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Abstract
Pore size and interconnectivity have essential role in different biological applications of synthetic porous biomaterials. Recent 
improvements in technology make it possible to produce nanoporous materials having pores of controllable dimensions at 
atomic scale. In the present study, based upon a refined truncated cube lattice structure, the elastic mechanical properties 
of nanoporous materials have been extracted explicitly in terms of the pore size. Afterwards, the size-dependent nonlinear 
large-amplitude vibrations of micro/nano-beams made of the nanoporous material are explored. To this purpose, the nonlocal 
strain gradient elasticity theory is utilized within the framework of the refined hyperbolic shear deformation beam theory to 
capture the both small-scale effects of hardening-stiffness and softening-stiffness. Finally, the Galerkin method together with 
an improved perturbation technique is employed to construct explicit analytical expression for the nonlocal strain gradient 
frequency-deflection response of micro/nano-beams made of nanoporous materials. It is demonstrated that, by increasing the 
pore size, the nonlinear frequency associated with the large-amplitude vibration of micro/nano-beams made of nanoporous 
material reduces, but the rate of this reduction becomes lower for higher pore size.

Keywords Nano-technology · Porous materials · Size effect · Nonlinear vibration · Perturbation technique

1 Introduction

Different reasons such as diseases, trauma, congenital 
defects, etc. may lead to the degeneration of tissues in the 
human body. Nowadays, via development in tissue engineer-
ing, novel approaches have been emerged to regenerate a 
damaged tissue, in spite of replacing it. In this way, pore 
architecture and porosity of scaffolds play an essential role 
in cell migration and in growth, and recently, several studies 
have been performed in this research area. Shariful Islam and 
Todo [1] discovered the sintering effects on the compressive 

mechanical properties of the scaffold. Hedayati et al. [2] 
analyzed the fatigue crack propagation in additively manu-
factured porous biomaterial via an analytical model. Zhang 
et al. [3] investigated the influence of three kinds of steriliza-
tion methods on a porous zein scaffold as a new biomaterial. 
Bobbert et al. [4] designed porous metallic biomaterials on 
the basis of four different types of triply periodic minimal 
surfaces which cause to mimic the properties of bone to an 
unprecedented level. Kadkhodapour et al. [5] utilized triply 
periodic minimal surfaces to obtain structure–property rela-
tions for Ti6Al4V scaffolds designed.

Nanoscale porous biomaterials have been recently 
evolved as a new class of porous materials having exciting 
applications. For instance, the materials utilized to manu-
facture nanoscaffolds in heart valves are typically packed 
together with pores of a very small size to direct the colo-
nization and growth of cells in a more efficient way. Due to 
high surface-to-volume ratio as well as size-dependent char-
acteristics, nanoporous materials feature unique behavior in 
comparison with the conventional porous materials [6].

To make the continuum mechanical applicable in the anal-
ysis of micro/nano-structures, it needs to take small-length 
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scales such as lattice spacing and grain size into account. 
Up to now, various unconventional continuum theories have 
been established to consider size dependence in mechanical 
characteristics of micro/nano-structures [7–40]. Recently, it 
is indicated that nonlocal differential model is an approxi-
mate model and may be not equivalent to integral elasticity 
based model [41, 42,42]. According to the previous studies, 
it has been observed that the nonlocal elasticity theory and 
strain gradient continuum mechanics represent two entirely 
different size effects including softening-stiffness and hard-
ening-stiffness influences.

To overcome this paradox, Lim et al. [43] developed the 
nonlocal strain gradient elasticity theory which incorporates 
simultaneously the both features of size dependence. After 
that, several investigations have been carried out to analyze 
size-dependent mechanical behavior of micro/nano-struc-
tures. Li and Hu [10] used the nonlocal strain gradient the-
ory of elasticity to develop a size-dependent Euler–Bernoulli 
beam model for buckling analysis of nano-beams. They also 
formulated the equations related to the wave motion fluid-
conveying viscoelastic carbon nano-tubes based upon the 
nonlocal strain gradient continuum mechanics [44]. Sim-
sek [14] examined the size-dependent nonlinear vibrations 
of functionally graded Euler–Bernoulli nano-beams via 
nonlocal strain gradient theory of elasticity. Li et al. [45] 
constructed a nonlocal strain gradient functionally graded 
Timoshenko beam model to analyze free vibration response 
of nano-beams. Yang et al. [46] studied the nonlocal strain 
gradient dynamic pull-in instability of functionally graded 
carbon nano-tube-reinforced nano-actuators. Li et al. [47] 
analyzed the longitudinal vibrations of nano-scaled rods on 
the basis of the nonlocal strain gradient elasticity theory. 
Tang et al. [17] predicted the viscoelastic wave propaga-
tion in an embedded viscoelastic carbon nano-tube based 
on the theory of nonlocal strain gradient elasticity. Sahmani 
and Aghdam [48–51] anticipated size-dependent nonlinear 
mechanical responses of multilayer functionally graded 
micro/nano-structures reinforced with graphene nanoplate-
lets based on the nonlocal strain gradient continuum mechan-
ics. Li and Hu [52] derived a nonlocal strain gradient model 
to study the postbuckling behavior of functionally graded 
nano-beams. Xu et al. [53] explored the nonlocal strain 
gradient bending and buckling of Euler–Bernoulli nano-
beams. Based on the weighted residual approaches, Shah-
savari et al. [54] analyzed damped vibration of a graphene 
sheet on the basis of a higher order nonlocal strain gradient 
plate model. Sahmani and Aghdam [55–58] captured size 
effects on the nonlinear instability of axially loaded and 
hydrostatic pressurized microtubules surrounded by cyto-
plasm based upon the nonlocal strain gradient shell model. 
Lu et al. [59] proposed a nonlocal strain gradient sinusoi-
dal shear deformable beam model for the vibration analysis 
of nano-beams. Radic [60] investigated the size-dependent 

buckling behavior of porous double-layered functionally 
graded nanoplates resting on an elastic foundation via the 
nonlocal strain gradient theory of elasticity. Sahmani et al. 
[61–63] applied the nonlocal strain gradient elasticity to the 
classical continuum mechanics to capture size effects on 
nonlinear mechanical characteristics of functionally graded 
porous micro/nano-structures. Zhen et al. [64] explored the 
nonlocal strain gradient free vibration response of viscoelas-
tic nano-tubes subjected to the longitudinal magnetic field. 
Sahmani and Khandan [65] analyzed the size-dependent 
nonlinear instability of magneto-electro-elastic cylindrical 
composite nanopanels within the framework of the nonlocal 
strain gradient panel model. Sahmani et al. [66] presented 
an analytical mathematical solution for vibration response 
of an axially loaded multilayer functionally graded micro/
nano-beam reinforced with graphene platelets within both 
of the prebuckling and postbuckling domains. Lu et al. [67] 
developed a unified size-dependent plate model based upon 
the nonlocal strain gradient and surface stress elasticity theo-
ries for buckling analysis of nanoplates. Esfahani et al. [68] 
performed a nonlinear vibration analysis of an electrostatic 
nano-beam resonator on the basis of the nonlocal strain gra-
dient continuum elasticity.

In the present investigation, at first, a refined form of the 
analytical approach developed by Hedayati et al. [69] is put 
to use to construct explicit expression for mechanical prop-
erties of nanoporous material made from refined truncated 
cube lattice structure in terms of pore size. Thereafter, based 
upon the extracted mechanical properties, the nonlocal strain 
gradient elasticity theory is utilized to capture two entirely 
different size dependencies in the nonlinear large-amplitude 
vibrations of micro/nano-beams made of the nanoporous 
material. The Galerkin method together with an improved 
perturbation technique is employed to achieve explicit ana-
lytical expression for nonlocal strain gradient frequency-
deflection response of the nonlinear large-amplitude vibra-
tions of micro/nano-beams made of nanoporous material.

2  Analytical approach for mechanical 
properties of nanoporous materials

In the present investigation, it is assumed that a nanopo-
rous material is made from the refined truncated cube lat-
tice structure including open cell foam which consists of 
bigger truncated cube cells and smaller tetrahedral cells, as 
illustrated in Fig. 1. Accordingly, by repeating the cells, a 
unit cell surrounding by the truncated cubes is resulted in, 
each membrane of which is dedicated to a unique refined 
truncated cube. It is demonstrated in Fig. 2 that, because 
of the geometrical symmetry, the links c1a1b1d1a2c2 and 
c1a1b2d2a2c2 and c1a1b3d3a2c2 and c1a1b4d4a2c2 of the 
unit cell have the same mechanical in-plane deformations. 
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Consequently, analyzing one of them is enough to obtain 
the mechanical response of the unit cell. Here, the link 
c1a1b1d1a2c2 is chosen to be analyzed.

At first, on the basis of the refined hyperbolic shear 
deformable beam model for the links of the unit cell, one 
will have
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Fig. 1  A micro/nano-beam 
made of a nanoporous mate-
rial: a coordinate system and 
geometric parameters; b a 
refined truncated cube lattice 
framework

Fig. 2  A refined truncated cube unit cell
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To capture the equivalent bending moment at the free end 
of the strut causing the same rotation, one will have

Therefore, the lateral deflection caused by applying the 
both concentrated load P and bending moment M at the free 
end can be written as follows:

As a result, it yields

It should be noticed that, due to the in-plane deformation, 
the link c1a1b1d1a2c2 has 18° of freedom. However, by con-
sidering the following reasonable assumptions considered by 
Hedayati et al. [69], the number of degrees of freedom can 
be reduced to 6 as depicted in Fig. 3:
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• The vertices of link do not enable to rotate.
• The points a1, a2, c1 enable only to displace vertically.
• The points b1 and d1 displace the same vertically, but dif-

ferent horizontally.
• The point c2 is fixed.

Thereafter, the degrees of freedom �i(i = 1,2,… , 6) can 
be related to the associated external force �i(i = 1,2,… , 6) 
in the following form:

To extract the elements of the stiffness matrix column 
by column, the displacements corresponding to each degree 
of freedom are achieved separately in such a way that the 
related degree of freedom is supposed to be unit and the 
other ones are zero.
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Fig. 3  Degrees of freedom for the link c1a1b1d1a2c2 of the unit cell



363Engineering with Computers (2020) 36:359–375 

1 3

2.1  For �
1
= 1 and�

2
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3
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4
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5
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6
= 0

It means that the point c1 displaces downwards by unity. 
Consequently, it causes the following associated forces in 
the struts:
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= 1 and �
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It means that the point a1 (the vertices of links 
a1b1, a1b2, a1b3, a1b4 ) displaces downwards by unity. As a 
result, it leads to the following associated forces in the struts:
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2.6  For �
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= 1 and �
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It means that the point d1 (similarly, the points d2, d3, d4 ) 
displaces horizontally by unity. Thereby, the correspondence 
forces in the struts can be expressed as follows:

Thereafter, the elements of the stiffness matrix can be 
achieved as presented in Appendix.
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The elastic modulus of the refined truncated cube unit cell 
can be calculated as follows:

where Fu, Lu,Au, and �u represent, respectively, the applied 
load, length, cross-sectional area, and shortening of the unit 
cell.

Through inversion of the above equation, �1 can be 
extracted as a function of P . Therefore, it yields the 
following:
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Moreover, to obtain the Poisson’s ratio, it can be intro-
duced as the ratio of horizontal to vertical displacements in 
the following form

Consequently, one will have the following:

3  Nonlocal strain gradient beam model 
for porous micro/nano‑beams

Within the framework of the refined hyperbolic shear defor-
mation beam theory, the components of displacement field 
along different coordinate directions can be given as follows:

in which uand w stand for the displacement components 
of the micro/nano-beam along x- and z-axes, respectively. 
Moreover, � denotes the rotation relevant to the cross sec-
tion of nano-beam at neutral plane normal about y-axis.
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Thereafter, the non-zero strain components can be gov-
erned as follows:

in which �0
xx

 denote the mid-plane strain components, �(1)
xx

 is 
the first-order curvature component, and �(2)

xx
 is the higher 

order curvature component.
As it has been reported in the specialized literature on the 

subject of size dependence, it has been indicated that small-
scale effects may cause two entirely different influences 
incorporating hardening-stiffness or stiffening-stiffness fea-
tures. Motivated by this fact, Lim et al. [43] proposed a new 
unconventional continuum theory namely as nonlocal strain 
gradient elasticity theory which contains the both nonlocal 
and strain gradient size effects simultaneously. As a result, 
the total nonlocal strain gradient stress tensor � for a beam-
type structure can be expressed as follows [43]:

where � and �∗ are the stress and higher order stress tensors, 
respectively, which can be defined as follows:

in which C is the stiffness matrix, �1and �2 are, respectively, the 
principal attenuation kernel function including the nonlocality 
and the additional kernel function associated with the nonlo-
cality effect of the first-order strain gradient field,  and  ’ in 
order represent a point and any point else in the body, and l 
stands for the internal strain gradient length scale parameter. 
Following the method of Eringen, the constitutive relationship 
corresponding to the total nonlocal strain gradient stress tensor 
of a beam-type structure can be obtained as follows:
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where � is the nonlocal parameter. As a result, the nonlocal 
strain gradient constitutive relations for a hyperbolic shear 
deformable micro/nano-beam made of nanoporous material 
can be written as follows:

in which

Therefore, based upon the nonlocal strain gradient hyper-
bolic shear deformable beam model, the total strain energy 
of a micro/nano-beam can be expressed as follows:

where S is the cross-sectional area of the micro/nano-beam, 
and the stress resultants are in the following forms:
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Furthermore, the kinetic energy of a micro/nano-beam 
modeled via the nonlocal strain gradient hyperbolic shear 
deformable beam model can be presented as follows:

where

In addition, the work done by the transverse force q can 
be introduced as follows:

Thereby, using the Hamilton’s principle, the governing 
differential equations in terms of stress resultants can be 
constructed as follows:

Afterwards, by substituting Eq. (33a) in equations (33b) 
and (33c), and using Eq. (29), the nonlocal strain gradi-
ent governing differential equations for a hyperbolic shear 
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deformable micro/nano-beam with immovable end supports 
can be constructed as follows:

4  Analytical solving process for asymptotic 
solutions

First of all, for extracting the asymptotic solutions associ-
ated with the present size-dependent problem, the following 
dimensionless parameters are introduced:

where A00 = Ebh and I00 = �bh . Thus, the nonlocal strain 
gradient governing differential equations of motion for the 
refined hyperbolic shear deformable micro/nano-beam can 
be rewritten in the following dimensionless form:
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Now, an improved perturbation method namely as two-
stepped perturbation technique [70–82] is put to use. To con-
tinue the solving process, the independent variables are defined 
as the summations of the solutions corresponding to different 
orders of the first perturbation parameter, � , as follows:

in which �̂ = �� is considered to improve the efficiency of 
the perturbation approach for capturing the solution of vibra-
tion problem. In such a case, the nonlocal strain gradient 
governing differential equations of motion take the follow-
ing form:

It is assumed that the immovable ends of the micro/nano-
beam are simply supported and the initial conditions are as 
follows:

We substitute Eq. (37) into Eqs. (38a) and (38b) and then 
collect the expressions with the same order of � result in a 
set of perturbation equations. Subsequently, the asymptotic 
solutions corresponding to each individual variable can be 
obtained as follows:
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where

For a free vibration analysis, one will have q = 0 . As a 
consequence, after applying the Galerkin method, it yields 
the following:

Thereby, the nonlinear nonlocal strain gradient frequency 
of the micro/nano-beam made of the nanoporous material 
can be extracted explicitly as follows:

where the linear nonlocal strain gradient natural frequency 
can be defined as follows:
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and Wmax represents the dimensionless maximum deflection of micro/nano-beam made of the nanoporous material.

Fig. 4  Variation of frequency 
ratio with dimensionless 
maximum deflection of micro/
nano-beam made of nanopo-
rous materials corresponding 
to various nonlocal param-
eters ( l = 0 μm,�∕r = 10 ): a 
h = 10 nm ; b h = 15 nm
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Fig. 5  Variation of frequency 
ratio with dimensionless 
maximum deflection of micro/
nano-beam made of nanoporous 
materials corresponding to 
various strain gradient param-
eters ( � = 0 μm,�∕r = 10 ): a 
h = 10 nm ; b h = 15 nm
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5  Results and discussion

Herein, selected numerical results are presented for the 
size-dependent nonlinear large-amplitude vibrations of 
micro/nano-beams made of nanoporous material including 

different pore sizes. It is assumed that the biomaterial is 
made from Ti6Al4V-ELI Titanium alloy having an elastic 
modulus of 

−

E= 122.3GPa , and Poisson’s ratio of 
−
�= 0.342 

[83]. In addition, the geometrical parameter of the micro/
nano-beam are selected as: h = b . In addition, the links of 

Fig. 6  Nonlinear frequency-
deflection response of micro/
nano-beams made of nano-
porous material with different 
pore sizes ( � = l = 0 μm ): a 
h = 10 nm ; b h = 15 nm

(a) (b)

Fig. 7  Size-dependent and 
size-independent nonlinear 
frequency-deflection response 
of micro/nano-beams made of 
nanoporous material corre-
sponding to different pore sizes 
( l = 0 μm ): a h = 10 nm ; b 
h = 15 nm

(b)(a)
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the refined truncated cubic cells have a circular cross section 
with radius of r.

In Figs.  4 and 5, the variation of frequency ratio 
( �NL∕�L ) with dimensionless maximum deflection of micro/
nano-beam is shown corresponding to the different values of 
nonlocal parameter and strain gradient length-scale param-
eter, respectively. It is assumed that L = 500h and the pore 
size of �∕r = 10 . It can be observed that, by increasing the 
maximum deflection of micro/nano-beam, both types of size 
dependence have more significant effect on the frequency 
ratio, so the gap between different curves increases. This 
anticipation is more considerable for micro/nano-beams with 
lower thickness.

Figure 6 displays the nonlinear frequency-deflection 
response of micro/nano-beams made of nanoporous mate-
rials with different pore sizes (various values of �∕r ). It 
is supposed that L = 500nm . It is seen that, by increasing 
the pore size, the nonlinear frequency of large-amplitude 
vibration of micro/nano-beams made of nanoporous mate-
rial reduces, but the rate of this reduction becomes lower 
for higher pore size. In addition, the slope of the nonlinear 
frequency-deflection variation is higher for micro/nano-
beams made of nanoporous material with smaller pore size. 
In addition, it is observed that the influence of the pore size 
on the nonlinear large-amplitude vibration of micro/nano-
beam with higher thickness is more prominent.

Figures 7, 8 illustrate, respectively, the effects of nonlo-
cality and strain gradient size dependence on the nonlinear 
frequency-deflection response of micro/nano-beams made of 
nanoporous material corresponding to various pore sizes. It 

is supposed that L = 500nm . It is revealed that, for all pore 
sizes, by increasing the maximum deflection of the micro/
nano-beam, both types of size effect diminishes, so the gap 
between the size-dependent and size-independent frequency-
deflection curves decreases.

In Tables 1 and 2, the size-dependent nonlinear fre-
quency of micro/nano-beams made of nanoporous material 
with different pore sizes are given corresponding to vari-
ous nonlocal and strain gradient parameters, respectively. 
The percentages given in parentheses indicate the amount 
of the reduction or increment in nonlinear frequency due to 
the size effect. It is found that, by increasing the maximum 
deflection, both types of size dependence in the nonlinear 
frequency of micro/nano-beam reduce, as for the linear fre-
quency ( Wmax = 0 ), the size effects are the maximum for 
all the pore sizes. Moreover, it can be observed that, for 
all values of maximum deflection and pore sizes, the strain 
gradient size effect has more effect than nonlocality on the 
nonlinear frequency of micro/nano-beam made of nanopo-
rous material, as for the same small-scale parameter, the 
percentage associated with the strain gradient size effect is 
more than that of nonlocal one.

6  Concluding remarks

In this paper, the size-dependent nonlinear large-ampli-
tude vibrations of micro/nano-beams made of nanoporous 
material was studied. To accomplish this end, first, refined 
truncated cube cells were defined to model the porosity of 

Fig. 8  Size-dependent and 
size-independent nonlinear 
frequency-deflection response 
of micro/nano-beams made of 
nanoporous material corre-
sponding to different pore sizes 
( � = 0 μm ): a h = 10 nm ; b 
h = 15 nm

(a) (b)
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Table 1  Size-dependent nonlinear frequency (MHz) of micro/nano-beams made of nanoporous material corresponding to different nonlocal 
parameters and pore sizes ( h = b = 10nm,L = 500nm, andl = 0μm)

�(μm) �∕r = 10 �∕r = 20 �∕r = 30

Wmax = 0

 0 14.3149 7.0539 4.6892
 0.02 14.2032 (− 0.780%) 6.9988 (− 0.780%) 4.6526 (− 0.780%)
 0.04 13.8831 (− 3.016%) 6.8411 (− 3.016%) 4.5478 (− 3.016%)
 0.06 13.3946 (− 6.429%) 6.6004 (− 6.429%) 4.3877 (− 6.429%)
 0.08 12.7900 (− 10.652%) 6.3025 (− 10.652%) 4.1897 (− 10.652%)
 0.1 12.1209 (− 15.327%) 5.9727 (− 15.327%) 3.9705 (− 15.327%)
Wmax = 0.005

 0 22.1210 10.9004 7.2463
 0.02 22.0489 (− 0.326%) 10.8649 (− 0.326%) 7.2226 (− 0.326%)
 0.04 21.8441 (− 1.252%) 10.7640 (− 1.252%) 7.1556 (− 1.252%)
 0.06 21.5369 (− 2.641%) 10.6126 (− 2.641%) 7.0549 (− 2.641%)
 0.08 21.1661 (− 4.317%) 10.4299 (− 4.317%) 6.9335 (− 4.317%)
 0.1 20.7686 (− 6.114%) 10.2340 (− 6.114%) 6.8033 (− 6.114%)
Wmax = 0.01

 0 36.6417 18.0557 12.0029
 0.02 36.5982 (− 0.119%) 18.0342 (− 0.119%) 11.9886 (− 0.119%)
 0.04 36.4751 (− 0.455%) 17.9736 (− 0.455%) 11.9483 (− 0.455%)
 0.06 36.2919 (− 0.955%) 17.8833 (− 0.955%) 11.8883 (− 0.955%)
 0.08 36.0731 (− 1.552%) 17.7755 (− 1.552%) 11.8166 (− 1.552%)
 0.1 35.8412 (− 2.185%) 17.6612 (− 2.185%) 11.7406 (− 2.185%)

Table 2  Size-dependent nonlinear frequency (MHz) of micro/nano-beams made of nanoporous material corresponding to different strain gradi-
ent parameters and pore sizes ( h = b = 10nm,L = 500nm, and� = 0μm)

l(μm) �∕r = 10 �∕r = 20 �∕r = 30

Wmax = 0

 0 14.3149 7.0539 4.6892
 0.02 14.4275 (+ 0.787%) 7.1093 (+ 0.787%) 4.7261 (+ 0.787%)
 0.04 14.7601 (+ 3.110%) 7.2732 (+ 3.110%) 4.8350 (+ 3.110%)
 0.06 15.2983 (+ 6.870%) 7.5385 (+ 6.870%) 5.0113 (+ 6.870%)
 0.08 16.0216 (+ 11.922%) 7.8948 (+ 11.922%) 5.2482 (+ 11.922%)
 0.1 16.9060 (+ 18.101%) 8.3307 (+ 18.101%) 5.5380 (+ 18.101%)
Wmax = 0.005

 0 22.1210 10.9004 7.2463
 0.02 22.1941 (+ 0.330%) 10.9364 (+ 0.330%) 7.2702 (+ 0.330%)
 0.04 22.4117 (+ 1.314%) 11.0437 (+ 1.314%) 7.3415 (+ 1.314%)
 0.06 22.7698 (+ 2.933%) 11.2202 (+ 2.933%) 7.4588 (+ 2.933%)
 0.08 23.2620 (+ 5.158%) 11.4627 (+ 5.158%) 7.6200 (+ 5.158%)
 0.1 23.8798 (+ 7.951%) 11.7671 (+ 7.951%) 7.8224 (+ 7.951%)
Wmax = 0.01

 0 36.6417 18.0557 12.0029
 0.02 36.6858 (+ 0.121%) 18.0774 (+ 0.121%) 12.0173 (+ 0.121%)
 0.04 36.8179 (+ 0.481%) 18.1425 (+ 0.481%) 12.0606 (+ 0.481%)
 0.06 37.0371 (+ 1.079%) 18.2505 (+ 1.079%) 12.1324 (+ 1.079%)
 0.08 37.3417 (+ 1.911%) 18.4007 (+ 1.911%) 12.2322 (+ 1.911%)
 0.1 37.7298 (+ 2.970%) 18.5919 (+ 2.970%) 12.3593 (+ 2.970%)
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material. An analytical approach was utilized to extract the 
mechanical properties of the nanoporous material explicitly 
in terms of pore size. Afterwards, the nonlocal strain gra-
dient elasticity theory was incorporated to the hyperbolic 
shear deformable beam theory to construct a refined size-
dependent beam model. The Galerkin method together with 
an improved perturbation technique was employed to pro-
pose the analytical expression for nonlocal strain gradient 
frequency-deflection response of micro/nano-beams made 
of nanoporous materials with different pore sizes.

It was found that, by increasing the maximum deflection 
of micro/nano-beam, both types of size dependence have 
more significant effect on the frequency ratio ( �NL∕�L ), 
especially for lower beam thickness. Furthermore, it was 
indicated that, by increasing the pore size, the nonlinear fre-
quency of large-amplitude vibration of micro/nano-beams 
made of nanoporous biomaterial reduces, but the rate of this 
reduction becomes lower for higher pore size. In addition, 
it was seen that the influence of the pore size on the non-
linear large-amplitude vibration of micro/nano-beam with 
higher thickness is more prominent. In addition, it was dem-
onstrated that for all pore sizes, by increasing the maximum 
deflection of the micro/nano-beam, both types of size effect 
diminish. Moreover, it was displayed that, for all values of 
maximum deflection and pore sizes, the strain gradient size 
effect has more effect than nonlocality on the nonlinear fre-
quency of micro/nano-beam made of nanoporous material.
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