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Abstract
System identification (SI) is a key step in the process of evaluating the status or condition of physical structures and of devis-
ing a scheme to sustain their structural integrity. SI is typically carried out by updating the current structural parameters 
used in a computational model based on the measured responses of the structure. In the deterministic approach, SI has been 
conducted by minimizing the error between calculated responses (using the computational model) and measured responses. 
However, this brought about unexpected numerical issues such as the ill-posedness of the inverse problem, which likely 
results in non-uniqueness of the solutions or non-stability of the optimization operation. To address this issue, Bayesian 
updating enhanced with an advanced modeling technique such as a Bayesian network (BN) was introduced. However, it 
remained challenging to construct the quantitative relations between structural parameters and responses (which are placed 
in conditional probability tables: CPTs) in a BN setting. Therefore, this paper presented a novel approach for conducting the 
SI of structural parameters using a Bayesian hierarchical model (BHM) technique. Specifically, the BHM was integrated into 
the Bayesian updating framework instead of utilizing a BN. The primary advantage of the proposed approach is that it enables 
use of the existing relations between structural parameters and responses. This can save the computational effort needed to 
construct CPTs to relate the parameter and response nodes. The proposed approach was applied to two experimental structures 
and a realistic soil-slope structure. The results showed that the proposed SI approach provided good agreement with actual 
measurements and also gave relatively robust estimation results compared to the traditional approach of maximum likelihood 
estimation. Hence, the proposed approach is expected to be utilized to address SI problems for complex structural systems and 
its computational model when integrated with a statistical regression approach or with various machine learning algorithms.
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1  Introduction

The structure health monitoring has been recently utilized 
in diverse structural systems [1, 2] for several objectives. 
This is mainly to measure structural characteristics under 
various loading conditions using instruments, to assess the 
condition or “health” of a physical structure, and to maintain 
and manage its integrity based on these measurements and 
assessments. Because advances in instrumentation and data 
processing technologies are rapidly being made, the amount 

of valuable data that can be accumulated has increased, and 
their accuracy of such data has been much improved. Such 
information with the increased accuracy can now effectively 
be used to identify actual structure system parameters. This 
is called as a process called system identification (SI), which 
is a key step in evaluation of the condition of a structure (its 
health) and in devising a scheme to sustain its structural 
integrity. Also, the utilization of the information in the SI 
process plays a key role in reducing uncertainties in struc-
tural model parameters. Under such basic background, the 
focus of this study lies in dealing with the system identifica-
tion (SI) problems of various structural systems. From this 
perspective, we described the literature review and the state-
of-the-art studies on this topic with respect to the structural 
engineering field.

Currently, SI is usually conducted in a deterministic or 
probabilistic manner. However, the deterministic approach 
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has fundamental numerical issues such as non-stability and 
non-uniqueness of solutions, which may not easily be over-
come. The probabilistic method using Bayesian strategies in 
the SI problem requires refined modeling techniques to deal 
with the relationships between components, subsystems, and 
the main system. In this context, though Bayesian network 
(BN) was recently introduced in the SI problem, the existing 
BN-based techniques require considerable efforts to identify 
such relationships.

To be more specific, in a deterministic approach, the SI 
is handled by minimizing the discrepancies between cal-
culated responses (using a theoretical or numerical model) 
and measured responses [3] and thus can be formulated as 
an optimization problem. For this reason, deterministic SI 
techniques frequently fall into local solutions or suffer non-
stability of the solution (i.e., ill-posedness) [4–6]. Moreover, 
these techniques have a limitation which do not easily deal 
with uncertainties in structural parameters or measured data 
in a single consistent framework.

In a probabilistic approach for the SI, the parameters 
of the structure system are treated as probability density 
functions to account for uncertainties in the parameters 
[7]. Therefore, the measured data obtained from the sen-
sors need to be incorporated into the current probabilistic 
models of structural parameters, which can be realized via 
the application of a Bayesian updating framework to SI. 
Bayesian updating enables accommodation of new obser-
vations into the current prior probabilistic models by updat-
ing the parameters of the prior probabilistic models. Since 
the Bayesian updating concept was introduced in the 1960s, 
it has been applied to many engineering fields. Benjamin 
and Cornell [8] first illustrated how to use Bayesian updat-
ing to enhance engineering decision-making processes by 
employing examples of material testing and geotechnical site 
investigations. Ang and Tang [9] summarized application of 
the Bayesian approach to real-life problems using structure, 
transportation, and hydrology engineering examples. Spe-
cifically, for the SI applications, the Bayesian approach has 
been used for identifying structural systems under dynamic 
loading [10–12] and for model calibration with data for rain-
fall or discharge measurements [13]. However, because the 
SI problem becomes more complicated when applied to sys-
tems involving inter-correlated parameters in multiple lay-
ers, it is necessary to use an integrated modeling technique 
that makes full use of the merits of Bayesian updating. This 
is one of the primary reasons why the concept of BN was 
utilized in the SI problem.

A BN is a graphical representation of a set of conditional 
independence assumptions; thus, it accordingly constitutes 
a compact joint probability distribution between random 
variables. Due to this characteristic, the BN allows efficient 
probabilistic inference within the Bayesian updating frame-
work when given new observations (also called evidence). 

The BN basically utilizes nodes denoting random variables, 
arrows showing relationship between linked nodes, and 
conditional probability tables (CPTs) indicating how linked 
nodes are quantitatively related. The BN has been widely 
used in the fields of computer science, social sciences, 
business, public affairs, and engineering. Specifically, the 
examples of BN application for structural engineering were 
mainly concentrated on improvements in structural reliabil-
ity evaluations [14] and risk assessments [15–21].

There were several examples that used the BN concept for 
the purpose of the SI. These were the studies on the robust 
updating of nonlinear structural models [22], prediction for 
remaining bridge strength [23], and probabilistic identifica-
tion of the spatial distribution of structural parameters [24]. 
The main feature of these BN-based SI approaches is the 
presence of discrete nodes given by discretized intervals, 
where the corresponding conditional probabilities given for 
each interval (i.e., CPTs) need to be computed via Monte 
Carlo Simulation (MCS) methods. In each MCS, a com-
bination of selected intervals is employed to calculate the 
responses from the defined numerical model. Hence, the 
computations for constructing CPTs have demanded a large 
cost. Richard et al. [22] also pointed out that one major 
drawback when using a BN for the SI is the computational 
time required for estimating the CPTs.

However, we do not need to evaluate the CPTs if the 
nodes are considered as continuous and the relationships 
among the nodes are given in closed-functional form. This 
situation is possible when the relationships between the 
desired responses and structural system parameters can be 
obtained from an explicitly known mechanics model or from 
a surrogate model regressed from a large amount of data. If 
we know the node relationship from such models, we can 
intuitively solve the SI problem by leaving the parameters to 
follow the continuous distribution as they are. And this leads 
to completely removing the computational cost by not con-
structing CPTs but utilizing existing relations. The process 
of replacing CPTs with closed functional forms by treating 
the nodes as continuous in multiple layers is exactly the one 
that the Bayesian hierarchical modeling (BHM) does. In 
Bayesian statistics, the BHM is a general concept in estimat-
ing the parameters of posterior distributions. Thus, the cor-
rectness of the BHM has already been proved, theoretically 
[25]. This technique is powerful when data/information are 
available on several different levels of observational units. 
Due to such features, the BHM has been recently applied to 
diverse engineering fields. Yet, the BHM concept is a still 
quite new in the structural engineering area.

Therefore, in this paper, a novel approach for SI of struc-
tural parameters that combines the Bayesian updating strat-
egy with the BHM technique is proposed. This proposed 
BHM-based SI approach enables use of the existing relations 
between structural parameters and responses. This can avoid 
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the additional computational cost of constructing CPTs to 
relate parameter and response nodes. The approach also 
allows the analyst to visually understand the interdepend-
encies between random variables and to identify the critical 
node if necessary. The proposed approach is herein applied 
to two experimental structures and to a realistic soil-slope 
structure as SI examples. The effectiveness of the approach 
is verified by comparative studies with the existing statis-
tical approach and actual measurements. Moreover, if the 
proposed approach is combined with a statistical regression 
approach or various machine learning algorithms, such a 
combination is expected to effectively handle the SI even 
for complex structural systems and its computational model.

This paper is organized as follows. In Sect. 2, the basic 
concepts of Bayesian updating and BHM are presented. The 
Bayesian updating method includes a computational scheme 
to solve the formulated Bayesian theorem. In Sect. 3, we 
describe the proposed approach adopting Bayesian updat-
ing and BHM for SI of structural parameters. Section 4 
illustrates the effectiveness of the proposed SI approach 
by application to two experimental structures and a soil-
slope structure. To do this, we basically compare the actual 
measurements of the experiments with the results of the 
proposed method. Section 5 concludes with a summary and 
discussion.

2 � Basic concepts

Before presenting the BHM-based SI method, which is the 
core of this research, let us look at the key concepts for 
understanding the method. This method is mainly based on 
two major concepts, a Bayesian updating concept and the 
BHM technique. In the next subsections, we will discuss 
these concepts.

2.1 � Bayesian updating

Bayesian updating is an inference technique in which Bayes-
ian theorem is employed to update the current degree of 
belief based on newly observed data. This concept has been 
widely used in diverse engineering fields that need to deal 
with problems of an uncertain nature. Mathematically, this 
can be expressed in the following equation [26]:

where p(θ) is a prior probability distribution; p(y|θ) is a like-
lihood function that is also expressed as L(y|θ); and p(θ|y) 
is a posterior probability distribution. Note that traditional 
statistics uses the maximum likelihood estimation (MLE) 
approach in which it seeks a point value for θ that maximizes 

(1)p(�|�) =
p(�|�)p(�)

p(�)
=

p(�|�)p(�)
∫ p(�|�)p(�)d�

∝ p(�|�)p(�)

the likelihood. Such an MLE approach does not consider 
prior distributions, unlike the Bayesian approach. Specifi-
cally, as shown in Eq. [1], to obtain the posterior distribu-
tion, we need to integrate the denominator p(y|θ)∙p(θ). How-
ever, if a total number of parameter (θ) is increased from a 
single to several, multiple integrals would be required, and, 
accordingly, the integration would become mathematically 
intractable. Hence, an approximating algorithm is necessary 
to cope with such a problem. Usually, an MCMC (Markov 
Chain Monte Carlo) sampling method [e.g., Metropo-
lis–Hastings (MH) sampling, Gibbs sampling, Slice sam-
pling, rejection sampling, or importance sampling] has been 
utilized for the purpose of conducting such integral calculus. 
This sampling method directly extracts samples from the 
targeted distribution p(y|θ)∙p(θ). The samples obtained from 
such a process are utilized to estimate the posterior distri-
bution because the targeted distribution is proportional to 
the posterior distribution [27]. More detailed information 
on Bayesian updating and its various sampling algorithms 
can be found in the literature [25]. In this study, both the MH 
and Gibbs sampling techniques were utilized. The reason for 
adopting both the techniques was to confirm and show that 
the SI approach proposed in this study was not restricted to 
a particular sampling algorithm. In this study, for the brev-
ity of the manuscript, the detailed introduction on both of 
sampling algorithms is not presented. But, for the purpose 
of effectively understanding the Bayesian updating concept, 
the brief description on the MH algorithm is included in the 
following paragraph.

The MH sampling technique is one of the MCMC sam-
pling methods, which conducts an iterative process [27]. 
Table 1 specifically describes this algorithm. Specifically, 
looking through this table, the process starts by generat-
ing an arbitrary sample x(0) in the specified range first, 
estimates a value of the targeted distribution with respect 
to x(0), and then assigns the value to p_old. It subsequently 
draws a new sample x(1) based on the proposal distribution 
and current state x(0), evaluates a value of the targeted 
distribution regarding x(1), and sets this value to p_new. 
Then, alpha is determined as the minimum among the 
value of one and the ratio of p_new and p_old, which then 
becomes the criterion for whether or not to accept a new 
sample by comparison with a randomly generated number 
in the range 0–1. The aforementioned procedure is iterated 
until sufficient points have been obtained within the tar-
geted distribution. Due to these features of the algorithm, 
the first few samples cannot generally represent the target 
distribution and so should be discarded when estimating 
the target distribution based on samples obtained with this 
algorithm. Also, to describe the target distribution accu-
rately, a large number of samples should be generated, and 
their convergence should be verified.
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2.2 � Bayesian hierarchical model

Within the Bayesian updating framework, we often encoun-
ter the complex problem of inter-correlated parameters. One 
example of this problem is the case where random variables 
form diverse hierarchical layers and such layers are con-
nected with each other. To handle this problem, the Bayesian 
hierarchical model (BHM) can provide an effective tool to 
build a statistical model constructed in multiple correlated 
layers, by which it is also possible to evaluate the parameters 
of the posterior distribution utilizing Bayesian updating [25]. 
The model mainly consists of the following three hierarchi-
cal layers:

•	 Data layer : y|θ,x ~ p(y|θ,x)
•	 Process layer : θ|x ~ p(θ|x)
•	 Prior layer : x ~ p(x)

where y is an observation obtained from the experiments, 
simulations, fields, etc.; θ is a parameter dependent on the 
random variable x; and x is a random variable following the 
particular prior distribution p(x). Hence, the final posterior 
distribution obtained from the model can be represented as 
the following equation:

The MCMC method introduced in the previous section 
can also be utilized to establish the desired posterior dis-
tribution using Eq. [2]. For a clearer understanding of the 
BHM concept, let us consider a simple case in which the 
distribution from which the observations yi are drawn is 
characterized by just a few normally distributed parameters 
with a mean and standard deviation. The model for this sim-
ple example can be described by the following mathematical 
expressions consisting of three hierarchical layers:

(2)p(�, �|�) ∝ p(�|�, �)p(�|�)p(�)

•	 Data layer : yi ~ N(µ, σy); i = 1,…,n
•	 Process layer : µ = a + b
•	 Prior layer : b ~ N(0, σb)

where N(µ, σy) is a normal distribution with mean µ and 
standard deviation σy, and µ is equal to the sum of the param-
eters a and b. In this case, b follows a normal distribution 
N(0, σb). This model can also be graphically represented as 
shown in Fig. 1. In this figure, a square and a circle respec-
tively denote a constant node (or deterministic node) and 
variable node (or stochastic node). The dashed lines and 
solid lines with arrows represent the deterministic and sto-
chastic relationships, respectively, among linked nodes. The 
corner-rounded square, called a plate for indices, shows 
the iterative process that needs to be conducted from i = 1 
to i = n. Finally, in this particular example, the posterior 
distribution with regard to the prior distribution b can be 
described as Eq. [3], except for the constant nodes in the 
prior and process layers.

(3)

p(b|�) ∝
n∏

i=1

[
p
(
yi|�

)]
p(�|b)p(b) =

n∏

i=1

[
p
(
yi|f (b)

)]
p(b)

Table 1   General pseudo code 
for Metropolis–Hastings 
algorithm

Generate initial guess x(0)

Set number of samples n; Set coefficient of variation of proposal distribution cov
Iteration loop k = 0, 1, 2, 3, …, n

Calculate p_old (x(k))
x(k+1) = x(k) + x(k) *cov*randn
Calculate p_new (x(k+1))
alpha = min (1, p_new/p_old)
r = rand
if r < alpha, 

accept new point
else

keep old point
end
k = k+1;

return
* Here p_old and p_new are the estimated targeted distributions according to x(k) and x(k+1); randn is a 
random number generator from a standard normal distribution; and rand is a random number generator 
from a uniform distribution in the range 0–1

Fig. 1   Simple example of a Bayesian hierarchical model



459Engineering with Computers (2020) 36:455–474	

1 3

where p(−) is a defined probability distribution (i.e., normal 
distribution in the example), and f(−) is a function indica-
tor in the process layer; in this particular example, f(b) = 
µ = a + b.

In the next section, based on the two key concepts intro-
duced in this section, we will present a BHM-based method 
for the SI of the structural parameters. In this method, the 
structural parameters are configured in the prior layer, and 
the structural responses observed from the measurement 
are established in the data layer. Finally, the process layer 
defines the links between the structural parameters and the 
responses. In the following section, we will specifically 
explain the proposed approach using a conceptual figure 
of the overall methodology and a general structural system 
example.

3 � BHM for SI of the structural parameters

The concept of Bayesian updating within the BHM presented 
above provides the basis for a very powerful environment in 
which to conduct the SI for structural systems. As discussed 

earlier, BN-based SI techniques require additional computa-
tion costs to construct the probabilistic relationships between 
the linked nodes of the components, the subsystems, and the 
main system. Yet, the BHM does not require additional effort 
when establishing such relationships because it can utilize an 
explicitly known mechanistic model or a statistical regression 
structural model. From this perspective, this section describes 
a general approach for the SI of the structural parameters 
using the BHM technique. Figure 2 shows a conceptual 
schematic of the proposed BHM-based SI approach. Specifi-
cally looking through this conceptual figure, we first select 
important parameters of a given structural system. Next, we 
measure the responses of the structure, such as natural fre-
quencies, displacements, stresses, and strains, under specific 
loading conditions. We also derive mathematical, physical, 
or empirical relationships between structural parameters and 
responses. Based on such information, we establish the BHM 
model on each layer. Each layer consists of three major lay-
ers, called as the prior layer, process layer, and data layer. The 
prior layer considers the uncertainties of structural param-
eters already selected and treats them as probability density 
functions. The data layer defines the measured response as 

Fig. 2   Conceptual process of 
the proposed BHM-based SI 
approach
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random variables. The process layer formulates the relation-
ships between probability density functions of the structural 
parameters of the prior layer and the random variables of the 
responses of the data layer. This layer is based on mathemati-
cal relationships derived between structural parameters and 
responses. Finally, using the constructed BHM and Bayes-
ian updating concepts, the final posterior distributions of the 
structural parameters are calculated to reflect the measured 
response data. The posterior distribution obtained after all 
these stages is represented as graphical figures or numerical 
values as a result of a post-processing operation.

To illustrate the key aspect of the proposed method, 
let us suppose that the BHM is constructed as shown in 
Fig. 3 through the structural parameters, response meas-

urement, and the relations between structural parameters 
and responses with respect to a given structural system. 
The node xi represents structural parameters and follows a 
certain distribution dist having distribution parameters αi 
and βi due to its uncertainties. Theoretically, the structural 
response θj can be evaluated based on the structural param-
eters x = {x1,…, xl} (i.e., a function of x). Experimentally, 

the structural response yjk can be independently measured 
with error σyj. Thus, the BHM for this structure system can 
be formulated with the following mathematical expressions:

•	 Data layer : yjk ~ N(θj, σyj); k = 1,…,n
•	 Process layer : θj = fj (x); j = 1,…,m
•	 Prior layer : xi ~ dist(αi, βi); i = 1,…,l

If utilizing the Bayesian updating concept based on the 
defined BHM and the measured data yjk, the prior dis-
tributions of the structural parameters reflect the meas-
ured data, and these prior distributions accommodating 
the measurement data are finally updated to the posterior 
distributions well representing the actual physical state 
of the structural system. The posterior distributions of xi 
thus obtained are proportional to the following equation:

As explained in Sect. 2, these posterior distributions are 
calculated based on Eq. [4] and the appropriate MCMC sam-
pling method for Bayesian updating. The main feature of the 
proposed BHM-based SI method is that it utilizes the existing 
closed-function relationships between structural parameters 
and responses, as can be seen in the process layer of the BHM 
structure in Fig. 3. These process characteristics can eliminate 
the computational effort to configure the CPTs between the 
structural parameters and the response nodes in the current 

(4)

p
(
x1,⋯ , xl|���,⋯ , ���

)

∝

n∏

k=1

[
p
(
y1k|�1

)
⋯ p

(
ymk|�m

)]
p
(
�1|x1, x2, x3

)
⋯ p

(
�m|x3, x4, xl

)
p
(
x1
)
⋯ p

(
xl
)

=

n∏

k=1

[
p
(
y1k|f1

(
x1, x2, x3

))
⋯ p

(
ymk|fm

(
x3, x4, xl

))]
p
(
x1
)
⋯ p

(
xl
)

Fig. 3   BHM structure for SI of structural parameters
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BN-based SI method setting. In addition, no optimization tech-
niques are required for the proposed method since it adopts 
the Bayesian updating concept. Accordingly, this avoids the 
numerical instability issues that can occur in deterministic SI 
approaches. The effectiveness of the proposed approach will 
be explained in detail using the application examples in Sect. 4.

4 � Example studies: two structural 
experiments and one realistic slope 
structure

In this section, the proposed BHM-based approach for the SI 
of structural system parameters is applied to two experimental 
structures and one realistic soil-slope structure to explore its 
effectiveness. The first example demonstrates the applicability 
of the method to a two-dimensional problem of which the pos-
terior distribution can be graphically represented. The second 
example demonstrates its applicability to the multi-dimensional 
problem in which its posterior distribution cannot be recog-
nized visually. The third one demonstrates the applicability of 
the method to realistic soil-slope structures having an empiri-
cal model between seismic loading and output. The results of 
the proposed approach are verified by comparing the values 
obtained from the proposed method with the actual measure-
ment results. The field observations are typically limited in the 
real world. But, from the SI perspective, the acquisition of many 
data as possible is essential. Thus, the number of observation 
data were limited to the number of eight in this study. Bayesian 
updating is implemented using the MCMC sampling method 
introduced in Sect. 2.1. Specifically, the MH sampling tech-
nique is used for the first and the second examples, and the 
Gibbs sampling scheme is employed in the third example. The 
total number of samples used in all analyses was 100,000. The 
language used to implement the proposed method was MAT-
LAB for the first and second examples and R including JAGS 
[28] for the third example. The detailed pseudo code for each 
example is presented in the following subsections.

4.1 � Two‑DOF system under base excitation: 
two‑parameter problem

Prediction of the stiffness of an actual structure can be utilized 
as a major predictor of damage to the structure. For example, 
the degree of damage in a structure can be evaluated through 
the difference between the stiffness values obtained based on 
the information of the original designed structure and the stiff-
ness estimated through the measurement on the characteristics 
of the structure. In addition, it is very important to determine 
the dynamic characteristics of the structure because they are 
critical for the overall response of the structure to dynamic 
loads such as earthquakes and winds. For example, if the 

natural frequency of the structure and the excitation frequency 
of the dynamic loadings coincide with each other, a resonance 
phenomenon can occur, and responses of the structure will 
be amplified even under small loadings. Such a situation 
could ultimately cause collapse of the structure. Therefore, 
it is essential to understand the realistic natural frequencies 
of existing structures. The natural frequency of a structure is 
mathematically a function of the mass and stiffness of the sys-
tem and can be measured using various field tests. Given this 
background, we conducted the following small-scale experi-
ment, the main focus of which was to obtain the fundamental 
frequencies of small-scale structural systems and to measure 
their stiffnesses. The reason we performed this test on a small 
scale was to allow comparison of the SI results of the pro-
posed approach with those of the actual measurements. In the 
following paragraph, we discuss the performance of this test.

Experimental setup The specimen is a two-degree-of-
freedom (DOF) system in which the first two natural fre-
quencies were obtained from the forced vibration test (a 
shake table test). Its natural frequencies under harmonic 
base excitation were observed by visual inspection based on 
the results of a magnification factor and phase-angle plots. 
The vibration test was conducted by fixing the amplitude 
(ugo) of the harmonic excitation, but changing its excitation 
frequency (Ω = 0.5 Hz − 20 Hz in 0.1 Hz increments). Fig-
ure 4 shows a configuration of the shake-table test setup. A 
shaker generates a sine-wave harmonic motion at a certain 
frequency. A shake table moves horizontally. The base of the 
two-DOF shear building is fixed to the shake table. Specifi-
cally, the two-DOF building consists of two masses that are 
girders of the building and supporting columns, as shown 
in Fig. 5. The two columns supporting each mass represent 
a single stiffness and indicate the representative resilient 
resistance to a horizontal action at each floor. The measured 
masses were m1 = m2 = 0.9894 kg (2.18125 lb or 0.00565 
lb∙s2/in). The masses and columns were made of steel and 
aluminum, respectively. Accelerometers were attached to the 
two masses, and the accelerations observed as a type of elec-
trical signal were processed with an oscilloscope. Frequency 
measurement ( f1i◦ and f2i◦ ) was performed eight times, and 
the results are summarized in Table 2.

Construction of the BHM Given the two-DOF structural 
system and the measured data, the BHM was designed, as 
graphically illustrated in Fig. 6. The following equations are 
specific mathematical expressions for this constructed BHM:

•	 Data layer : f1i◦ ~ N(f1
b, σf1); f2i◦ ~ N(f2

b, σf2); i = 1,…,n
•	 Process layer : f1

b = f1 (k1,k2); f2
b = f2 (k1,k2);

•	 Prior layer : k1 ~ N(µk1, σk1); k2 ~ N(µk2, σk2);

where k1 and k2 are the floor stiffnesses following the prior 
distribution of the normal distribution with mean (µk1 or 
µk2) and standard deviation (σk1 or σk2), and f1

b and f2
b are 
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theoretically calculated natural frequencies from Eigen-
analysis of the structure in Eq. [5]:

(5)|� − �i ⋅�| = 0, fi
b = �i∕(2 ⋅ �); i = 1, 2

where K is the stiffness matrix obtained from k1 and k2 
(i.e., [k1 + k2,-k2;-k2,k2]); M is the mass matrix consisting of 
m1 and m2 (i.e., [m1,0;0,m2]); and ωi is the angular natural 

Fig. 4   Configuration of the shake table test setup

Fig. 5   Mathematical model of 
the 2-DOF system

Table 2   Frequency observation 
from the shake table test

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8

f
1i
◦ (Hz) 5.7 5.9 5.8 5.9 6.0 5.9 5.9 6.1

f
2i
◦ (Hz) 15.1 15.4 15.0 15.4 15.7 15.3 15.4 15.7
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frequencies. Thus, in the process layer, the function f1 (−) 
estimates f1

b, and the function f2 (−) calculates f2
b. The 

measured natural frequencies f1i◦ and f2i◦ of Table 1 are 
assumed to follow normal distributions having measured 
error σf1 and σf2, respectively. Finally, the posterior distribu-
tion regarding the prior distribution for the floor stiffnesses 
k1 and k2 can be represented as the following equation:

(6)

p
(
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)
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)
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Specifically, the properties for prior distributions of k1 and 
k2 are µk1 = µk2 = 2.63 kN/m (15 lb/in) and σk1 = σk2 = 0.1∙2.63 
kN/m (0.1∙15  lb/in), respectively, and the measurement 
errors are σf1 = 0.3 Hz and σf2 = 0.3 Hz. The number of data 
points measured is n = 8. The MATLAB-type pseudo code 
for example 1 is given in Table 3.

4.1.1 � BHM results

Because example 1 is a two-parameter SI problem, the 
results can be visually described in two-dimensional space. 
Figure 7 shows prior and likelihood distributions and the 
joint posterior distribution using Eq. [6] in k1–k2 dimensional 

Fig. 6   BHM for SI of natural 
frequencies of a two-DOF struc-
tural system

Table 3   Pseudo code for 
example 1 (MATLAB-type)

% Experiment results (from Table 2)
Y = [5.7;   5.9;  5.8;  5.9;  6.0;  5.9;  5.9;  6.1];
Z = [15.1; 15.4; 15.0; 15.4; 15.7; 15.3; 15.4; 15.7];  

% Prior layer
muk1 = 2.63; sk1  = 0.1*muk1; 
muk2 = 2.63; sk2  = 0.1*muk2; 

% Process & Data layer (from Eq. (5) and Eq. (6))
Prior1 = @(x) normpdf(x,muk1,sk1);
Prior2 = @(x) normpdf(x,muk2,sk2);
fPrior1 = @(x) Fn1(x(1),x(2));  % from Eq.(5)
fPrior2 = @(x) Fn2(x(1),x(2));  % from Eq.(5) 
like1 = @(x) prod(normpdf(Y,x,0.3));  
like2 = @(x) prod(normpdf(Z,x,0.3));
Prior = @(x) Prior1(x(1))*Prior2(x(2));
Like  = @(x) like1(fPrior1(x))*like2(fPrior2(x));
Post  = @(x) Like(x)*Prior1(x(1))*Prior2(x(2)); 

% MH sampling (from Table 1)
MHsampler;
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space. As seen from the figure, the prior distribution was 
updated to the posterior distribution by accommodating the 
observed frequencies. Thus, the obtained posterior distribu-
tion becomes a targeted distribution from which we need to 
draw the samples to evaluate characteristics of the poste-
rior distribution. Figure 8a and b show the samples drawn 
from the targeted posterior distribution for k1 and k2. Spe-
cifically, Fig. 8c illustrates the graphical process of drawing 
samples from the targeted region using the MH algorithm. 
We can see that the drawn samples successfully capture the 
target posterior distribution except for a few samples in the 
initial stage. From the obtained samples, excluding the ini-
tial samples (also called burn-in samples), the distribution 
characteristics were identified and are plotted in Fig. 9. To 
verify the result of the proposed method, the actual meas-
urement of the floor stiffnesses k1 and k2 is conducted and 
compared with the results of the proposed approach. Also, 
these results are compared with those obtained when using 
the MLE technique of the traditional statistics approach. The 
floor stiffness can be measured by summing the stiffness of 
the two columns. Each column’s stiffness can be estimated 
using the measured dimensions of a column (width w, thick-
ness t, and length L). The theoretical stiffness calculation 
for each column is 12∙E∙I/L3, where I = w∙t3/12. The actual 
measured floor stiffness is plotted in Fig. 9 along with the 
result of the proposed method. As shown in this figure, the 
comparison with the actual measurement results reveals that 
the proposed method well identifies both system parameters 
of k1 and k2 under the uncertain conditions. From the results 
above, several important findings can be summarized as fol-
lows: (a) no additional computation efforts were necessary 
to construct the probabilistic relationship between the floor 
stiffness and natural frequencies compared to the BN-based 

SI method, as this relationship was already given in Eq. [5]. 
Hence, this method shows computational efficiency; and (b) 
compared to the results of the MLE approach using only the 
likelihood function (see Fig. 9), the proposed approach pro-
vided relatively accurate results. Further, the changes in the 
results of the proposed method were smaller than those of 
the MLE technique. This indicated that the proposed method 
could provide more confident results with a narrower distri-
bution compared to MLE. Figure 9 graphically illustrates 
these results and observations. Table 4 specifically com-
pares the results obtained from the MLE method, proposed 
approach, and actual measurements. From this table, we 
quantitatively confirm that the performance of the proposed 
approach is better than the existing MLE approach. This 
assertion also coincides with a previous study utilizing the 
Bayesian updating concept [24]. Consequently, these find-
ings can be similarly applied to the high-dimensional exam-
ples in the following subsections. Thus, for brevity, in the 
following subsections, we will focus on the accuracy of the 
proposed method in comparison with actual measurements.

4.2 � Cantilever beam under a concentrated load: 
multiple‑parameter problem 1

The displacements of the structure can be easily observed 
under normal static loads, and based on this information, the 
state of the structure can be assessed. Specifically, the state 
of the structure can be determined by estimating the stiffness 
through the observed displacement. The stiffness of a typi-
cal static structure depends on the cross-sectional shape of 
the structure. Thus, the estimation of the dimensions of the 
cross-section is essential. For example, let us suppose that 
certain damage to an originally designed structure occurs 
and a change in cross-section appears in the actual structure. 
In such a situation, the displacement of the actual structure 
with respect to the static load will be different from the pre-
dicted value of the originally designed structure. In this case, 
it is not possible to measure the dimensions in real-life or 
complex structural systems, so a proper method to predict 
them will be required. Under this circumstance, as an exam-
ple, this experiment was conducted to obtain the displace-
ment responses of small-scale cantilever beams subject to a 
concentrated load, as well as to measure their dimensions. 
Similar to example 1, the main purpose of this scale example 
was to compare the SI results of the proposed approach with 
those of actual measurements. In the following paragraph, 
we discuss how to conduct this experiment.

Experimental setup This example is a cantilever beam 
subjected to a vertical concentrated load at the free end of 
the beam. The test is to measure the vertical displacement 
of the cantilever beam at the free end, which is a vertical 
loading location, using an LVDT (linear variable differential 
transformer) test setup. Figure 10 shows a configuration of 
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Fig. 7   Prior, likelihood, and posterior distributions for k1 and k2
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the LVDT test setup for this purpose. The pin of the LVDT 
is vertically installed on the surface of the cantilever beam 
at the free end on which the concentrated load is placed. The 
LVDT is connected to the power supply to create the electri-
cal signals and wired into a DMM (digital multi-meter) to 
read the corresponding electrical values. The vertical dis-
placements at the free end ( Di

◦ ) are measured eight times, 
and the results are summarized in Table 5. Figure 11 shows 
the idealized model intended to obtain the vertical displace-
ment of the cantilever beam subjected to a vertical concen-
trated load at the free end.

Construction of BHM Given the mathematical model 
for obtaining the displacement of the cantilever beam and 
the measured data, the BHM can be formulated. Figure 12 
shows a graphical illustration of the BHM. The following 
are the detailed mathematical formulations for this:

•	 Data layer : Di
◦ ~ N(Db, σD); i = 1,…,n

•	 Process layer : Db = f (E, b, h, L);
•	 Prior layer : E ~ N(µE, σE); b ~ N(µb, σb); h ~ N(µh, σh); 

L ~ N(µL, σL);

Fig. 8   MCMC samples from a joint posterior distribution of k1 and k2
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where E is Young’s modulus; b and h are the dimensions of 
a square section of cantilever beam; L is the entire length of 
the cantilever beam from the fixed end to the free end; E, b, 
h, and L are the prior distributions of the normal distribu-
tions with mean values µE, µb, µh, and µL and standard devia-
tions σE, σb, σh, and σL, respectively. Here, Db is the theoreti-
cally estimated displacement from the Bernoulli–Euler beam 
theory as P·L3/(3·E·I), where P is the applied load at the free 
end, and I is the second moment of inertia for the axis about 
which the beam is bending. This is b·h3/12 for the squared 
section. The measured displacements Di

◦ shown in Table 5 
are assumed to follow normal distributions with measured 
error σD. Finally, the posterior distribution regarding the 
prior distribution for stochastic variables E, b, h, and L can 
be represented as follows:

where f (−) is the theoretically calculated displacement for 
Db. In this example, the properties for prior distributions of 
E, b, h, and L are µE = 75.88 GPa (1.1e7 psi), µb = 27.94 mm 
(1.1 in), µh = 12.7  mm (0.5 in), µL = 203.2  mm (8 in), 
and σE = 7.59 GPa (0.1·1.1e7 psi), σb = 2.79 GPa (0.1·1.1 
in), σh = 1.27 mm (0.1·0.5 in), σL = 20.32 mm (0.1·8 in). 
P is set to 66.72 N (15 lb), and the measurement error is 
σD = 0.23 mm. The number of data points measured is n = 8. 
The MATLAB-type pseudo code for implementing example 
2 is given in Table 6.

4.2.1 � BHM results

The targeted posterior distribution is obtained using Eq. (7). 
Figure 13 shows the samples drawn based on this targeted 
joint posterior distribution for E, b, h, and L. Because exam-
ple 2 is a four-parameter SI problem, the joint posterior dis-
tribution cannot be visually identified. Thus, using the drawn 
samples without burn-in samples, the characteristics of the 
marginal distributions of the parameters are derived and 
plotted in Fig. 14. For the purpose of comparison, the meas-
ured E, b, h, and L are plotted along with the results of the 
proposed method. As shown in these figures, the comparison 
with the measurement results illustrates that the proposed 
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Fig. 9   Prior and posterior distributions and experimental measure-
ments: example 1

Table 4   Comparison results of MLE, BHM (proposed method), and 
actual measurement

Parameters Mean

MLE BHM (proposed) Actual meas-
urement

k1 (N/m) 3.6126 3.3769 3.3825
k2 (N/m) 3.4913 3.5333 3.5238
Parameters Standard deviation

MLE BHM (proposed) Actual meas-
urement

k1 (N/m) 0.2293 0.1469 0.0953
k2 (N/m) 0.1198 0.0860 0.0938
Parameters Mean Error (%)

MLE BHM (proposed) Actual meas-
urement

k1 (N/m) 6.80 0.17 -
k2 (N/m) 0.92 0.27 -
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method well captures the four-system parameters of E, b, h, 
and L, as in Example 1.

4.3 � Soil‑slope structure under earthquakes: 
multiple‑parameter problem 2

Empirical permanent displacement of a slope structure 
subjected to earthquake ground motion The methods 
developed to evaluate the stability and performance of 
slopes during earthquakes are divided into three groups: 
(1) pseudo-static analysis, (2) stress deformation analysis, 
and (3) permanent displacement analysis (also called the 

Newmark method). Of the three, the Newmark method 
is widely known as a compromise between the crude 
assumption of pseudo-static analysis and the difficulties 
of stress deformation analysis. Laboratory tests [29] and 
earthquake-induced landslide analyses on a natural slope 
[30] verified that the Newmark method fairly accurately 
predicts slope displacements if the slope geometry, soil 
properties, and earthquake ground motions are known. 
The method treats a landslide as a rigid-plastic body: the 
mass does not deform internally, there is no permanent 
displacement at accelerations below the critical level, 
and the mass deforms plastically along a discrete basal 

Fig. 10   Configuration of the LVDT test setup for measuring free-end displacement of a cantilever beam

Table 5   Measured displacement 
from the LVDT test (test result)

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8

Di
◦ (mm) 4.70 4.89 4.25 4.58 4.63 4.00 4.19 4.37

Fig. 11   Mathematical model for obtaining vertical displacement of a cantilever beam subjected to a vertical concentrated load at the free end
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shear surface when the critical acceleration is exceeded. 
Since the method was introduced by Newmark [31], it has 
been improved [32]. Moreover, based on the concept and 
past earthquake ground-motion record histories, various 
empirical models have been proposed [33]. This paper 
employs the model proposed by Ambraseys and Menu 
[34], developed after Newmark analyses of 50 strong 
ground-motion records from 11 earthquakes. For the SI 
study of this research, as an experimental result, perma-
nent displacements of slope were artificially generated 
from the situation where a particular slope with specific 
parameters was subjected to 1·g peak ground accelera-
tion (PGA)-intensity-level ground-motion. The artificially 
generated displacements Dni

◦ of Table 7 are assumed to 

follow normal distributions with measured error σDn. The 
results are illustrated in Table 7. Figure 15 shows an ideal-
ized model intended to obtain permanent displacement of 
a slope subjected to earthquake ground motion.

Construction of BHM Given the empirical model for 
obtaining the permanent displacement of slope and the 
measured data, the BHM can be formulated, as shown in 
Fig. 16. The following formulations shows the detailed 
mathematical expressions for this:

•	 Data layer : Dni
◦ ~ N(Dn

b, σDn); i = 1,…,n
•	 Process layer : Dn

b = f3 (ac, amax); ac = f2 (FS, α); 
FS = f1 (c, φ, α, γ, t)

Fig. 12   BHM for SI of displacement of the cantilever beam subjected to a point load at the free end

Table 6   Pseudo code for 
example 2 (MATLAB type)

% Experiment results (from Table 5)
Y = [4.70; 4.89; 4.25; 4.58; 4.63; 4.00; 4.19; 4.37]; 

% Prior layer
muE = 1.1; sE  = 0.1*muE; 
mub = 1.1; sb  = 0.1*mub; 
muh = 0.5; sh  = 0.1*muh; 
muL = 0.8; sL  = 0.1*muL; 

% Process & Data layer (from Eq.(7))
Prior1 = @(x) normpdf(x,muE,sE);
Prior2 = @(x) normpdf(x,mub,sb);
Prior3 = @(x) normpdf(x,muh,sh);
Prior4 = @(x) normpdf(x,muL,sL);
fPrior = @(x) DEL(x(1),x(2),x(3),x(4));  % from Bernoulli-Euler beam theory (PL3/(3EI) 
like   = @(x) prod(normpdf(Y,x,0.23));   
Like   = @(x) like(fPrior(x));
Post   = @(x) Like(x)*Prior1(x(1))*Prior2(x(2))*Prior2(x(3))*Prior2(x(4)); 

% MH sampling (from Table 1)
MHsampler;
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•	 Prior layer : c ~ U (cl, cu); φ ~ U (φl, φu); α ~ U (αl, αu); 
γ ~ U (γl, γu); t ~ U (tl, tu)

	   where c is the effective cohesion; φ is the effective 
friction angle; α is the slope angle; γ is the unit weight of 
soil; t is the slope normal thickness of the failure surface; 
c, φ, α, γ, and t are the prior distributions of the uniform 
distributions with a certain range; amax is the PGA (in 
units of acceleration of gravity g); and Dn

b, ac, and FS are 
the permanent displacement (unit: cm), critical accelera-

tion (unit: g), and the factor of safety, respectively. They 
are theoretical or empirical values estimated using the 
following equations [34]:

(8)log
(
Dn

b
)
= 0.90 + log

[(
1 −

ac

amax

)2.53(
ac

amax

)−1.09
]
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Fig. 13   MCMC samples from joint posterior distributions of E, b, h, and L 
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(9)ac = (FS − 1) ⋅ sin (�)

(10)FS =
c

� ⋅ t ⋅ sin (�)
+

tan (�)

tan (�)
−

�w ⋅ m ⋅ tan (�)

� ⋅ tan (�)

where m is the saturation percentage of failure thickness, 
and γw is the unit weight of water. In this study, m and γw 
are regarded as deterministic variables, and it is assumed 
that no pore-water pressure is included (m = 0). Here, the 
standard deviation of the model in Eq. (8) was ignored 

Fig. 14   Prior and posterior 
distributions and experimental 
measurement: example 2
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Table 7   Artificially generated permanent displacements for a slope subjected to earthquake ground motion with a particular intensity

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9

Dni
◦(cm) 5.33 6.21 5.63 4.79 4.94 4.41 4.93 5.76 5.38
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since this study focused on the median/mean behaviors 
of the slope when implementing the SI for the structural 
parameters. Finally, the posterior distribution regarding 
the prior distribution for stochastic variables c, φ, α, γ, 
and t can be represented as follows:

where f (−) calculates the displacement for Dn
b using 

Eq.  (8)–Eq.  [10]. In this example, the properties for 
prior distributions of c, φ, α, γ, and t are cl = 16,000 Pa, 

(11)
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cu = 26,000 Pa, φl = 30°, φu = 40°, αl = 10°, αu = 70°, 
γl = 14,000 N/m3, γu = 17,000 N/m3, tl = 2.2 m, and tu 
= 2.6 m. The measurement error is σDn = 0.25 cm, and 
the number of data points measured is n = 9. The pseudo 
code for example 3 in the type of R and JAGS is given 
in Table 8.

4.3.1 � BHM results

The targeted posterior distribution was obtained using 
Eq. [11], and the samples were drawn from this targeted dis-
tribution. Similar to the previous examples, the distribution 
characteristics were estimated based on the obtained samples 
(excluding the burn-in samples), and the results are illus-
trated in Fig. 17. For the purpose of comparison, the values 
of the variables of c, φ, α, γ, and t that are used to artificially 
generate the simulated observations of Table 7 are plotted 

Fig. 15   Sliding block model 
used for Newmark analysis

Fig. 16   BHM for SI of Newmark permanent displacement
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along with the results of the proposed method. Specifically, 
such values were extracted given normal distributions with 
mean values of c = 21,000 Pa, φ = 35°, α = 42°, γ = 15,500 N/
m3, t = 2.4 m and coefficients of variations = 0.01. As shown 
in these illustrations, the comparison with the artificial 
measurement results shows that the proposed method well 
selects all system parameters of c, φ, α, γ, and t, as in the 
results of previous examples.

5 � Summary and conclusions

This study focused on the development of a novel approach 
for the system identification (SI) of structural system 
parameters. The reason for this development was that the 
current deterministic SI approach had some issues such 
as non-stability and non-uniqueness of solutions, and that 
the probabilistic SI method based on a Bayesian network 
bore a large computational cost to construct conditional 
probability tables (CPTs) between structural parameter 
and response output nodes. Therefore, to overcome these 
limitations, the concepts of a Bayesian hierarchical model 
(BHM) technique were combined with a Bayesian updat-
ing framework instead of utilizing the discrete Bayesian 
network scheme. In Bayesian statistics, the BHM is a com-
mon concept in estimating the parameters of posterior 

distributions. The correctness of the BHM has already 
been proved, theoretically [25]. The merit of such tech-
nique is prominent when data/information are available 
on several different levels of observational units. The 
proposed BHM-based SI approach enabled utilization of 
the existing relations between structural parameters and 
responses, which was given in closed function form. This 
could eliminate the computational efforts needed to con-
struct CPTs between parameter and response nodes. Also, 
the proposed approach embedded in the Bayesian updat-
ing did not need any optimization, so the ill-posedness 
problems that might occur in the deterministic SI approach 
could be avoided.

The effectiveness of the proposed BHM-based SI method 
was successfully verified by application to two experimental 
structures and a realistic soil-slope structure. Comparison 
of the calculated and actual measurement results showed 
that the proposed method well identified uncertain structural 
system parameters. In addition, the proposed SI approach 
provided relatively accurate and confident estimation results 
compared to the maximum likelihood estimation approach. 
Thus, the proposed approach can be utilized to address SI 
problems for complex structural systems and their compu-
tational models by integration with a statistical regression 
approach or various machine learning algorithms, which will 
be considered in future studies.

Table 8   Pseudo code for example 3 (R JAGS type)

# Experiment results (from Table 7)
Y   <- c(5.33, 6.21, 5.63, 4.79, 4.94, 4.41, 4.93, 5.76, 5.38)

# Bayesian updating by R JAGS
library(rjags)
model_string <- "model{
# Data layer: Likelihood
for(i in 1:nY){
Y[i]  ~ dnorm(DN,(0.05*5)^2)
}

# Process layer (from Eq.(8), Eq.(9) and Eq.(10)
Calculate FS 
Calculate ac 
Calculate DN

# Prior layer
c   ~ dunif(16000,26000)
phi ~ dunif(30,40)
alp ~ dunif(10,70)
r   ~ dunif(14000,17000)
t   ~ dunif(2.2,2.6)
}"

# Gibbs sampling 
Gibbssampler;
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