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Abstract
New product design is inspired by the existing design. The clustering of similar design cases therefore enhances new product 
development (NPD). At the beginning of NPD, the success of creative design highly depends on the designers’ subjective 
judgments and try-and-error attempts due to its very obscure prospect. To facilitate an efficient approach for generating crea-
tive ideas, this paper proposes a new design method by integrating fuzzy relational analysis, case-based reasoning (CBR) 
and C-K theory. The proposed design method involves four specific sections: design criteria importance ranking; similar-
ity measurement for design knowledge; knowledge clustering method for innovation and a step-by-step design algorithm. 
Moreover, a new battery buckling machinery is used as a empirical study to verify the workability of the proposed method. 
The contributed method shows its advantages to cultivate the inspirations from the existing design and generate creative 
design concepts from knowledge combination.

Keywords Creative design · Similarity measurement · Knowledge clustering · Case-based reasoning · C-K theory

1 Introduction

Nowadays, creative design has played a crucial role in the 
success of the companies [1]. Organizations need to innovate 
to maintain their competitive advantages in dynamic market 
[2, 3]. It is widely accepted that the innovations of NPD 
deeply rely on former design experience and knowledge, 
other than building total new products from scratch [4, 5]. 
Case-base reasoning (CBR) is a knowledge paradigm that 
solve new problems by applying the previous cases that are 
similar to the products in development [6]. Therefore, CBR 

has attracted widespread interests from the relevant domains 
and plays an important role in both conceptual synthesis [7] 
and engineering design [8].

The success of creative design based on CBR is closely 
reliant on feature selection and case organization in its 
case memory (library) [9]. Design ideation, especially at 
the beginning stage of NPD has obvious uncertainty, but it 
determines as much as 70–80% of the whole product devel-
opment cost [10]. Sometimes the design requirements from 
customers are too ambiguous for designers [11] to conduct 
effective CBR processes since the absence of clear guid-
ances for case retrieval and reusing of the existing design 
cases.

To deal with the uncertainty of the early stage in NPD, 
fuzzy rough number and grey relation analysis are widely 
used to manage the subjectivity in design concepts evalua-
tion [3, 12]. The attempts to integrate the fuzzy cluster anal-
ysis and CBR are observed in feature selection [13], fabric 
advisory system [14], value engineering [15], cost estima-
tion [2], feature clustering [9], just to name them a few.

With the help of fuzzy rough number based relation 
analysis (FRA) and the CBR, it is possible to facilitate the 
knowledge clustering of similar design cases at the very 
beginning of NPD. However, the traditional CBR has its 
well-defined limitation in resolution of inventive problems 
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since its strong assumption that all the solutions already 
found are good enough to create the new design concepts. 
Therefore, the integration of other method is required to 
facilitate the application of CBR in innovations of NPD 
to make best of the existing cases in creative design. The 
C-K theory seems an ideal companion for CBR in inspir-
ing the creative ideas for NPD. From the perspective of 
the C-K theory [16], the creation of innovative design con-
cepts lies in the expanding of both concepts and knowledge 
spaces through the introducing the knowledge from outside 
domains. As the result of combination of CBR and C-K the-
ory, CBR helps to build the knowledge spaces and enhances 
the knowledge reasoning process; meanwhile C-K theory 
proposes a framework through which the creative ideas are 
generalized by introducing the new design knowledge and 
expanding the concepts and knowledge spaces.

To the best of our knowledge, this paper is the first 
attempt to present a novel design approach by combining 
the FRA, CBR and C-K theory in forms of a variant C-K 
design algorithm to boost the creative ideations in NPD. 
To attain this objective, the rest of paper is organized as 
follows: Sect. 2 presents a brief review about CBR, fuzzy 
number based relation analysis, knowledge similarity meas-
urement, C-K theory and knowledge-based creative design 
as the scientific foundation to this study. Section 3 explains 
the proposed method from four aspects involving design cri-
teria ranking, function similarity measurement, knowledge 
clustering for innovation and design algorithm. Section 4 is 
an illustrative case to verify the feasibility of the proposed 
method. Section 5 highlights both the contributions and the 
limitations of the study.

2  Background

2.1  Case‑based reasoning

Case-based reasoning (CBR) uses validate prior experience, 
or design cases, as solution to solve new problems [17]. CBR 
is built on the principles of analogical reasoning, through 
which design problem are resolved by adapting previously 
successful solutions to current problems [2].

The case is the central notion of CBR, which is usually 
represented as a pair formulated by problem and its solution 
[18]. To facilitate the case retrieval, a CBR system usually 
comprises four modules: case representation, case retrieval, 
case adaptation, case evaluation revision and learning [19]. 
Another important study [20] has regarded CBR as a cycle 
composing of four main subjects: Retrieving similar previ-
ously experienced cases; Reusing the retrieved cases; Revis-
ing the solutions for solving the new problem; Retaining the 
validated new solution.

The usage of CBR has several advantages, for instance, 
CBR employs the specific characteristics rather than gen-
eral knowledge of problem domain, it is beneficial when the 
problems are not completely understood [18]. That may be 
the reason that CBR has numerous applications in various 
domain such as the medical diagnostics support [17] and 
risk management [21].

2.2  Fuzzy rough theory and triangular fuzzy 
number

Fuzzy logic helps to represent the characterization of impre-
cise and uncertain information in the cases of study [15]. 
Therefore, the theory of fuzzy set has been widely used to 
deal with the uncertainty associated with vagueness in a 
manner analogous to human thought [25], in which the most 
concerned issues involves the feature selection. Zhang et al. 
[22] and similarities measurement [15] to facilitate the case 
retrieval.

Fuzzy rough number is an important approach used by 
group decision making (GDM) [23] to aggregate individual 
judgments and priorities from group experts and manage 
the subjectivity among them [24]. The rough number [12] 
originated from rough set theory handles the subjective 
judgments regarding product design form the customers or 
experts.

Among the fuzzy rough numbers, the triangular fuzzy 
numbers (TFNs) are most commonly used [15] with the 
membership function [23] Q(x): R → [0, 1] is equal to

 in which l and u denote the lower and upper limits of the 
fuzzy number Q, while its interval can be calculated as u-l. 
As the results of simplicity, the aforementioned fuzzy num-
ber is denoted as Q = (l, m, u). Operation laws for the TFNs 
are proposed by research [25] that involve addition “⊕”, 
subtraction “ ⊗ ” and multiplication “ ⊗”.

2.3  Grey relation analysis

At the beginning stages of NPD, there is limited informa-
tion with high uncertainty for designers to make decisions 
concerning multiple criteria such as customers requirements, 
function analysis, technologies, design constraints [26]. In 
this respect, grey relation analysis [27] seems to be promis-
ing to provide the solution since it is a robust but simple and 
straightforward multi-criteria decision-making technique 
[12]. Grey relation analysis is able to calculate the correla-
tion between the reference factor and the other compared 

(1)Q(x) =

⎧⎪⎨⎪⎩

x−l

m−l
, l ≤ x ≤ m

u−x

u−m
, m ≤ x ≤ u

0, otherwise

,



529Engineering with Computers (2020) 36:527–541 

1 3

factors of a system [11]. Therefore, most of previous works 
has successfully solved the multi-criteria decision making 
problems in different areas by integrating the grey relation 
analysis [28, 29].

The traditional grey relation analysis includes six steps 
[30] as the sections followed by in specific.

Step 1: constructing the initial decision matrix(X) involv-
ing n samples characterized by m criteria.

Step 2: Normalization based the characteristics of the 
criteria. Specifically for the criteria belonging to the larger 
-the-better:

For the smaller-the-better:

For the nominal-the-best with the xobj(j) is the target value 
for the jth criterion.

Step 3: Construction of normalized matrix by replacing 
each item in (5) with the calculation results of x�

i
(j) through 

the Eqs. (3)–(5), meanwhile the largest normalized value of 
each criterion works as the reference value in relation to the 
jth criterion.

Step 4: Calculate the difference between each normalized 
item and its reference value and build the difference matrix.

Step 5: Calculation of the grey relational coefficient for 
each item:

(2)X =

⎡⎢⎢⎢⎣

x1(1) x1(2) ⋯ x1(m)

x2(1) x2(2) ⋯ x2(m)

⋮ ⋮ ⋮ ⋮

xn(1) xn(2) ⋯ xn(m)

⎤⎥⎥⎥⎦

(3)x�
i
(j) =

xi(j) −minn
i=1

[
xi(j)

]

maxn
i=1

[
xi(j)

]
−minn

i=1

[
xi(j)

] ,

(4)x�
i
(j) =

maxn
i=1

[
xi(j)

]
− xi(j)

maxn
i=1

[
xi(j)

]
−minn

i=1

[
xi(j)

]

(5)

x�
i
(j) = 1 −

|||xi(j) − xobj(j)
|||

max
{
maxn

i=1

[
xi(j)

]
− xobj(j), xobj(j) −minn

i=1

[
xi(j)

]}

(6)x�
o
(j) = maxn

i=1

[
x�
i
(j)
]

(7)Δoi(j) =
||x�o(j) − x�

i
(j)||

(8)Δ =

⎡⎢⎢⎢⎣

Δo1(1) Δo1(2) ⋯ Δo1(m)

Δo2(1) Δo2(2) ⋯ Δo2(m)

⋮ ⋮ ⋮ ⋮

Δon(1) Δon(2) ⋯ Δon(m)

⎤⎥⎥⎥⎦

Step 6: Calculate the grey relational degree.

Γoi is the grey relational degree that indicates the mag-
nitude of the correlation, such as the similarity measured 
between the compared sequence and the reference sequence.

2.4  Knowledge clustering based on the similarity

Cluster analysis is a popular technique that has attracted a 
large amount of attentions among the data mining methods 
in CBR [31]. The main purpose of clustering is transferring 
the whole case library into several smaller ones in which the 
cases are more similar to each other. As the result, the most 
similar cluster would be retrieved with the comparison to 
the design target [9].

In product design, the design cases or patents that have 
the similar functions and technological structures usually 
play the roles of design heuristics [32] for inspiring the 
new ideas. In most cases, cosine similarity measurement 
[9, 33] is a widely used approach to screen out the poten-
tial design examples from the retrieval results. In similarity 
measurement, the patterns of the function and structure are 
two main indicators to classify the design knowledge. How-
ever, a comprehensive understanding about the knowledge in 
product is the premise for the reasonable knowledge cluster 
results.

The study on the systematic modeling of knowledge [34] 
in innovation has brought new inspiration for facilitating 
the knowledge clustering in product creative design from 
the multiple-facets nature of knowledge [35]. These various 
attributes found in definitions of knowledge can be divided 
into two groups: content and context. Firstly the attributes 
of content reflect the specific information about the domain 
such as the technological background of the knowledge [36]. 
While the contextual attributes of the knowledge mainly 
describes how the knowledge connect with its surroundings 
such as how a product meet the customers’ requirements 
[37]. For design ideation, it is wise to transform the knowl-
edge into several clusters by their attributes of content and 
context dimensions through the similarity algorithm based 
on TFNs and grey relational analysis.

(9)

�oi(j) =
minn

i=1
minn

j=1
Δoi(j) + 0.5 ×maxn

i=1
maxn

j=1
Δoi(j)

Δoi(j) + 0.5 ×maxn
i=1

maxn
j=1

Δoi(j)

(10)Γoi =

m∑
j=1

[
w(j) × �oi(j)

]
,

m∑
j=1

w(j) = 1,
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2.5  C‑K theory

Creative design not only depends on the knowledge from the 
similar design cases in the same domain, but also requires 
knowledge from the other related domains, which beyond 
the realm of traditional CBR [17]. A generic consideration 
about the mechanism of innovation is the premise of apply-
ing the results of knowledge clustering to the generation of 
creative design ideas. C-K theory modeled design as the 
interplay between two independent spaces, namely, the space 
of concepts (C) and the space of knowledge (K) with dif-
ferent structures and logics [38]. In C-K theory, space K 
contains all the true propositions as the available knowledge, 
while space C contains all the concepts which are undecided 
propositions without the references in space K to prove their 
correctness [39].

C-K theory has developed the dynamic mapping process 
between required function and selected structures [40] to 
describe the generation of new objects and new knowledge 
which is the distinctive nature of design [39]. There are four 
operators [38]: C→C, C→K, K→K, K→C to explain the 
nature of creative design by expanding both the space C and 
the space K. These operators provide a general strategy to 
use the knowledge clustered by various attributes from both 
content and context dimensions. Figure 1, which is built on 
[41], illustrates how the four operators work in C-K theory 
to expand the regions of both concepts and knowledge that 
is related to the initial concept by introducing out-domains 
knowledge and building the concepts networks.

2.6  Knowledge‑based creative design

Many researchers have investigated the correlations between 
knowledge creation and idea generation [42–44], while there 

is a study [45] argued that the innovation involves the trans-
formations of knowledge into new products, services or busi-
ness models. Knowledge plays a strategically important role 
in management of organizations’ success [46] as it speeds up 
the creation of new ideas in new and innovative ways [47].

As the cross-links in the creation of knowledge is often 
treated as the “creative leaps” for its producer [48], product 
innovation requires abundant scientific knowledge form dif-
ferent fields [49]. Accordingly, a designer holding a broader 
cross-discipline is more possible to produce more sound 
innovative ideas at the conceptual design stage of NPD 
since he or she can think out of the box, make up for his 
own knowledge. Nevertheless, if the designer only relays 
on his own knowledge or experience, his creativity will be 
restrained [49].

Application of new knowledge from other technological 
domains usually produces the design concepts with high 
level of innovation [50]. In current, novelty maybe the most 
recognized aspect of innovation. The degree of novelty is 
defined by the technological difference, in other words, how 
big is the leap from existing solutions [51].

From this viewpoint, knowledge from other technological 
domains can be observed in forms of technological means 
that are different from the existing solutions. Therefore, the 
technological difference seems an ideal proxy for the innova-
tion of design concepts or at least the clue for searching the 
possible out-domain design knowledge.

3  Proposed methods

This paper proposes a creative design method involving four 
specific sections: design criteria ranking, functional simi-
larity measurement, knowledge clustering for innovation, 

Fig. 1  Design process model of 
C-K theory

Initial 
concept

C→C C→C
C→C

Creative 
concept

C→C

C→C C→C

C→C

C→C

C→C

Existing 
knowledge

Concepts from exploration 
of initial concept  

Concepts from further 
exploration  

K→C

Added knowledge 
from concept 
exploration 

C→K

K→K

Added knowledge 
from further 
exploration 

K→KC→
K

New knowledge

C→K
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and design algorithm. These sections are discussed as the 
following.

3.1  Design criteria ranking

At the beginning of design, designers determine the main 
function of product to meet the customers’ requirements. 
Due to the high uncertainty of design prospect, these func-
tion requirements are the main criteria for the following 
phases of design project. In most cases, designers give 
their subjective opinions on the importance of the function 
requirements based on their personal preference. Therefore, 
the fuzzy relational analysis is introduced to rank the impor-
tance of function requirements to deal with the uncertainty 
and the subjectivity of judgments made by the group of 
designers.

The ranking of design criteria based on TFNs relation 
analysis involves following steps:

Step 1: For a product design consists of n function 
requirements, a TFNs complementary matrix Ã = (ãij)n×n 
is used to represent the comparison results of importance 
between the i criteria and the j criteria. The fuzzy rough 
used by this paper for comparing the importance of criteria 
is shown in Table 1, for example if the ith function require-
ment is more essential than the jth function requirement, and 
its comparison result is 0.9, on the contrary the value is 0.1.

For ãij is a TFN and it is represented as 
∼
aij = [

L
aij,

M
aij,

U
aij] 

where

Step 2: Calculate the weight vectors w = (w1,w2,… ,wn)
T 

in fuzzy ordered weighted averaging (FOWA) operator [52] 
through formula (11) and (12) where the operator Q is by its 
low and upper ends shown as Q(a, b), in which a indicates 
the lower end while the b is the upper end. In this study, a 
is set as 0.3 and b is 0.8 for representing the majority of the 
subjective judgments.

aL
ij
+ aU

ji
= aM

ij
+ aM

ji
= aU

ij
+ aL

ji
= 1,

aL
ii
= aM

ii
= aU

ii
= 0.5, aU

ij
≥ aM

ij
≥ aL

ij
, i, j ∈ N

(11)�j = Q(j∕n) − Q((j − 1)∕n), where 1 ≤ j ≤ n.

Step 3: Calculate the expected value 
∼(�)
aij  for each ãij in 

complementary matrix Ã through formula (13), in which λ 
is chosen as 0.5 for a normal preference. Subsequently, the 
ranks the order of ãij based on 

∼(�)
aij  , in other words, the ãij 

with the largest 
∼(�)
aij  is ranked the first in each row of matrix. 

The result of ranking is represented as 
∼

bik.

Step 4: Calculate the importance value 
∼

di for each criteria 
through formula (14) with the FOWA addition operator.

Step 5: The importance value 
∼

di is another TFN, so the 

expected value 
∼(�)

di  of each 
∼

di is calculated through (15) in 
which the λ is also usually chosen as 0.5.

Then the expected value 
∼(�)

di  is normalized through 
(15) to represent the final ranking weight value 
� = (�1,�2,⋯ ,�n)

T  indicating the importance of every 
criteria.

Step 6:  Calculate the overall  weigh value 
�O = (�O1,�O2,⋯ ,�On)

T for each design criteria based on 
judgments of all the designers in the rating group. If there 
are m raters in total recruited, the overall weigh value is 
calculated by (17) in which the weight value for each rater 

(12)Q(r) =

⎧
⎪⎨⎪⎩

0, r < a
r−a

b−a
, a ≤ r ≤ b

1, r > b

.

(13)
∼(�)
aij =

1

2
[(1 − �)aL

ij
+ aM

ij
+ �aU

ij

1 ≤ i ≤ n 1 ≤ j ≤ n, 0 ≤ � ≤ 1

(14)

∼

di = F(
∼
ai1,⋯

∼
ain) = w1 ⊗

∼

bi1 ⊕w2 ⊗
∼

bi2 ⊕⋯⊕ wn ⊗
∼

bin

= [

n∑
i=1

wkb
L
ik
,

n∑
i=1

wkb
M
ik
,

n∑
i=1

wkb
U
ik
]

(15)
∼(�)

di =
1

2
[(1 − �)dL

i
+ dM

i
+ �dU

i
]

(16)�i =
∼(�)

di

/
n∑
j=1

∼(�)

di 1 ≤ i ≤ n

Table 1  Fuzzy rough set for the 
importance comparison between 
criteria

Rough value Result of comparison Meaning

0.9 Essential The former item is more essential than the latter one
0.8 Very important The former item is much more important than the latter one
0.7 Obvious important The former item is obviously more important than the latter one
0.6 Slightly important The former item is slightly more important than the latter one
0.5 Equal The former item has the equal importance to the latter one
0.4 − 0.1 The contrary The latter criteria is more important than the former one
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in the group denotes as vj that is decided by the role played 
by the rater.

3.2  Knowledge similarity measurement

The importance ranking of function requirements in design 
have provided the important criteria for measuring the 
similarity between the existing design cases and the target 
design. The measurement of their similarity involves several 
specific steps as following:

Step 1: Build the set of criteria and rank their importance.
For example, a product consists of n function require-

ments which denotes as F =  [f1, f2,…, fn]. The ranking 
weight values of all these criteria can be calculated and 
normalized by the method in 3.1 with their ranking result 
denoting as ω = [ω1, ω2, …, ωn].

Step 2: Construct the comparison vectors.
The sum of design criteria from both design cases in com-

parison formulates the comparison vectors. For example, 
design case i has m function requirements as the criteria that 
denotes as Fi = [f1, f2, …, fm] and design case j has n criteria 
which denotes as Fj = [f1, f2, …, fn]. Their comparison vec-
tors are denoted as FA = Fi ∪ Fj = [fA1, fA2,… , fAk] where 
max(m, n) ≤ k ≤ m + n.

Step 3: Define the importance weighted value of com-
parison vectors.

The aforementioned design criteria ranking has decided 
the importance value for each criteria in a normalized way. 
The comparison vectors with weighted value are decided by 
both the comparison vectors and their importance ranking. 
For example, in the comparison between design case i and 
design case j, the comparison vectors with weighted value 
for the design case i denotes as Fsi, where Fsi = [fsi1, fsi2, …, 
fsik], fsit = ωit when fsit∈Fi (1 ≤ t ≤ k) and fsit = 0 when fsit does 
not belong to Fi.

Step 4: Similarity calculation based on the law of cosine.
The similarity of two design cases comparison is meas-

ured by the law of cosine. For example, the similarity com-
parison vectors between design case i and design case j 
denote as Fsi and Fsj, respectively, and their similarity is 
calculated by (18) based on the law of cosine.

3.3  Knowledge clustering for creative ideation

Design case consists of knowledge involving both functional 
and structural aspects. Function similarity measurement 

(17)�Oi =

m∑
j=1

�jivj, where

m∑
j=1

vj = 1

(18)

Sim
(
FAi,FAj

)
=

fAi1fAj1 + fAi2fAj2 +⋯ + fAikfAjk√
f 2
Ai1

+ f 2
Ai2

+ ldots + f 2
Aik

⋅

√
f 2
Aj1

+ f 2
Aj2

+⋯ f 2
Ajk

shows the closeness of design cases regarding their con-
textual knowledge. The distance of their content knowledge 
is gauged by their technological means used to realize the 
function requirements.

There are several specific phases to facilitate knowledge 
clustering.

Phase 1: The similarity measurement of functional 
features.

In this paper, the first dimension of knowledge clustering 
is decided by the similarity of criteria belonging to func-
tional characteristics. The similarity between design project 
and existing design case will be calculated by the methods 
in 3.1 and 3.2.

Phase 2: Analysis of technological characteristics of 
design cases.

As a technological system, a product usually involves four 
sub-systems [53, 54]: working unit, transmission, energy and 
control unit. Therefore, the technological characteristics of 
design cases are reflected in four sub-systems.

Phase 3: Calculate the potential novelty of knowledge by 
its technological difference.

As the most recognized innovation indicator, the novelty 
of conceptual ideas in NPD is measured by their differences 
in technological means involving the levels of principles, 
embodiments and details. The degree of difference in tech-
nological means can be measured by the genealogy tree that 
divides design solutions into four different hierarchies: phys-
ical principle, working principle, embodiment and design 
detail. The difference degree is quantitatively represented by 
set of numbers as 10, 6, 3, 1 [55] to respectively indicate the 
difference at level of physical principle, working principle, 
embodiment and design detail. To normalized the value of 
technological difference, the comparison vector denotes as 
C = [C1, C2, C3, C4] in which C1 denotes the difference of 
working unit, C2 for transmission, C3 for energy, C4 for con-
trol unit. In this paper, the difference value set is normalized 
as [1, 0.6, 0.3, 0.1, 0] to represent the difference on each 
hierarchy of genealogy tree. The overall value of techno-
logical difference DT is calculated trough (19) in which the 
weighted value ωT for each sub-systems are used to stress 
the importance different played by the different sub-systems.

An illustrative example shown in Fig. 2 is used to justify 
how to measure the technological difference in conceptual 
ideas. Refers to Fig. 2, the technological difference (TD) 
between broom and plastic broom is equal to 0.1 since they 
have difference at the level of detail yet sharing the same 
embodiment, while its TD = 0.3 when compared broom 
with hair removal broom since the later one holds a new 

(19)DT =

4∑
i=1

�
ti
Ci where

4∑
i=1

�i = 1



533Engineering with Computers (2020) 36:527–541 

1 3

embodiment for removing the hairs though applying the 
same working principle as the former. Accordingly, the TD 
between the electric broom and broom is equal to 0.6 as 
the electric one has implemented a different working prin-
ciple as a electric driven automatic device though sharing 
the same physical principle by rubbing the surface of floor 
to do the cleaning. Vacuum cleaner has the highest TD = 1 
from the other “brooms” since it uses a total different physi-
cal principle, i.e., vacuum absorption to clean the floor.

Phase 4: Knowledge clustering by two dimensions.
Based on the calculation results of functional similarity 

and technological difference, design knowledge such as the 
existing products and patents can be clustered by four quad-
rants shown in Fig. 3.

Refers to Fig. 3, knowledge has similar functional and 
technological characteristics as design target is grouped 
in the quadrant A. The most of the design cases in CBR 
usually belong to this zone since they come from the same 
and close technological domains with similar functional 
features as the design target. Quadrant B involves design 
knowledge that have the similar technological structures as 
the design target but their functional similarity are relatively 
low. Quadrant C has the most difference on both functional 
and technological aspects but its potential usage in NPD is 
obscure. Design knowledge belonging to quadrant D has 

the obviously functional similarity to design target but has 
applied different technological means since its TD value is 
high. This kind of design knowledge has positive impact on 
creative ideation in NPD by introducing the new principles 
from other domains to generate creative ideas. Knowledge 
clustering model acts better in creative design in NPD by 

Fig. 2  An illustrative example 
of technological differences
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explore the wider region of knowledge for innovation than 
the traditional CBR that seldom takes consideration of the 
design cases from other domain.

Phase 5: Knowledge combination for creative ideation.
Creative ideation in NPD requires the out-domain knowl-

edge that can be obtained by searching the knowledge from 
quadrant C in knowledge clustering model. C-K theory 
has provided an efficient knowledge reasoning approach in 
which four operators are applied to expand both concept and 
knowledge spaces. With the help of the proposed knowledge 
clustering models, the region of searchable design knowl-
edge has been expanded for having taking consideration of 
the design knowledge that has similar functional features, 
but different in its technological domain. Therefore, the C-K 
theory approach has been strengthen by applying the knowl-
edge clustering model then makes the best of the design 
knowledge grouped in different quadrants. In knowledge 
reasoning process of C-K theory, the creative concepts is 
the final result after a series of knowledge combination dur-
ing which the knowledge that is relevant to the initial con-
cept integrates with the newly introduced knowledge that 
come from other technological domain brought about by the 
exploration of concepts. Creative ideas for NPD involve the 
application of cross-domain knowledge that is reflected in 
change of technological system compared with the existing 
solutions. Therefore, approaches involving FAR and CBR to 
facilitate the knowledge clustering as well as the C-K theory 
reasoning should be integrate as a new design algorithm that 
improve the efficiency of creative ideation in NPD by utiliz-
ing the knowledge from the extended searchable domains.

3.4  Design algorithm

A creative design algorithm for new product is formulated 
by combining CBR and C-K theory with its specific work-
flow shown in Fig. 4.

Step 1: Define design project (K0→C0).
The design project begins with the analysis of exploited 

knowledge (K0) such as customers’ needs and marketing to 
define the main function of new product. From the viewpoint 
of C-K theory, the main function (C0) for new design is pro-
posed based on knowledge K0.

Step 2: Function analysis (C0→K1).
The main function of new product C0 evokes the thinking 

of designers. The process is a C→K operator in which the 
main function maps to the expert knowledge of the design-
ers as K1.

Step 3: Function decompose (K1→C1).
The C space is expanded by C1 as the result of function 

decomposition based on the designers’ expert knowledge K1 
in function analysis.

Step 4: Functional importance judgment (C1→K2).

The importance judgment of functional requirements (C1) 
requires the professional knowledge K2 from the designers 
that is reflected in their attitudes towards the importance of 
function requirements.

Step 5: Function importance ranking (K2→C2).
Based on the approach for design criteria ranking in 3.1, 

the C space is further expanded by C2 in which the normal-
ized weighted value for each function requirement has been 
calculated based on the evaluators’ judgments.

Step 6: Design cases retrieval based on similarity 
(C2→K3).

The similarity of functions calculated by the method 
discussed in 3.2 is used for searching the relevant design 
cases from existing products or patent database as the design 
knowledge K3 for the target design.

Step 7: Define the technological prototype (K3→C3).
The technological solutions to fulfill the design require-

ments are proposed by reusing the design knowledge  K3 in 
design cases. As a result of proposing the technological pro-
totype, the C space is expanded.

Step 8: Knowledge clustering (C3→K4).
With the technological prototype C3, it is able to start 

the design knowledge clustering from two dimensions. The 
relevant design cases  K4 are sorted into four quadrants in 
the clustering model.

Step 9: Creative ideation (K4→C5).
The creative idea for the design project is proposed and 

refined as the final solution C5 by the applying the new prin-
ciples from design cases in knowledge clusters K4.

Step 10: Retain the design result as new design knowl-
edge (C5→K5).

The new design result C5 can be stored as the new design 
knowledge K5 in the case library to inspire design in the 
future.

4  Case study

In this section, a new button battery buckling machinery 
is used as an illustrative example to verify the feasibility 
proposed design method. After the new design concept is 
generated, a comparing analysis between the ideality of new 
idea and the existing design is applied to validate the pro-
posed design method.

4.1  Generation of the creative idea

By following the proposed design algorithm, the whole 
design process is explained as the following ten steps.

Step 1: Define design project.
The massive production of button battery requires the 

automatic approach to improve the productivity. The step 
to buckle the seal ring into the shell of the button battery 
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is a labor-costing work for lacking of automatic machinery. 
However, there are many problems in the existing design 
for the bulking machinery. To be specific, these deficien-
cies involve low buckling speed but high cost in building 
and using. A new buckling machine will enjoy a marketing 
success if it is able to overcome these deficiencies. There-
fore, this project is to provide a buckling device with high 
buckling speed and low cost in construction and operation.

Step 2: Function analysis.
There are three designers recruited to accomplish the new 

product design. At first they are suggested to give their pro-
fessional comments on the function analysis of the design 

product. Their reflections are collected and then analyzed to 
facilitate the function decomposition.

Step 3: Function decompose.
Based on the remarking from the designers, the main 

function of buckling machinery is divided into three sub-
functions: FR1: “Buckle” the “seal ring”, FR2: “Move” the 
“parts”, FR3: “Positioning” the “parts”.

Step 4: Functional importance judgment.
With the result of function decomposition, the design-

ers are also required to give their judgments on the impor-
tance of these sub-functions and normalized them into a 
TFNs complementary matrix based on the fuzzy rough set 

Fig. 4  A creative design algo-
rithm based CBR and knowl-
edge clustering
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in Table 1. For example, the rater 3 gave his comments on 
the importance ranking as (20). For instance, he though the 
FR1: “Buckle” is more important than the FR2: “Move” and 
used a TFN (0.7, 0.8, 0.9) to indicate the fuzzy degree of 
importance comparison between FR1 and FR2.

Step 5: Function importance ranking.

(20)

|||||||

(0.5, 0.5, 0.5) (0.7, 0.8, 0.9) (0.8, 0.9, 0.9)

(0.1, 0.2, 0.3) (0.5, 0.5, 0.5) (0.6, 0.7, 0.7)

(0.1, 0.1, 0.2) (0.3, 0.3, 0.4) (0.5, 0.5, 0.5)

|||||||

Fig. 5  The program used for design criteria importance ranking
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Fig. 6  The genealogy tree of technological prototype for the design 
project
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In this paper, a program is developed based on the MAT-
LABE-GUI to make it convenient for designers to apply the 
ranking calculation algorithm in 3.1. The program and the 
calculation results of the function importance ranking are 
shown in Fig. 5 based on the designers’ opinions that are 
reflected in the TFNs complementary matrixes.

Refers to Fig. 5, FR1: “Buckle” ranks the first place with 
its normalized weight as 0.496, FR2: “Move” is the second 
important criteria weighted as 0.290, FR3: “Positioning” 
takes the third place and its scores is 0.214.

Step 6: Design cases retrieval based on similarity.
The designers are required to search the similar design 

cases from the patent database based on the set of defined 
function requirements. In this study, the database of Chinese 
patents is used to avoid the misunderstanding caused by the 
language. The designers have screened the useful design 
cases from the patent database in accordance with their 
professional knowledge and experience. The list of useful 
patents is in Appendix A1. Their similarities on functional 
requirements are measured by the algorithm in 3.2 and also 
shown in Appendix 1.

Step 7: Define the technological prototype.
The first design case in Appendix 1 is chosen as the exist-

ing technological prototype for the design project since it has 
the highest functional similarity to the design target. The 
composition of the technological prototype is divided into 
four sub-systems based on the research [53]. The genealogy 
tree of the technological prototype is illustrated in Fig. 6.

Step 8: Knowledge clustering.
The potential design cases are clustered by two dimen-

sions: functional similarity and technological difference. The 
difference of four sub-systems on genealogy tree determines 
the value of technological difference. All the potential design 
cases are clustered and shown in Fig. 7. Based on Fig. 7, the 
result of knowledge clustering for the potential cases are in 
Table 2.

Step 9: Creative ideation.
In this design case, there are four cases in quadrant D. 

They are analyzed in-depth to find the innovative principles 
to realize the required functions. The seventh case has the 

most obvious priority than others with regard to increase 
the buckling speed and decrease the cost of building and 
usage. A new buckling part is designed based on the inspi-
ration that comes from the seventh case and it is shown in 
Fig. 8a. Based on the rotating strategy and the spring-drive 
reciprocation part that is illustrated in Fig. 8b, the new part 
can work at high speed of buckling just like a machine gun 
firing at high speed.

All the adaption of the design finally formulates a new 
concept for this design project. The diagram for the structure 
of new design solution is in Fig. 10.

Step 10: Retain the design result as new design 
knowledge.

The new design solution is treated as new design knowl-
edge for it has introduced new principles from other domains 
in button battery production machine and which in turns 
expanded the feasible solutions in this domain.

4.2  Comparing analysis of the proposed design 
solution

A comparing analysis between the proposed design solution 
and existing design (No. 1 case in Appendix) is conducted 
based on the ideality theory [53] that is firstly introduced in 
the field of value engineering. The ideal degree of a design 
solution is decided by three aspects: useful functions, harm-
ful effects and costs and its specific computing formula is 
shown as (21).

(21)Ideality =
Useful Fuction

Harmful Effcets + Costs

Fig. 7  Results of knowledge 
clustering for potential design 
cases

Table 2  Results of knowledge clustering for potential design cases

No. Quadrant No. Quadrant No. Quadrant

2 A 7 D 12 B
3 A 8 B 13 A
4 C 9 D 14 A
5 D 10 C
6 A 11 D
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Based on the (21), three categories of indexes involving 
useful functions, harmful effects, and costs are raised by two 
recruited raters and shown in detail in Table 3. The existing 
design solution has a physical prototype, some of its func-
tional parameters are collected from the experimental data, 
two professional raters are recruited to assess the new pro-
posed design concept and estimate some functional param-
eters to compare with the existing solution. The specific 
comparing results are shown in Table 3. Refers to Table 3, 
it is clear that the new proposed design concept has higher 
ideality than the existing solution, which is an important 
evidence to support the validation of the proposed design 
algorithm.

5  Conclusions

This paper has proposed a new creative design method by 
integrating the FRA, CBR and C-K theory. The feasibility of 
the proposed method is verified by designing a new battery 

Fig. 8  New buckling part based 
on machine firing, (a). Buckling 
unit; (b) reciprocation part with 
the redesign of buckling part, 
the other parts of the machinery 
are adapted to this change, for 
example the feeding sub-system 
of the new design is represented 
in Fig. 9a and the coupling 
structure between buckling and 
feeding system is in Fig. 9b

Fig. 9  Examples of other sub-
systems adapting to the change 
of new buckling system, a 
feeding sub-system; b coupling 
structure

Fig. 10  Diagram for the structure of new design solution
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buckling machine. The main contributions of this paper are 
summarized as four aspects:

1. The proposed design criteria importance ranking method 
has applied TFNs analysis to deal with the uncertainty 
and subjectivity at the beginning of product develop-
ment. The importance ranking can help the designers 
to determine the main characteristics of design project 
which is very important in subsequent design stages that 
depend on the importance weighted value of criteria.

2. The knowledge similarity measurement can screen out 
the design knowledge that is related to the design target 
based on the design criteria importance ranking.

3. The proposed approach for knowledge clustering clas-
sifies design knowledge by two dimensions: functional 
characteristics and technological structure. Knowledge 
clustering method is able to sort the design knowledge 
into four quadrants for inspiring the creative design 
ideas.

4. The design algorithm has been developed from both 
CBR and C-K theory. On one hand, the design work-
flow makes up the shortages of CBR in supporting crea-
tive design by putting the design knowledge from other 
domains in knowledge clusters. On the other hand, this 
algorithm also improves the efficiency of the C-K theory 

in creative design by collecting the usable knowledge for 
designers.

The limitations of this study are also obvious that mainly 
involve two facets built on which future studies can start up.

A smart design cases database is required to improve 
the efficiency of the proposed method since both CBR and 
C-K theory largely depend on the appropriate knowledge. 
Therefore, for a product firm or organization, a database 
formulated by the certain kinds of design cases that have 
important influence on creative ideation of NPD.

Besides the functional requirements, it needs further con-
sideration of ranking other design criteria such as the tech-
nological parameters, design constraints with the proposed 
method. The results of importance ranking are important to 
screen the suitable design cases at the latter parts of design 
project.

Appendix 1

The list of potential cases that has functional 
similarity to design target

Table 3  Comparing analysis between the proposed design idea and the existing

Category Index Existing solution New design concept The winner

Useful functions Buckling speed Less than 30 times per minute About 120 times per minute New design
Harmful effects Noise Higher than 80db mainly caused by the vacuum 

generator
About 60db from the metallic clang New design

Complexity Control complexity for electric- pneumatic hybrid 
system

Structural complexity for coupling actions No

Costs Building costs About 10 thousand dollars for many cylinders, 
vacuum generators, valves, and PLC control unit

About 4 thousand dollars for all the 
devices and manufacturing parts

New design

Running costs Average power is 850Wh for gas pumper About 300W for the electric motor New design
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No. Name Serial number Buckle (0.496) Move (0.290) Position (0.214) Total simi-
larity

1 One kind of button 
cell anode fastening 
ring means

CN201410213798.8 Buckle Move Position 0.999
0.520 0.280 0.200

2 New stamping die 
having one kind of 
intelligent position-
ing function

CN201711023359.0 Buckle Move Position 0.945
0.431 0.192 0.377

3 Cutting machine for 
battery pole plate

CN201720297745.8 Buckle Move Position 0.900
0.487 0.513 0

4 A high-frequency 
stamping punch

CN201720083552 0.2 Buckle Move Position 0.895
0.477 0.523 0

5 A rapid capping 
machine

CN201410173440.7 Buckle Move Position 0.922
0.538 0.462 0

6 Punching machine 
for automobile 
plastic parts

CN201710711406.4 Buckle Move Position 0.933
0.584 0/416 0

7 A circulating weapon 
firing device

CN201210079813.5 Buckle Move Position 0.913
0.762 0.238 0

8 A metal sheet rapid 
stamping device

CN201720329590.1 Buckle Move Position 0.872
0.789 0 0.211

9 A quick assembly 
system

CN201220364555.0 Buckle Move Position 0.932
0.448 0.160 0.392

10 A quick assembly 
machine

CN201620373877.X Buckle Move Position 0.850
0.556 0 0.444

11 A O-ring quick 
assembly mecha-
nism

CN201620507013.2 Buckle Move Position 0.987
0.431 0.279 0.290

12 A battery pole cut-
ting mechanism

CN201110229078.7 Buckle Move Position 0.878
0.654 0 0.346

13 A button type battery 
cathode automatic 
buckle device

CN201210580090.7 Buckle Move Position 0.977
0.391 0.320 0.289

14 A button battery 
pole shell buckle 
mechanism

CN201310738750.4 Buckle Move Position 0.973
0.473 0.402 0.125
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