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Abstract
The aim of the current paper is to propose an efficient method for finding the approximate solution of fractional delay dif-
ferential equations. This technique is based on hybrid functions of block-pulse and fractional-order Fibonacci polynomials. 
First, we define fractional-order Fibonacci polynomials. Next, using Fibonacci polynomials of fractional-order, we introduce 
a new set of basis functions. These new functions are called fractional-order Fibonacci-hybrid functions (FFHFs) which 
are appropriate for the approximation of smooth and piecewise smooth functions. The Riemann–Liouville integral opera-
tional matrix and delay operational matrix of the FFHFs are obtained. Then, using these matrices and collocation method, 
the problem is reduced to a system of algebraic equations. Using Newton’s iterative method, we solve this system. Some 
examples are proposed to test the efficiency and effectiveness of the present method. Given the application of these kinds of 
fractional equations in the modeling of many phenomena, a numerical example of this work includes the Hutchinson model 
which describes the rate of population growth.

Keywords  Fractional-order Fibonacci-hybrid function · Fibonacci polynomial · Operational matrix · Collocation method

1  Introduction

In the last few decades, delay systems have been highly 
regarded by researchers. Because a lot of these time-delay 
systems appear in many systems and branches of various 
sciences such as engineering, chemistry, physics, disease 
models [1], traffic flow models [2], and so on.

Myshkis introduced the theory of a class of delay dif-
ferential equations in 1949 [3]. In addition, Krasovski [4], 
Bellman and Cooke [5], El’sgol’c and Norkin [6], and Hale 
[7] studied in the field.

One of the branches of mathematical studies is the frac-
tional calculus, which has attracted many researchers in 

recent years, because this branch of mathematics emerges 
in the modeling of many phenomena. For example, in [8], 
the authors presented fractional Sturm–Liouville boundary 
value problems. In [9], the authors discussed the fractional 
rumor spreading dynamical model, and in [10], they regu-
larized long-wave equation has been studied. To find out 
more about fractional calculus, we can refer to [11]. Frac-
tional calculus is obtained by the change of the derivative 
and integral order from the integer to the non-integer. In fact, 
the fractional calculus is the classical mathematical devel-
opment. Some advantage of this branch of mathematics is 
explained in [12].

The fractional differential equation is a kind of fractional 
equations that appears in the modeling of many phenomena 
in the various sciences. Recently, these equations have been 
considered by many researchers and mathematicians, and 
this has led to the improvement and expansion of this kind 
of equations. The examples of these works can be found in 
[13, 14] and [15].

In addition, there are various analytic and numerical 
techniques to solve this type of fractional equations, such 
as fractional Lagrange polynomials [16], fractional-order of 
Legendre polynomials [17], fractional-order Taylor method 
[18], homotopy analysis transform method [19], q-fractional 
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homotopy analysis transform method [20], Volterra integral 
equation method [21], homotopy analysis method [22], oper-
ational matrix of Legendre polynomials [23], the mixture 
homotopy analysis technique, Sumudu transform approach 
and homotopy polynomials [24], and so on.

Several numerical techniques have been presented for 
solving integer and non-integer order of delay differential 
equations, such as Legendre wavelet method [25], Cheby-
shev polynomials [26], Bernoulli wavelet [27], fractional-
order Bernoulli wavelet [28], predictor-corrector method 
[29], Legendre spectral element method [30], finite differ-
ence/finite element method [31], etc.

Moreover, some scholars discussed the stability and anal-
ysis of the behavior of delay fractional differential equations 
or a system of delay fractional differential equations. This 
type of study can be seen in some works like [32, 33].

Delay fractional differential equations describe the effec-
tiveness of some physical objects such as amorphous semi-
conductors, fractional random walk [34], and so on. Other 
applications of this kind of equation happen in some fields 
such as: fluid flow, viscoelasticity, electrical networks, prob-
ability and statistics, optics and signal processing, rheology, 
etc. Interested readers can find more details in Refs. [35–38].

Piecewise constant basis functions, orthogonal polynomi-
als, and sine-cosine functions in the Fourier series are three 
classes of the orthogonal functions.

Utilizing the derivative or integration operational matri-
ces of orthogonal functions, the dynamical system problems 
reduce to solving a system of algebraic equations. These 
operational matrices can be specified uniquely, using the 
special orthogonal functions [39]. The Fibonacci polynomi-
als are not orthogonal functions. However, these polynomi-
als have the fractional-order integration operational matrix. 
A Riemann–Liouville integral operational matrix of Fibo-
nacci polynomials is proposed in [40].

Recently, hybrid functions have included a combination 
of pulse-block functions and some polynomials such as Leg-
endre polynomials, Lagrange polynomials [41], Chebyshev 
polynomials [42], and Bernoulli polynomials [43], Bernstein 
polynomials [44], and Taylor series [45] as strong base func-
tions in solving various kind of equations.

In the current study, we present fractional-order Fibo-
nacci polynomials. Then, using these fractional functions, 
we introduce another new set of fractional functions, that is 
called fractional-order Fibonacci-hybrid functions.

FFHFs are appropriate for the approximation of smooth 
and piecewise smooth functions defined on symmetric 
and asymmetric subintervals. Moreover, the introduced 
fractional-order Fibonacci-hybrid functions have three free 
parameters ( N,M, � ), and so, by different choice of them 
especially � , we can obtain more accurate solution for prob-
lems, while the previous hybrid functions are dependent to 
N and M.

The structure of this work is organized as follows. The 
next section includes some necessary definitions and math-
ematical preliminaries required for the next development. 
Section 3 is devoted to construct the Fibonacci polynomials 
of fractional-order and fractional-order Fibonacci-hybrid 
functions. In Sect.  4, we derive the FFHFs operational 
matrices of fractional integration and delay. In Sect. 5, we 
present the numerical technique for solving delay fractional 
differential equations. Section 6 is devoted to the error analy-
sis. In Sect. 7, by considering some example, we propose 
the numerical results and display the effectiveness of this 
method. In addition, we employ this method for solving the 
Hutchinson model.

2 � Preliminaries

Definition 1  Suppose that f ∶ [a, b] → R be a function, 
𝜈 ∈ R, 𝜈 > 0 and n = ⌈�⌉ , the fractional-order Riemann–
Liouville integral is defined as follows [16]:

where ∗ denotes the convolution product. In addition, we 
have the following: [16]

D� denotes fractional derivative in Caputo sense which is 
presented in [16].

Definition 2  (Generalized Taylor’s formula) [45] Let 
Dk�f (x) ∈ C(0, 1] for  k = 0, 1,… , n + 1 .  Then,  for 
0 < 𝜉 ≤ x,∀x ∈ (0, 1] , we have the following:

Moreover, we get

where M� ≥ sup�∈(0,1] |D(n+1)�f (�)|.

(1)

I𝜈 f (x) =

{
1

𝛤 (𝜈)
∫ x

0
(x − t)𝜈−1f (t)dt =

1

𝛤 (𝜈)
x𝜈−1 ∗ f (x) 𝜈 > 0,

f (x) 𝜈 = 0,

(2)(D�I� f )(x) = f (x),

(3)(I�D� f )(x) = f (x) −

⌈�⌉−1�
i=0

xi

i!
f (i)(0).

f (x) =

n∑
k=0

xk�

� (k� + 1)
Dk�f (0+) +

x(n+1)�

� ((n + 1)� + 1)
D(n+1)�f (�),

(4)

|f (x) −
n∑

k=0

xk�

� (k� + 1)
Dk�f (0+)| ≤ M�

x(n+1)�

� ((n + 1)� + 1)
,



797Engineering with Computers (2020) 36:795–806	

1 3

3 � Fractional‑order Fibonacci‑hybrid 
functions

Here, we recall the definitions of Fibonacci polynomials, 
and in continue, we introduce fractional-order Fibonacci 
polynomials. In the end, we propose the fractional-order 
Fibonacci-hybrid functions.

3.1 � Fibonacci polynomials

Definition 3  For any k ∈ R+ , the recurrent form of k-Fibo-
nacci sequence is as follows [46]:

subject to F̃k,0 = 0, F̃k,1 = 1.
If k is a real variable x in Eq. (5), then F̃k,n = F̃x,n . There-

fore, the general formula of Fibonacci polynomials is as fol-
lows [46]:

or the power form representation of Fibonacci polynomials 
is as follows[46]:

Remark 1  The matrix form of Fibonacci polynomials is as 
follows:

in which

and B is coefficients matrix which is the lower triangular 
matrix:

(5)F̃k,n+1 = kF̃k,n + F̃k,n−1, n ≥ 1

(6)F̃n(x) =

⎧⎪⎨⎪⎩

1, n = 0,

x, n = 1,

xF̃n−1(x) + F̃n−2(x), n > 1.

(7)F̃n(x) =

⌊ n

2
⌋�

i=0

�
n − i

i

�
xn−2i, n ≥ 0,

(8)F̃(x) = BT(x),

F̃(x) = [F̃0(x), F̃1(x), F̃2(x),…]T, T(x) = [1, x, x2, x3,…]T,

(9)B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 ⋯

0 1 0 0 0 0 0 ⋯

1 0 1 0 0 0 0 ⋯

0 2 0 1 0 0 0 ⋯

1 0 3 0 1 0 0 ⋯

0 3 0 4 0 1 0 ⋯

1 0 6 0 5 0 1 ⋯

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

In this matrix, the non-zero inputs exactly build the diago-
nals of the Pascal triangle and the sum of elements in each 
row is the same as the classical Fibonacci sequence [47].

3.2 � Fractional‑order Fibonacci polynomials

To construct fractional-order Fibonacci polynomials, we uti-
lize the change of variable x to x� , (𝛼 > 0) , and we represent 
these fractional-order polynomials with F̃𝛼

n
(x) . Using Eq. (6), 

the analytic form of F̃𝛼
n
(x) is as follows:

In addition, using Eq. (7), we achieve

For example, the fractional-order Fibonacci polynomials for 
n = 3 are as follows:

3.3 � Fractional‑order Fibonacci‑hybrid functions

Now, a new set of functions called fractional-order Fibo-
nacci-hybrid functions (FFHFs) is proposed. FFHFs are 
made by change of variable x to x� , (0 < 𝛼 ≤ 1) , on the 
Fibonacci-hybrid functions. The FFHFs fnm(x�) are speci-
fied by f �

nm
(x) . Then, using the Fibonacci-hybrid functions 

and the fractional-order Fibonacci polynomials, we have the 
following:

where n = 0, 1,… ,N  and m = 1, 2,… ,M , and n is the 
order of fractional Fibonacci polynomials and the order 
of block-pulse function is denoted by m. In addition, we 
have Fibonacci-hybrid functions, for � = 1 . For example, in 
N = 2, M = 3, � =

1

2
 , we obtain the following:

(10)F̃𝛼
n
(x) =

⎧
⎪⎨⎪⎩

1, n = 0,

x𝛼 , n = 1,

x𝛼F̃𝛼
n−1

(x) + F̃𝛼
n−2

(x), n > 1.

(11)F̃𝛼
n
(x) =

⌊ n

2
⌋�

i=0

�
n − i

i

�
x𝛼(n−2i), n ≥ 0,

F̃𝛼
0
(x) = 1, F̃𝛼

1
(x) = x𝛼 , F̃𝛼

2
(x) = x2𝛼 + 1, F̃𝛼

3
(x) = x3𝛼 + 2x𝛼 .

(12)f 𝛼
nm
(x) =

{
F̃n(Mx𝛼 − m + 1),

m−1

M
≤ x𝛼 < m

M
,

0, otherwise,
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Moreover, Figs. 1 and 2 show the FFHFs with N = 2,M = 2 
and � = 1, 0.5

f
1

2

01
(x) =

�
1, 0 ≤ x < 1

9

0 otherwise
, f

1

2

11
(x) =

�
3
√
x, 0 ≤ x < 1

9

0 otherwise
,

f
1

2

21
(x) =

�
9x + 1, 0 ≤ x < 1

9

0 otherwise

f
1

2

02
(x) =

�
1,

1

9
≤ x < 4

9

0 otherwise
, f

1

2

12
(x) =

�
3
√
x − 1,

1

9
≤ x < 4

9

0 otherwise
,

f
1

2

22
(x) =

�
9x − 6

√
x + 2,

1

9
≤ x < 4

9

0 otherwise

f
1

2

03
(x) =

�
1,

4

9
≤ x < 1

0 otherwise
, f

1

2

13
(x) =

�
3
√
x − 2,

4

9
≤ x < 1

0 otherwise
,

f
1

2

23
(x) =

�
9x − 12

√
x + 5,

4

9
≤ x < 1

0 otherwise

3.4 � Function approximation

Suppose that H = L2[0, 1] , and {f 𝛼
01
(x), f 𝛼

11
(x),… , f 𝛼

NM
(x)} ⊂ H 

is the set of Fibonacci-hybrid functions of fractional order, 
and Y = span{f �

01
(x), f �

11
(x),… , f �

NM
(x)} . Let g be an arbi-

trary element in H. Y is a finite-dimensional vector space, 
so g̃ ∈ Y  is the unique best approximation out of Y, which is

Furthermore, since g̃ ∈ Y  , there exist coefficients 
c01, c11,… , cNM , uniquely as follows:

where

∀y ∈ Y , ‖g − g̃‖ ≤ ‖g − y‖.

(13)g(x) ≃ g̃(x) =

N∑
n=0

M∑
m=1

cnmf
𝛼
nm
(x) = CTF𝛼(x),

Fig. 1   Plot of the FFHFs with N = 2,M = 2 and � = 1

Fig. 2   Plot of the FFHFs with N = 2,M = 2 and � = 0.5
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The coefficient vector C can be obtained as CT = GTD−1 , 
where

and

4 � FFHF operational matrix of the Riemann–
Liouville integral

Suppose F�(x) is FFHFs vector presented in Eq. (7), then

where the fractional Riemann–Liouville integral operational 
matrix of order � is denoted by P(�, �) . Now, by using Eq. (1), 
we have the following:

Taking the Laplace transform on Eq. (18), we obtain the 
following:

where

In addition, for f �
nm
(x) , we have the following:

(14)

C = [c01, c11,… , cN1, c02, c12,… , cN2,… , c0M ,… , cNM]
T

F�(x) = [f �
01
(x),… , f �

N1
(x),… , f �

0M
(x),… , f �

NM
(x)]T

= [f �
0
(x), f �

1
(x),… , f �

NM
(x)]T.

(15)

D = ⟨F� , F�⟩ = ∫
1

0

F�(x)F�T (x)x�−1dx,

G = [g01, g11,… , gN1, g02, g12,… , gN2,… , g0M ,… , gNM]
T,

(16)

gnm = ∫
1

0

g(x)f �
nm
(x)x�−1dx, n = 0, 1, 2,… ,N, m = 1, 2,… ,M.

(17)I�F�(x) ≃ P(�, �)F�(x),

(18)

I� f �
nm
(x) =

1

� (�)
x�−1 ∗ f �

nm
(x), n = 0, 1,… ,N m = 1, 2,… ,M.

(19)

[I� f �
nm
(x)] = 

[
1

� (�)
x�−1

]
[f �

nm
(x)], n = 0, 1,… ,N

m = 1, 2,… ,M,

(20)
[

1

� (�)
x�−1

]
= r−v.

(21)

f 𝛼
nm
(x) = 𝜇

(
m−1

M
)
1
𝛼
(x)F̃n(Mx𝛼 − m + 1)

− 𝜇
(
m

M
)
1
𝛼
(x)F̃n(Mx𝛼 − m + 1)

=

⌊ n

2
⌋�

i=0

�
n − i

i

�
(Mx𝛼 − m + 1)𝛼(n−2i)

�
𝜇
(
m−1

M
)
1
𝛼
(x) − 𝜇

(
m

M
)
1
𝛼
(x)

�
,

where �c(x) is unit step function.
By employing the Laplace transform for Eq. (21) and 

using Eq. (19), we obtain (I� f �
nm
(x)) = �(�,�)

nm
(r) . Now, uti-

lizing the inverse Laplace transform of �(�,�)
nm

(r) , yields

where 𝜑̃(𝜈,𝛼)
nm

(x) = −1(𝜑(𝜈,𝛼)
nm

(r)) . We can expand 𝜑̃(𝜈,𝛼)
nm

(x) 
regarding FFHFs as follows:

Hence, we have the following:

5 � Delay operational matrix of FFHFs

For Taylor polynomials, we have the following [48]:

where �(�) is the following matrix:

and TN(x) = [1, x, x2,… , xN]T.
According to Remark 1 and using Eq. (25), we obtain 

the following:

Then, we can rewrite

where F̃𝛼(x) = [F̃𝛼
0
(x), F̃𝛼

1
(x),… , F̃𝛼

N
(x)]T.

We get �� = B�(�)B−1 , where �� is delay operational 
matrix of fractional Fibonacci polynomials. Moreover, we 
know

then, we obtain

where �� is delay operational matrix of FFHFs and 
�� = diag[�M� ,�M� ,… ,�M�

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
M

].

(22)I𝜈 f 𝛼
nm
(x) = 𝜑̃(𝜈,𝛼)

nm
(x),

(23)𝜑̃(𝜈,𝛼)
nm

(x) ≃

N∑
𝜏=0

M∑
𝜌=1

c̃𝜏𝜌f
𝛼
𝜏𝜌(x) = C̃T

nm
F𝛼(x).

(24)P(𝜈,𝛼) = [C̃nm], n = 0, 1,… ,N m = 1, 2,… ,M.

(25)TN(x − �) = �(�)TN(x),

�(�) =

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 … 0

−� 1 … 0

(−�)2 − 2� … 0

⋮ ⋮ ⋱ ⋮

(−�)n
�

N

N − 1

�
(−�)n−1 … 1

⎤⎥⎥⎥⎥⎥⎥⎦

.

F̃(x − 𝜉) = B𝜃(𝜉)TN(x) = B𝜃(𝜉)B−1F̃(x).

(26)F̃𝛼(x − 𝜉) = B𝜃(𝜉)B−1F̃𝛼(x),

(27)
F̃n(M(x𝛼 − 𝜉) − m + 1) = 𝛬M𝜉F̃n(Mx𝛼 − m + 1), n = 0, 1,… ,N;

(28)F�(x − �) = ��F
�(x),
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6 � Numerical method

We focus on the following fractional delay differential 
equation:

We can approximate D�y(x) in this problem with the FFHFs 
as follows:

then, using Eq. (17) and property of fractional integration in 
Eq. (3), we achieve the following:

where

In addition, for 𝜉 < x ≤ 1 and using Eqs. (28) and (30):

and �(x − �) ≃ ATF�(x), 0 ≤ x ≤ � , then, we get

Substituting Eqs. (30)–(32) in Eq. (29), an algebraic equa-
tion is derived:

(29)
⎧
⎪⎨⎪⎩

F(x, y(x), y(x − 𝜉), D𝜈y(x)) = 0, 0 ≤ x ≤ 1, l − 1 < 𝜈 ≤ l, 0 < 𝜉 < 1,

y(i)(0) = 𝜆i, i = 0, 1,… , l − 1, l ∈ N

y(x) = 𝛷(x), x < 0.

(30)D�y(x) ≃ CTF�(x),

(31)

y(x) ≃ CTP(�,�)F�(x) +

l−1∑
i=0

xi

i!
�i ≃ CTP(�,�)F�(x) + ETF�(x),

E(x) =

l−1∑
i=0

xi

i!
�i, E(x) ≃ ETF�(x).

y(x − �) = CTP(�,�)F�(x − �) + ETF�(x − �)

= CTP(�,�)��F
�(x) + ET��F

�(x),

(32)

y(x − 𝜉) ≃

⎧⎪⎨⎪⎩

ATF𝛼(x), 0 ≤ x ≤ 𝜉,

CTP(𝜈,𝛼)𝛺𝜉F
𝛼(x) + ET𝛺𝜉F

𝛼(x), 𝜉 < x ≤ 1

⎧⎪⎨⎪⎩

F(x, CTP(𝜈,𝛼)F𝛼(x) + ETF𝛼(x), ATF𝛼(x), CTF𝛼(x)) = 0, 0 ≤ x ≤ 𝜉,

F(x, CTP(𝜈,𝛼)F𝛼(x) + ETF𝛼(x), CTP(𝜈,𝛼)𝛺𝜉F
𝛼(x) + ET𝛺𝜉F

𝛼(x), CTF𝛼(x)) = 0, 𝜉 < x ≤ 1.

Therefore ,  we  co l loca te  above  equa t ion  a t 
xp =

p

NM
, p = 0, 1, 2,… ,NM . Thus, we get a system of alge-

braic equations. We solve this system and derive the vector 
C, using Newton’s iterative method.

7 � Error analysis

Theorem  1   Let  Di�g ∈ C(0, 1], i = 0, 1,… ,N, (2N+

1)� ≥ 1, (N̂ = MN) and Y�
N
= span{F�

0
(x),F�

1
(x),… ,F�

N
(x)} . 

If gN(x) = ATF̃𝛼(x) is the best approximation of g(x) out of 
Y�
N

 on [m−1
M

,
m

M
] . Then, for the approximate solution g

N̂
(x) 

using FFHFs series on [0, 1], we have the following:

Proof  We define the following:

and by using Definition 2, we get the following:

where Im, M = [
m−1

M
,

m

M
].

Given that gN(x) = ATF̃𝛼(x) is the best approximation of 
g(x) out of Y�

N
 on the interval Im, M , and g1(x) ∈ Y�

N
 , then

(33)‖g − g
N̂
‖2 ≤ supx∈[0, 1]�D(N+1)�g(x)�

� ((N + 1)� + 1)
√
(2N + 3)�

.

g1(x) =

N∑
i=0

xi�

� (i� + 1)
Di�f (0+),

|g(x) − g1(x)| ≤ x(N+1)�

� ((N + 1)� + 1)
supx∈Im, M |D(N+1)�g(x)|,
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	�  □

Lemma 1  Assume that g ∈ L2[0, 1] is approximated by frac-
tional-order Fibonacci polynomials as follows:

so, we have limN→∞ eN(g) = 0 , where

Theorem 2  Let H is a Hilbert space and Y is a close sub-
space of H, such that dimY < ∞ and y1, y2,… , yn , is any 
basis for Y. Let z be an arbitrary element in H, and y∗ be 
the unique best approximation to z out of Y. Therefore [49]

where

To obtain an upper bound for the error vector of P(�,�) , we 
consider

and, from Eqs. (15), (23) and approximated 𝜑̃(𝜈, 𝛼)
i

(x) , we get

‖g − g�N‖2L2[0, 1] = ‖g − CTF𝛼‖2
L2[0, 1]

=

M�
m=1

‖g − ATF̃𝛼‖2
L2[

m−1

M
,

m

M
]
≤

M�
m=1

‖g − g1‖2L2[ m−1
M

,
m

M
]

≤
M�

m=1
�Im, M

�
x(N+1)𝛼

𝛤 ((N + 1)𝛼 + 1)
supx∈Im, M �D(N+1)𝛼g(x)�

�2
x𝛼−1dx

≤�
1

0

�
x(N+1)𝛼

𝛤 ((N + 1)𝛼 + 1)
supx∈[0, 1]�D(N+1)𝛼g(x)�

�2
x𝛼−1dx

≤ 1

𝛤 ((N + 1)𝛼 + 1)2(2N + 3)𝛼
(supx∈[0, 1]�D(N+1)𝛼g(x)�)2.

g(x) ≃ gn(x) = ATF̃𝛼(x);

eN(g) = ∫
1

0

[g(x) − gN(x)]
2dx.

‖z − y∗‖2
2
=

G(z, y1, y2,… , yn)

G(y1, y2,… , yn)
,

G(x, y1, y2,… , yn) =

���������

⟨x, x⟩ ⟨x, y1⟩ ⋯ ⟨x, yn⟩
⟨y1, x⟩ ⟨y1, y1⟩ ⋯ ⟨y1, yn⟩
⋮ ⋮ ⋮ ⋮

⟨yn, x⟩ ⟨yn, y1⟩ ⋯ ⟨yn, yn⟩

���������
.

(34)E
(�)
I

= P(�, �)F�(x) − I�F�(x), E
(�)
I

=

⎡⎢⎢⎢⎣

eI0
eI1
⋮

eINM

⎤⎥⎥⎥⎦
,

𝜑̃(𝜈, 𝛼)
i

(x) ≃

NM∑
i=0

c̃if
𝛼
i
(x),

we obtain c̃i with the best approximation. From Theorem 2, 
we have the following:

Then, from Eqs.  (22)–(29), we obtain the following:

Therefore, considering Theorem 1, we can see that E(�) tends 
to zero by increasing the number of FFHFs. In addition, 
notice that we obtain delay operational matrix without any 
approximation, and then, the vector error of this operational 
matrix is zero.

For example, considering N = 2,M = 3, 5 and different 
values of �, � , we obtain the upper bound of the error for this 
operational matrix. For � = � = 1 , we have the following:

(35)

‖‖‖‖‖‖
𝜑̃(𝜈, 𝛼)
i

(x) −

NM∑
i=0

c̃if
𝛼
i
(x)

‖‖‖‖‖‖2
=

(
G(𝜑̃(𝜈,𝛼)

i
(x), f 𝛼

0
,… , f 𝛼

NM
)

G(f 𝛼
0
,… , f 𝛼

NM
)

) 1

2

.

‖eIi‖2 =
����I

𝜈 f 𝛼
i
(x) −

NM�
i=0

c̃if
𝛼
i
(x)

����

≤����𝜑̃
(𝜈, 𝛼)
i

(x) −

NM�
i=0

c̃if
𝛼
i
(x)

����

≤
�
G(𝜑̃(𝜈,𝛼)

i
(x), f 𝛼

0
,… , f 𝛼

NM
)

G(f 𝛼
0
,… , f 𝛼

NM
)

� 1

2

.

M = 3, E1
I
≤ [0, 0, 0, 00223, 0, 0, 0.00223]T,

M = 5, E1
I
≤ [0, 0, 0, 0, 8.64 × 10−5, 0, 0, 0, 0, 8.64 × 10−5]T.

Table 1   Absolute errors and CPU time (in seconds) of numerical 
solution in N = 2,M = 2 and different values of � for Example 1

x � = 0.0001 � = 0.001 � = 0.01

0.1 3.1919 × 10−15 2.7756 × 10−17 2.4147 × 10−15

0.3 3.7748 × 10−15 2.7756 × 10−17 3.4417 × 10−15

0.5 6.2728 × 10−15 1.6653 × 10−16 3.6915 × 10−15

0.7 2.2204 × 10−16 1.1102 × 10−16 0

0.9 2.2204 × 10−16 1.1102 × 10−16 0

CPU 0.016 0.026 0.031
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For � = 1, � = 0.5 , we have the following:

For � = � = 0.5 , we have the following:

Then, in this example, we can see that, by increasing bases, 
the vector E�

I
 tends to zero.

M = 3, E0.5
I

≤[0.011398, 0.001791, 0.013765, 2.57 × 10−45.05 × 10−4, 0.0024675]T,

M = 5, E0.5
I

≤[0.004029, 1.87 × 10−4, 0.00441, 4.06 × 10−4, 0.0042, 3.59 × 10−6,

4.73 × 10−6, 1.12 × 10−5, 2.63 × 10−5, 1.18 × 10−5]T.

M = 3, E0.5
I

≤[0, 0, 0, 0.002686, 0, 0, 0.006006]T,
M = 5, E0.5

I
≤[0, 0, 0, 0, 1.32 × 10−4, 0, 0, 0, 0, 3.07 × 10−4]T.

8 � Numerical results

Here, we employ the proposed technique for solving the fol-
lowing test examples.

Example 1  We consider the following fractional delay dif-
ferential equation [28]:

Table 2   Absolute errors and CPU time of numerical results in 
N = 4, M = 2, � = 0.1 with different values of � for Example 1

x � =
1

2
, � = 1 � = � =

1

2

0.1 3.37404 × 10−4 1.58642 × 10−5

0.3 1.50058 × 10−4 7.84349 × 10−6

0.5 1.37223 × 10−3 4.44156 × 10−6

0.7 1.09563 × 10−2 1.24645 × 10−5

0.9 9.51393 × 10−3 3.43936 × 10−5

CPU 0.016 0.031

Fig. 3   Compari-
son of our results for 
N = 2, M = 2, � = 0.01, � = � 
and analytic solution in Exam-
ple 1

Table 3   Comparison of the numerical solution with analytical solu-
tion in Example 2

x Exact solution Hermit 
wavelet [50]

Bernoulli 
wavelet [28]

Our method

n̂ = 25 n̂ = 14 n̂ = 7

0.2 0.8187307 0.8187 0.8187 0.8187307
0.4 0.6703200 0.6703 0.6703 0.6703201
0.6 0.5488116 0.5488 0.5488 0.5488118
0.8 0.4493289 0.4493 0.4493 0.4493292
CPU − − − 0.047
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For � = 1,
1

2
 , the analytic solution of Eq. (36) is y(x) = x2 − x

.
We apply this method for � = � = 1 , various choices of � 

and N = 2, M = 2 . Figure 3 displays the numerical results 
achieved for various values of � = � and the exact solution 
in � = 0.01.

Table 1 demonstrates the efficiency and accuracy of 
FFHFs to solve this problem. The numerical results show 
that the numerical solutions converge to the analytical 
solution.

Moreover, we solve this problem in � =
1

2
 . In Table 2, our 

results show the effectiveness of our method in this problem.

Example 2  Consider the linear fractional delay differential 
equation as follows [28, 50]:

(36)
{

D𝜈y(x) = y(x − 𝜉) − y(x) +
2

𝛤 (3−𝜈)
x2−𝜈 −

1

𝛤 (2−𝜈)
x1−𝜈 + 2𝜉x − 𝜉2 − 𝜉, 0 ≤ x ≤ 1, 0 < 𝜈 ≤ 1,

y(x) = 0, x ≤ 0

(37)
⎧⎪⎨⎪⎩

D𝜈y(x) = −y(x) − y(x − 0.3) + e−x+0.3, 0 ≤ x ≤ 1, 2 < 𝜈 ≤ 3,

y(x) = 1, y
�

(0) = −1, y
��

(0) = 1,

y(x) = e−x, x < 0.

For � = 3 , the analytic solution of Eq. (37) is y(x) = e−x . We 
employ the proposed method for M = 1, N = 6 in � = 1.

Table 3 demonstrates the numerical results achieved for 
various values of x using our method in M = 1, N = 6, � = 1 
or n̂ = 7 , the Hermite wavelet method in n̂ = 25 [50], Ber-
noulli wavelets method with k = 2, M = 7 or n̂ = 14 [28], 
and the exact solution. In addition, Fig. 4 shows the numeri-
cal solutions obtained with various values of � and the ana-
lytical solution for N = 7, M = 1, � = 1.

Moreover, maximum absolute error for this problem 
using our method for n = 6 is 4.71097 × 10−7 , and this value 
obtained by one-point fifth-order predictor-corrector method 
and two-point fifth-order predictor-corrector method with 
h = 0.1 are 8.692389 × 10−5 and 8.804834 × 10−5 , respec-
tively [29].

Fig. 4   Comparison of y(x) 
for N = 6, M = 1, � = 3 and 
various of � and the analytical 
solution, in Example 2
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Example 3  We consider the following fractional equation:

with

and � = 0.000001 . The analytic solution of Eq. (38) is as 
follows:

We employ our method to solve this equation in 
N = 4, M = 2 , � =

1

2
 and 1. Table 4 compares the numerical 

results in this method. We can see the effectiveness of pre-
sented method to solve this problem with piecewise smooth 
functions.

In addition, numerical results for � =
1

2
 and exact solution 

are shown in Fig. 5.

(38)

�
D

1

2 y(x) = y(x − �) + f (x), 0 ≤ x ≤ 1,

y(x) =
√
x, − � ≤ x ≤ 0

f (x) =

⎧⎪⎨⎪⎩

√
𝜋

2
+
√
x − 𝜉, 0 ≤ x < 1

4
,

𝜉 −
2
√
x√
𝜋
− x +

8x
3
2

3
√
𝜋
+ (x − 𝜉)2, 1

4
≤ x ≤ 1,

y(x) =

�√
x, 0 ≤ x < 1

4
,

x2 − x,
1

4
≤ x ≤ 1.

Fig. 5   Comparison of y(x) for 
N = 4,M = 2, � =

1

2
 and the 

analytical solution in Example 3

Table 4   Absolute errors and CPU time of our method for various val-
ues of � in Example 3

x � = 1 � =
1

2

0.1 1.31740 × 10−3 7.56818 × 10−6

0.3 7.49422 × 10−2 3.52562 × 10−8

0.5 1.85252 × 10−2 1.27839 × 10−8

0.7 1.64537 × 10−3 7.71325 × 10−8

0.9 1.27992 × 10−2 2.29497 × 10−7

CPU 0.063 0.015

Table 5   The ‖Resn‖2 and CPU time with various values of �, � for 
Example 4

‖Resn‖2 CPU

� = � = 1 N = 4, M = 1 3.3863 × 10−16 0.012
N = 4, M = 2 2.5841 × 10−18 0.031

� = 0.5, � = 1 N = 4, M = 1 1.4814 × 10−12 0.178
N = 4, M = 2 8.6164 × 10−14 0.031

� = � = 0.5 N = 4, M = 1 4.4648 × 10−15 0.031
N = 4, M = 2 2.2085 × 10−17 0.078

� = 0.75, � = 1 N = 4, M = 1 2.9882 × 10−12 0.078
N = 4, M = 2 6.3247 × 10−15 0.266

� = � = 0.75 N = 4, M = 1 2.0648 × 10−15 0.063
N = 4, M = 2 9.6071 × 10−16 0.734
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Example 4  Consider the Hutchinson model. This model 
describes the rate of population growth. In each particular 
time, the rate of population growth is dependent on some 
unique relationships at that time, and its equation is as fol-
lows [51]:

The analytical solution of Eq. (39) is not available [52], and 
then, our main purpose is to ensure the convergence of the 
proposed method. For this approach, consider the residual 
error norm as follows:

The calculated residual error and numerical convergence 
order for the approximate solution of the considered mod-
els and CPU time (in seconds) are tabulated in Table 5 for 
� = 0.2, p = 0.015, q = 1.

9 � Conclusion

In the current study, we introduced fractional-order Fibo-
nacci polynomials. Next, we presented new functions called 
fractional-order Fibonacci-hybrid functions (FFHFs), based 
on block-pulse functions and fractional-order Fibonacci pol-
ynomials. The FFHF operational matrix of fractional-order 
integration and delay operational matrix of FFHFs have been 
obtained. These matrices and collocation method are used to 
numerical solution of linear and nonlinear delay fractional 
differential equations. Moreover, we employed this method 
for numerical solution of the Hutchinson model. The results 
displayed that the present method is more accurate than 
some existing method.

Acknowledgements  The authors wish to express their sincere thanks to 
referees for their valuable suggestions that improved the paper.

References

	 1.	 Zhang T, Meng X, Zhang T (2014) SVEIRS: a new epidemic 
disease model with time delays and impulsive effects. Abstr Appl 
Anal 2014:15

(39)

{
D�y(x) = py(x) −

p

q
y(x)y(x − �), x ∈ [0, 1],

y(x) = 0.5, x ∈ [−�, 0].

Resn(x) = CTF�(x) − p(CTP(�,�)F�(x) + 0.5)

+
p

q
(CTP(�,�)F�(x) + 0.5)(CTP(�,�)��F

�(x) + 0.5)T,

‖Resn‖2 = ∫
1

0

Res2
n
(x)dx.

	 2.	 Sipahi R, Niculescu SI (2009) Deterministic time-delayed traf-
fic flow models: a survey. In: Atay F (ed) Complex time-delay 
systems. understanding complex systems. Springer, Berlin, 
Heidelberg

	 3.	 Myshkis AD (1949) General theory of differential equations with 
a retarded argument. Uspehi Mat. Nauk 22 (134), (in Russian). 
Amer. Math. soc. transl. no. 55, 1951, pp 21–57

	 4.	 Krasovskii NN (1963) Stability of motion. Standford University 
Press, Standford

	 5.	 Bellman R, Cooke KL (1963) Differential-difference equation. 
Academic, New York

	 6.	 El’sgol’c LE, Norkin SB (1973) Introduction to the theory of 
differential equations with deviating argument, 2th edn. Nauka, 
Moscov (in Russian), 1971. Mathematics in science and Eng., vol 
105. Academic Press, New York

	 7.	 Hale JK (1977) Theory of functional differential equations. 
Springer, New York

	 8.	 Khosravian-Arab H, Dehghan M, Eslahchi MR (2015) Fractional 
SturmLiouville boundary value problems in unbounded domains: 
theory and applications. J Comput Phys 299:526–560

	 9.	 Singh J (2019) A new analysis for fractional rumor spreading 
dynamical model in a social network with Mittag-Leffler law. 
Chaos Interdiscip J Nonlinear Sci 29(1):013137

	10.	 Kumar D, Singh J, Baleanu D (2018) Analysis of regularized 
long-wave equation associated with a new fractional operator with 
Mittag-Leffler type kernel. Phys A Stat Mech Appl 492:155–167

	11.	 Loverro A (2004) Fractional calculus: history, definitions and 
applications for the engineer. Department of Aerospace and 
Mechanical Engineering, Rapport technique, Univeristy of Notre 
Dame, Notre Dame, pp 1–28

	12.	 Atangana A, Secer A (2013) A note on fractional order deriva-
tives and table of fractional derivatives of some special functions. 
Abstract and applied analysis, vol 2013. Hindawi, Cairo

	13.	 Dumitru B, Kai D, Enrico S (2012) Fractional calculus: models 
and numerical methods, vol 3. World Scientific, Singapore

	14.	 Kumar D, Singh J, Baleanu D (2018) A new analysis of the Forn-
berg-Whitham equation pertaining to a fractional derivative with 
Mittag-Leffler-type kernel. Eur Phys J Plus 133(2):70. https​://doi.
org/10.1140/epjp/i2018​-11934​-y

	15.	 Singh J, Kumar D, Baleanu D (2018) On the analysis of fractional 
diabetes model with exponential law. Adv Differ Equ 2018(1):231. 
https​://doi.org/10.1186/s1366​2-018-1680-1

	16.	 Sabermahani S, Ordokhani Y, Yousefi SA (2017) Numerical 
approach based on fractional-order Lagrange polynomials for 
solving a class of fractional differential equations. Comput Appl 
Math 2017:1–23. https​://doi.org/10.1007/s4031​4-017-0547-5

	17.	 Kazem S, Abbasbandy S, Kumar S (2013) Fractional-order Leg-
endre functions for solving fractional-order differential equations. 
Appl Math Model 37(7):5498–5510

	18.	 Krishnasamy VS, Razzaghi M (2016) The numerical solution of 
the Bagley-Torvik equation with fractional Taylor method. J Com-
put Nonlinear Dyn 11(5):051010-051010–6

	19.	 Kumar D, Singh J, Baleanu D, Rathore S (2018) Analysis of a 
fractional model of the Ambartsumian equation. Eur Phys J Plus 
133(7):259. https​://doi.org/10.1140/epjp/i2018​-12081​-3

	20.	 Singh J, Secer A, Swroop R, Kumar D (2018) A reliable analytical 
approach for a fractional model of advection-dispersion equation. 
Nonlinear Engineering. https​://doi.org/10.1515/nleng​-2018-0027

	21.	 Assari P, Cuomo S (2018) The numerical solution of fractional 
differential equations using the Volterra integral equation method 
based on thin plate splines. Eng Comput. https​://doi.org/10.1007/
s0036​6-018-0671-x

	22.	 Dehghan M, Manafian J, Saadatmandi A (2010) Solving non-
linear fractional partial differential equations using the homot-
opy analysis method. Numer Methods Partial Differ Equ Int J 
26(2):448–479

https://doi.org/10.1140/epjp/i2018-11934-y
https://doi.org/10.1140/epjp/i2018-11934-y
https://doi.org/10.1186/s13662-018-1680-1
https://doi.org/10.1007/s40314-017-0547-5
https://doi.org/10.1140/epjp/i2018-12081-3
https://doi.org/10.1515/nleng-2018-0027
https://doi.org/10.1007/s00366-018-0671-x
https://doi.org/10.1007/s00366-018-0671-x


806	 Engineering with Computers (2020) 36:795–806

1 3

	23.	 Saadatmandi A, Dehghan M (2010) A new operational matrix for 
solving fractional-order differential equations. Comput Math Appl 
59(3):1326–1336

	24.	 Singh J, Kumar D, Baleanu D, Rathore S (2018) An efficient 
numerical algorithm for the fractional Drinfeld–Sokolov–Wilson 
equation. Appl Math Comput 335:12–24

	25.	 Sadeghi Hafshejani M, Karimi Vanani S, Sedighi Hafshejani J 
(2011) Numerical solution of delay differential equations using 
Legendre wavelet method. World Appl Sci 13:27–33

	26.	 Sedaghat S, Ordokhani Y, Dehghan M (2012) Numerical solu-
tion of the delay differential equations of pantograph type via 
Chebyshev polynomials. Commun Nonlinear Sci Numer Simul 
17:4815–4830

	27.	 Rahimkhani P, Ordokhani Y, Babolian E (2017) Numerical solu-
tion of fractional pantograph differential equations by using gen-
eralized fractional-order Bernoulli wavelet. Comput Appl Math 
309:493–510

	28.	 Rahimkhani P, Ordokhani Y, Babolian E (2017) A new opera-
tional matrix based on Bernoulli wavelets for solving fractional 
delay differential equations. Numer Algor. 74:223–245

	29.	 Seong HY, Majid ZA (2014) Fifth order predictor-corrector meth-
ods for solving third order delay differential equations. AIP Conf 
Proc 1635(1):94–98

	30.	 Dehghan M, Abbaszadeh M (2018) A Legendre spectral element 
method (SEM) based on the modified bases for solving neutral 
delay distributed-order fractional damped diffusion-wave equa-
tion. Math Methods Appl Sci 41(9):3476–3494

	31.	 Dehghan M, Abbaszadeh M (2018) An efficient technique based 
on finite difference/finite element method for solution of two-
dimensional space/multi-time fractional Bloch-Torrey equations. 
Appl Numer Math 131:190–206

	32.	 Baleanu D, Magin RL, Bhalekar S, Daftardar-Gejji V (2015) 
Chaos in the fractional order nonlinear Bloch equation with delay. 
Commun Nonlinear Sci Numer Simulat 25(1–3):41–49

	33.	 Moghaddam BP, Yaghoobi S, Machado JT (2016) An extended 
predictorcorrector algorithm for variable-order fractional delay 
differential equations. J Comput Nonlinear Dyn 11(6):061001. 
https​://doi.org/10.1115/1.40325​74

	34.	 Ohira T, Milton J (2009) Delayed random walks: Investigating the 
interplay between delay and noise. Delay differential equations. 
Springer, Boston, pp 1–31

	35.	 Huang C, Guo Z, Yang Z, Chen Y, Wen F (2015) Dynamics of 
delay differential equations with its applications 2014. Abstract 
and applied analysis. Hindawi, Cairo

	36.	 an der Heiden U (1979) Delays in physiological systems. J Math 
Biol 8:345–364

	37.	 an der Heiden U, Mackey MC, Walther HO (1981) Complex 
oscillations in a simple deterministic neuronal network. In: 

Hoppensteadt F (ed) Mathematical aspects of physiology. Ameri-
can Mathematical Society, Providence, pp 355–360

	38.	 Radziunas M (2016) New multi-mode delay differential equa-
tion model for lasers with optical feedback. Opt Quant Electron 
48:470. https​://doi.org/10.1007/s1108​2-016-0736-2

	39.	 Mashayekhi S, Razzaghi M (2016) Numerical solution of distrib-
uted order fractional differential equations by hybrid functions. J 
Comput Phys 315(15):169–181

	40.	 Youssri YH, Abd-Elhameed WM (2017) Spectral solutions for 
multi-term fractional initial value problems using a new Fibonacci 
operational matrix of fractional integration. Progr Fract Differ 
Appl 2(2):141–151

	41.	 Razzaghi M, Marzban HR (2000) A hybrid analysis direct method 
in the calculus of variations. Int J Comput Math 75(3):259–269

	42.	 Tavassoli Kajani M, Hadi Vencheh A (2005) Solving second kind 
integral equations with Hybrid Chebyshev and Block-Pulse func-
tions. Appl Math Comput 163:71–77

	43.	 Behroozifar M (2013) Numerical solution of delay differential 
equations via operational matrices of hybrid of block-pulse func-
tions and Bernstein polynomials. Comput Methods Differ Equ 
2(1):78–95

	44.	 Marzban HR, Razzaghi M (2006) Solution of multi-delay systems 
using hybrid of block-pulse functions and Taylor series. J Sound 
Vib 292(3):954–963

	45.	 Odibat Z, Shawagfeh NT (2007) Generalized Taylor’s formula. 
Appl Math Comput 186(1):286–293

	46.	 Falcon S, Plaza A (2007) The k-Fibonacci sequence and the Pascal 
2-triangle. Chaos Solitons Fract 33(1):38–49

	47.	 Falcon S, Plaza A (2009) On k-Fibonacci sequences and polyno-
mials and their derivatives. Chaos Solitons Fract 39:1005–1019

	48.	 Rabiei K, Ordokhani Y, Babolian E (2017) Fractional-order Bou-
baker functions and their applications in solving delay fractional 
optimal control problems. J Vib Control 24:1–14

	49.	 Kreyszig E (1978) Introductory functional analysis with applica-
tions. Wiley, New York

	50.	 Saeed U, Rehman MU (2014) Hermite wavelet method for frac-
tional delay differential equations. J Differ Equ 2014:1–8

	51.	 Fowler AC (2005) Asymptotic methods for delay equations. J Eng 
Math 53(3–4):271–290

	52.	 Moghaddam BP, Mostaghim ZS (2013) A numerical method 
based on finite difference for solving fractional delay differential 
equations. J Taibah Univ Sci 7(3):120–127

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1115/1.4032574
https://doi.org/10.1007/s11082-016-0736-2

	Fractional-order Fibonacci-hybrid functions approach for solving fractional delay differential equations
	Abstract
	1 Introduction
	2 Preliminaries
	3 Fractional-order Fibonacci-hybrid functions
	3.1 Fibonacci polynomials
	3.2 Fractional-order Fibonacci polynomials
	3.3 Fractional-order Fibonacci-hybrid functions
	3.4 Function approximation

	4 FFHF operational matrix of the Riemann–Liouville integral
	5 Delay operational matrix of FFHFs
	6 Numerical method
	7 Error analysis
	8 Numerical results
	9 Conclusion
	Acknowledgements 
	References




