to H are as follows:
A time (s), B friction angle, C dilation angle, D unit 

weight (kN/m3), E elastic modulus (kPa), F Poisson’s ratio 
(v), G EA, and H EI.

(11)
Y10 = Tansig(−3.9240 × A + (−0.0452 )

× B + ( − 0.6381 ) × C + ( − 0.5206 ))

(12)
Y11 = Tansig(−1.4065 × A + (−0.1150 )

× B + ( 0.0230 ) × C + ( − 1.1835 ))

(13)
Y12 = Tansig(−0.9161 × A + (0.2858 )

× B + ( 0.3287 ) × C + ( 0.3103 ))

Fig. 12  Training and testing results of the ANN model in predicting 
Fult (e.g., with ten nodes)

Fig. 13  Training and testing results of the PSO-ANN model in pre-
dicting Fult
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5  Conclusions

In the present study, the main objective was to find a reliable 
predictive method to estimate the horizontal displacement 
of short building subjected to a Chi-Chi 1999 earthquake. 
Therefore, results from a total of 10,395 FEM simulations 
were used as the input database. After presenting the applied 
solutions in this study, the obtained results from each tech-
nique compared and evaluated the effect of each influential 
parameter. To measure the applicability of the presented 
technique, we used two different ranking systems. Note that 
the results from developed networks provided for both test-
ing and training datasets. The obtained results proved that 
both proposed models have acceptable approximation results 
in estimation Ux with time. However, the hybrid PSO-ANN 
model can present as a better and more reliable ANN model 
in this field. The learning process was acceptable in both 
predictive models. In the ANN predictive model, the R2, 
RMSE, and VAF for both of the training and testing datasets 
were (0.99961, 0.01815 and 99.713) and (0.99963, 0.01748 
and 99.720), respectively, while values of (0.9997, 0.0170 
and 99.9293) and (0.9997, 0.0168 and 99.9950), respec-
tively, were obtained for training and testing of the opti-
mized PSO-ANN predictive models. From both presented 
models, i.e., to estimate the horizontal deformation of short 
structures subjected to massive ground motion such as Chi-
Chi 1999 earthquake, the PSO-ANN predictive model can 
provide higher performance result (e.g., lower RMSE and 
higher R2 and VAF) in terms of all statistical indices for 
both training and testing phases compared to ANN method.
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