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Abstract

Pore size and interconnectivity have essential role in different biological applications of synthetic porous biomaterials. Recent
improvements in technology make it possible to produce nanoporous materials having pores of controllable dimensions at
atomic scale. In the present study, based upon a refined truncated cube lattice structure, the elastic mechanical properties
of nanoporous materials have been extracted explicitly in terms of the pore size. Afterwards, the size-dependent nonlinear
large-amplitude vibrations of micro/nano-beams made of the nanoporous material are explored. To this purpose, the nonlocal
strain gradient elasticity theory is utilized within the framework of the refined hyperbolic shear deformation beam theory to
capture the both small-scale effects of hardening-stiffness and softening-stiffness. Finally, the Galerkin method together with
an improved perturbation technique is employed to construct explicit analytical expression for the nonlocal strain gradient
frequency-deflection response of micro/nano-beams made of nanoporous materials. It is demonstrated that, by increasing the
pore size, the nonlinear frequency associated with the large-amplitude vibration of micro/nano-beams made of nanoporous
material reduces, but the rate of this reduction becomes lower for higher pore size.

Keywords Nano-technology - Porous materials - Size effect - Nonlinear vibration - Perturbation technique

1 Introduction

Different reasons such as diseases, trauma, congenital
defects, etc. may lead to the degeneration of tissues in the
human body. Nowadays, via development in tissue engineer-
ing, novel approaches have been emerged to regenerate a
damaged tissue, in spite of replacing it. In this way, pore
architecture and porosity of scaffolds play an essential role
in cell migration and in growth, and recently, several studies
have been performed in this research area. Shariful Islam and
Todo [1] discovered the sintering effects on the compressive
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mechanical properties of the scaffold. Hedayati et al. [2]
analyzed the fatigue crack propagation in additively manu-
factured porous biomaterial via an analytical model. Zhang
et al. [3] investigated the influence of three kinds of steriliza-
tion methods on a porous zein scaffold as a new biomaterial.
Bobbert et al. [4] designed porous metallic biomaterials on
the basis of four different types of triply periodic minimal
surfaces which cause to mimic the properties of bone to an
unprecedented level. Kadkhodapour et al. [5] utilized triply
periodic minimal surfaces to obtain structure—property rela-
tions for Ti6Al4V scaffolds designed.

Nanoscale porous biomaterials have been recently
evolved as a new class of porous materials having exciting
applications. For instance, the materials utilized to manu-
facture nanoscaffolds in heart valves are typically packed
together with pores of a very small size to direct the colo-
nization and growth of cells in a more efficient way. Due to
high surface-to-volume ratio as well as size-dependent char-
acteristics, nanoporous materials feature unique behavior in
comparison with the conventional porous materials [6].

To make the continuum mechanical applicable in the anal-
ysis of micro/nano-structures, it needs to take small-length
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scales such as lattice spacing and grain size into account.
Up to now, various unconventional continuum theories have
been established to consider size dependence in mechanical
characteristics of micro/nano-structures [7—40]. Recently, it
is indicated that nonlocal differential model is an approxi-
mate model and may be not equivalent to integral elasticity
based model [41, 42,42]. According to the previous studies,
it has been observed that the nonlocal elasticity theory and
strain gradient continuum mechanics represent two entirely
different size effects including softening-stiffness and hard-
ening-stiffness influences.

To overcome this paradox, Lim et al. [43] developed the
nonlocal strain gradient elasticity theory which incorporates
simultaneously the both features of size dependence. After
that, several investigations have been carried out to analyze
size-dependent mechanical behavior of micro/nano-struc-
tures. Li and Hu [10] used the nonlocal strain gradient the-
ory of elasticity to develop a size-dependent Euler—Bernoulli
beam model for buckling analysis of nano-beams. They also
formulated the equations related to the wave motion fluid-
conveying viscoelastic carbon nano-tubes based upon the
nonlocal strain gradient continuum mechanics [44]. Sim-
sek [14] examined the size-dependent nonlinear vibrations
of functionally graded Euler—Bernoulli nano-beams via
nonlocal strain gradient theory of elasticity. Li et al. [45]
constructed a nonlocal strain gradient functionally graded
Timoshenko beam model to analyze free vibration response
of nano-beams. Yang et al. [46] studied the nonlocal strain
gradient dynamic pull-in instability of functionally graded
carbon nano-tube-reinforced nano-actuators. Li et al. [47]
analyzed the longitudinal vibrations of nano-scaled rods on
the basis of the nonlocal strain gradient elasticity theory.
Tang et al. [17] predicted the viscoelastic wave propaga-
tion in an embedded viscoelastic carbon nano-tube based
on the theory of nonlocal strain gradient elasticity. Sahmani
and Aghdam [48-51] anticipated size-dependent nonlinear
mechanical responses of multilayer functionally graded
micro/nano-structures reinforced with graphene nanoplate-
lets based on the nonlocal strain gradient continuum mechan-
ics. Li and Hu [52] derived a nonlocal strain gradient model
to study the postbuckling behavior of functionally graded
nano-beams. Xu et al. [53] explored the nonlocal strain
gradient bending and buckling of Euler—Bernoulli nano-
beams. Based on the weighted residual approaches, Shah-
savari et al. [54] analyzed damped vibration of a graphene
sheet on the basis of a higher order nonlocal strain gradient
plate model. Sahmani and Aghdam [55-58] captured size
effects on the nonlinear instability of axially loaded and
hydrostatic pressurized microtubules surrounded by cyto-
plasm based upon the nonlocal strain gradient shell model.
Lu et al. [59] proposed a nonlocal strain gradient sinusoi-
dal shear deformable beam model for the vibration analysis
of nano-beams. Radic [60] investigated the size-dependent
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buckling behavior of porous double-layered functionally
graded nanoplates resting on an elastic foundation via the
nonlocal strain gradient theory of elasticity. Sahmani et al.
[61-63] applied the nonlocal strain gradient elasticity to the
classical continuum mechanics to capture size effects on
nonlinear mechanical characteristics of functionally graded
porous micro/nano-structures. Zhen et al. [64] explored the
nonlocal strain gradient free vibration response of viscoelas-
tic nano-tubes subjected to the longitudinal magnetic field.
Sahmani and Khandan [65] analyzed the size-dependent
nonlinear instability of magneto-electro-elastic cylindrical
composite nanopanels within the framework of the nonlocal
strain gradient panel model. Sahmani et al. [66] presented
an analytical mathematical solution for vibration response
of an axially loaded multilayer functionally graded micro/
nano-beam reinforced with graphene platelets within both
of the prebuckling and postbuckling domains. Lu et al. [67]
developed a unified size-dependent plate model based upon
the nonlocal strain gradient and surface stress elasticity theo-
ries for buckling analysis of nanoplates. Esfahani et al. [68]
performed a nonlinear vibration analysis of an electrostatic
nano-beam resonator on the basis of the nonlocal strain gra-
dient continuum elasticity.

In the present investigation, at first, a refined form of the
analytical approach developed by Hedayati et al. [69] is put
to use to construct explicit expression for mechanical prop-
erties of nanoporous material made from refined truncated
cube lattice structure in terms of pore size. Thereafter, based
upon the extracted mechanical properties, the nonlocal strain
gradient elasticity theory is utilized to capture two entirely
different size dependencies in the nonlinear large-amplitude
vibrations of micro/nano-beams made of the nanoporous
material. The Galerkin method together with an improved
perturbation technique is employed to achieve explicit ana-
lytical expression for nonlocal strain gradient frequency-
deflection response of the nonlinear large-amplitude vibra-
tions of micro/nano-beams made of nanoporous material.

2 Analytical approach for mechanical
properties of nanoporous materials

In the present investigation, it is assumed that a nanopo-
rous material is made from the refined truncated cube lat-
tice structure including open cell foam which consists of
bigger truncated cube cells and smaller tetrahedral cells, as
illustrated in Fig. 1. Accordingly, by repeating the cells, a
unit cell surrounding by the truncated cubes is resulted in,
each membrane of which is dedicated to a unique refined
truncated cube. It is demonstrated in Fig. 2 that, because
of the geometrical symmetry, the links ¢,a,b,d,a,c, and
¢,a,b,d,a,c, and c,a,bsdya,c, and c,a,bsd,a,c, of the
unit cell have the same mechanical in-plane deformations.
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Fig. 1 A micro/nano-beam L

made of a nanoporous mate-
rial: a coordinate system and
geometric parameters; b a
refined truncated cube lattice
framework

$ e

Fig.2 A refined truncated cube unit cell

Consequently, analyzing one of them is enough to obtain
the mechanical response of the unit cell. Here, the link
c,a,b,d,a,c, is chosen to be analyzed.

At first, on the basis of the refined hyperbolic shear
deformable beam model for the links of the unit cell, one
will have

;;} (cli_x“ _IE} [COSh(%) - 12<cosh(%) - 23inh<%>>]% + q(x),
(la)

N R ]
T

(b)

B () - 2o ) - 200(1))| 5 -5

[(cosh(%))z + 6(sinh(1) — 1)

_ 24cosh(%> (oosh(%) - Zsmh(% > >]

‘5—2— GA [(cosh(%))z + %@inh(l) +1)

—4cosh<%)sinh<%)]ll/ (1b)

in which E,G,I,A,w,andy denote, respectively, the
Young’s modulus, shear modulus, moment inertia, cross-
sectional area, deflection, and angel of rotation for the links
of unit cell.

Thereby, for a cantilever beam with constructed load P at
the free end, it gives

3 o _
5 =wiey=LC L 0P (4 cosh(8¢) — sinh(9£) — 1)
’ 3 5 9¢
El GA
(2a)
0=¢()=— + ——[1 + sinh(92) — cosh(94)]  (ap)
2E °GA
in which
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a = cosh(%) - 12[cash(%> - 2sinh(%>]
a, = (cosh(%))2 + 6[sinh(1) — 1]
- 24cosh<%) [cosh(%) - 2sinh<%>]

ay = <c0sh<%)>2 + %[sinh(l) + 1] - 4cosh(%>sinh(%>

To capture the equivalent bending moment at the free end
of the strut causing the same rotation, one will have

P£* 6 P

— + — —(1 + sinh(9¢) — cosh(97))
2EI °GA
M = % + SPELI | Gnh(9¢) — cosh(96)].
EI ¢ GA @

Therefore, the lateral deflection caused by applying the
both concentrated load P and bending moment M at the free
end can be written as follows:

3 g _
5= 6,46, = Pz/f_ N 96—{(1 N cosh(97) 1gs;nh(t%”) 1)
3EI GA
- [Pg + gp—?{(l + sinh(97) — cosh(&f))]
Z GA
2 3
o _re e
2EI 12 EI GA
9 9\
6 pr (1 + 7)cosh(&f) - <1 n 7)smh(&;f’) —1
5=~ 9 '
GA
(5)
As aresult, it yields
P= 6 .
R L(<1+%)cosh(&f)—(H%)sinh(&f)—l>
12E1  5GA  5GA 8
(6)

It should be noticed that, due to the in-plane deformation,
the link ¢,a,b,d,a,c, has 18° of freedom. However, by con-
sidering the following reasonable assumptions considered by
Hedayati et al. [69], the number of degrees of freedom can
be reduced to 6 as depicted in Fig. 3:
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Fig.3 Degrees of freedom for the link ¢,a,b,d, a,c, of the unit cell

e The vertices of link do not enable to rotate.

e The points a,, a,, ¢, enable only to displace vertically.

e The points b, and d, displace the same vertically, but dif-
ferent horizontally.

e The point ¢, is fixed.

Thereafter, the degrees of freedom #,(i = 1,2, ...,6) can
be related to the associated external force I;(i = 1,2, ...,6)
in the following form:

PN PN
I Si1 Si2 Si3 S1a Sis Sie || m
r, Sa1 Sx 823 Sos Sas So || 2

J I3 { _ S31 S50 S33 S3a S35 S36 JRERY )
I, Sa1 Sz Saz Sas Sas Sas || Ma
I Ss1 S5y Ss3 Ssa Sss Sse || s
I _S61 Se2 Se63 Sea Ses S66_ L’Is

To extract the elements of the stiffness matrix column
by column, the displacements corresponding to each degree
of freedom are achieved separately in such a way that the
related degree of freedom is supposed to be unit and the
other ones are zero.
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2.1 Forn, =landnp, =n;=1n,=n5=1,=0

It means that the point ¢, displaces downwards by unity.
Consequently, it causes the following associated forces in
the struts:

2AE
7

_24E

I, 7

I = JTy=T,=T5=1T;=0. ®)

2.2 Formy =1andn, =3 =1, =15 =15 =0

It means that the point a; (the vertices of links
a,by,a,b,,a,bs,a,b,) displaces downwards by unity. As a
result, it leads to the following associated forces in the struts:
n;-%ﬁu:g:o

6EI  5GA  5GA g

4
X ! L AE
Lg+ﬂ+£<(I+";)cosh(&f)—(H’“;)sinh(&f)—l> 27

I;=-4x ! + AE
oL e, (1+%)cosh(&{’)—(l+%)sinh(&/)—l 2¢
6EI  5GA  5GA 9
)]
1 AE

I5=4x

oL e (1+%)emh(&f)—(H%)sinh(@z’)—l 2¢
6EI  5GA  5GA 9

23 Forpy =1andn, =, =n,=1n5=1ng=0

It means that the point b, (similarly, the points b,, b5, b,)
displaces downwards by unity. Therefore, the correspond-
ence forces in the struts become the following:

r=ry=r,=0

L=r,=-4
y ! _AE
P o 1 (1+%)cosh(&f)—(u%)sinh(&f)—l 27
X 4 =
6EI  5GA  5GA 9
(10

1 LAE|

L;+i+L(<l+”2/)cosh(&/)—(l+'9;)sinh(sf)—l> 4

Iy=4x

12E1  5GA  S5GA g

2.4 Forn, =landrn, =n, =13 =15 =15 =0

It means that the point a, (the vertices of links
ab,,a,b,,a,b5,a,b,) displaces downwards by unity. Con-
sequently, the associated forces in the struts can be written
as follows:

N=r,=I,=0

1 AE
Iy =-4x% + =
oL e, (1+%)cosh(&f)—(l+%)sinh(&f)—l 2¢
6EI  5GA  S5GA 9
(11)
r,=24E 4

6EI  SGA  SGA 8

4
y ! L AE
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AE

1
A o0 1 ((H“’Zf)wsh(sz’)(1+“’;)sinh(w)1> 2¢ |

9

25 Forns =1andrn;, =n, =13 =1, =16 =0

It means that the point b, (similarly, the points b,, b5, b,)
displaces horizontally by unity. As a result, the associated
forces in the struts are derived as follows:

IN=1I5=0

1 AE

Lg+ﬁ+1_2((l+0;)cosh(&f)—(H”;)sinh(é)f)—l) 2¢

I,=4x
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9 9\ 2¢
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6E1 5GA 5GA 9
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I5=4 E = (8115:05366545554 = S11522533544555566
+511522855566534543 + S11533544866525552
« 1 4+ JAE =511566525552534543 + 2811566534545523.525

P +i+L<(1+'°;)coxh(19f)—(l+ﬁ;)s[nh(y‘h”)—l> ¢

12E]  5GA  5GA 9

2 AE
I =-ax| ZAE).

2.6 Forng =1andrn, =n, =13 =1, =15=0

It means that the point &, (similarly, the points d,, d;,d,)
displaces horizontally by unity. Thereby, the correspondence
forces in the struts can be expressed as follows:

ry = —4<2%> (13)
I :4<2%5>.

Thereafter, the elements of the stiffness matrix can be
achieved as presented in Appendix.

Similar to the assumption considered by Hedayati et al.
[69], it is supposed that the external force acts vertically on
point ¢, of the refined truncated cube lattice strucgture, \_Nhich
results in an additional horizontal force equal to SaE(,—ns) at
point d,. As a result, one will have the following:
_5115120 0 0 0] m

581 §22 Sy 0 Sés g n
- 32 S33 S34 3
(T] o o S43 Saa S4s O < N4 § 14

0 S5 0 Ssq Ss5 Ss6 s
| 0 0 0 0 2S¢ 2S¢ || 76

L

[N eNeNeNeoRe)

The elastic modulus of the refined truncated cube unit cell
can be calculated as follows:

_ FuLu _ P
Au5u <1 + ﬁ)f”]l (15)

where F,,L,,A,, and §, represent, respectively, the applied
load, length, cross-sectional area, and shortening of the unit
cell.

Through inversion of the above equation, #, can be
extracted as a function of P. Therefore, it yields the
following:

E
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+511544555566523532 = S11566545554523532
+533544855566512521 = 533566545554512521
—S55566512521534543 + 511522533544556S65

—533544512521 556565 = S11544523532556565
=511522534543556565 + S12521534543556565) / (16)
[ (S66522533845 54 — S66522533555544

+522555566534543 + 5335445665255 52

—S66525552534543 + 2866545534523525

+544855566523530 — S6654555452353

+522533544856565 = 5445235325 56565

~522834543556565) (1 + \/E)?fﬂ]

Moreover, to obtain the Poisson’s ratio, it can be intro-
duced as the ratio of horizontal to vertical displacements in
the following form
_ 26

% .
M

a7

Consequently, one will have the following:

V= 2815856 (533544525 = 25834843 + 823534545 ) /
(S22533566545554 = 5225335 14555566
+522555566534543 + 533544566525552
—S66925552534543 + 2866523525534545 (18)
+544555566523532 = S66523532545554
+522533544556S65 = 544523532556 565
+850534543556565 ) -

3 Nonlocal strain gradient beam model
for porous micro/nano-beams

Within the framework of the refined hyperbolic shear defor-
mation beam theory, the components of displacement field
along different coordinate directions can be given as follows:

u(x,z,1) = u(x,t) — zawa();’ ) + [zcosh( %) - hsinh(% >] w(x,1)

uy(x, z,1)=0 (19)

u,(x,z,1) = w(x, 1),

in which uand w stand for the displacement components
of the micro/nano-beam along x- and z-axes, respectively.
Moreover, y denotes the rotation relevant to the cross sec-
tion of nano-beam at neutral plane normal about y-axis.
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Thereafter, the non-zero strain components can be gov-
erned as follows:

€ =€ +zxcl) 4 [zcosh(%) - hsinh(%)] K@

ou 1/0ow\? 0w
=535 5 (202)
0
+ [ZCOSh(%) - hsinh(%)] d_I)I:
1
Yz = [cosh(§> - cosh(%)]w, (20b)

in which €”_denote the mid-plane strain components, k! is
the first-order curvature component, and k2 is the higher
order curvature component.

As it has been reported in the specialized literature on the
subject of size dependence, it has been indicated that small-
scale effects may cause two entirely different influences
incorporating hardening-stiffness or stiffening-stiffness fea-
tures. Motivated by this fact, Lim et al. [43] proposed a new
unconventional continuum theory namely as nonlocal strain
gradient elasticity theory which contains the both nonlocal
and strain gradient size effects simultaneously. As a result,
the total nonlocal strain gradient stress tensor A for a beam-
type structure can be expressed as follows [43]:

Ap=o,- 0 (21a)
X
66;

A, =0, — P (21b)

where o and ¢* are the stress and higher order stress tensors,
respectively, which can be defined as follows:

Uijz/Q{Ol(|X/_X|>Cijk1€kl(X,)}d'Q (22a)

% ’ ()6' X’

Ojj =12/ {"2(|X _XDC@,'M%}UIQ, (22b)
Q

in which C is the stiffness matrix, ¢,and g, are, respectively, the
principal attenuation kernel function including the nonlocality
and the additional kernel function associated with the nonlo-
cality effect of the first-order strain gradient field, X and X" in
order represent a point and any point else in the body, and /
stands for the internal strain gradient length scale parameter.
Following the method of Eringen, the constitutive relationship
corresponding to the total nonlocal strain gradient stress tensor
of a beam-type structure can be obtained as follows:

dzek,
—_—> 23
Fy) (23)

62
(1 - M2ﬁ>/‘ij = Cyjp€n — lzCijkl

where u is the nonlocal parameter. As a result, the nonlocal
strain gradient constitutive relations for a hyperbolic shear
deformable micro/nano-beam made of nanoporous material
can be written as follows:

_ 20_2 Oue | _ _25_2 0, 0 €xx
(=g =05 ol )
(24)

in which

E E

O = man = 20+ (25)

Therefore, based upon the nonlocal strain gradient hyper-
bolic shear deformable beam model, the total strain energy
of a micro/nano-beam can be expressed as follows:

e .
I, = z/o/s<6ij€ij + al_.].Veij)dex

s (26)
_ 0 (1) )
=3 / O{Nmexx +M kD + R kD + 0.y, }dx,

where S is the cross-sectional area of the micro/nano-beam,
and the stress resultants are in the following forms:

0°N 0%€°
2 XX A% 0 2 XX
N =t 50 ‘A“<%‘IW

0’R 0%k 0*k@
2 XX _ (1) 2 XX * @ _ 2 XX
Ry = —=t = F11<K'XX el R Wl el |

0’0, . 0%y,

0x2 0x2

in which
h

{Nx_xnyx’R)oc} = b/2 Ai’;){ 1,Z,zcosh(%) - hsinh(%) }dz
[

h

0, = b/2 Ai’?{cosh(%) - cosh(
_h

2

) }dz 28)

S

and
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{ATI’DTI’ 1’ 1}
h
=bQ11/;{1,ZZ,z2cosh(%> —zhsinh(%),
2
2
<Zcosh(%> —hsinh(%)) }dz

(AL} = bQ44/i {cosh(3) —cosh(£) }az. (29)

Furthermore, the kinetic energy of a micro/nano-beam
modeled via the nonlocal strain gradient hyperbolic shear
deformable beam model can be presented as follows:

L[ 2463 (24) \ gsa
—5/0/;’ a ) T\ !
1 Hf fou 2w\’
1 1( ) L&
2/0{0 o +2<6xat>
2
oy ow\?
(& 1(—) dx,
+4<az> T %x }x

where

9*w Oy

Soxat ot CV

{Ip: 1o, I, 1, ) =bp/g {1 a COShG)_ZhSlnh(h)
(zcosh( ) hsmh(%))} (31)

In addition, the work done by the transverse force g can
be introduced as follows:

ST

L
I, = / q(x, Hwdx. (32)
0

Thereby, using the Hamilton’s principle, the governing
differential equations in terms of stress resultants can be
constructed as follows:

ON,, 0%u

x> _ e 33
ox 9% (332)
PMy Ny ow 0 ow 0w otw Py
2 ox ox T ox (N”a ) 7=h5n ~hiar B

(33b)

aRM ()3w 02l[/

— -0, =L—+1,—. 33c¢
o &= hygs T (33)

Afterwards, by substituting Eq. (33a) in equations (33b)
and (33c), and using Eq. (29), the nonlocal strain gradi-
ent governing differential equations for a hyperbolic shear
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deformable micro/nano-beam with immovable end supports
can be constructed as follows:

02 * 04W * 631[/
2
(“l ﬁ)(”nﬁ”nﬁ

02 0*w 0w
=(1-w= )| +N,— - I,—
< H ax2>< w2 0 (34a)
o*w Py
+(L, - L) ——+ (I, - I
(72 3)0x20t2 (13 4)6x0t2>
0w « 0%y * 0w oy
now T Ga tAw =Lons iy (G4b)
L A* 2
1 11 <0W>
N == L) Yy

4 Analytical solving process for asymptotic
solutions

First of all, for extracting the asymptotic solutions associ-
ated with the present size-dependent problem, the following
dimensionless parameters are introduced:

t [A L3
p=¥ z 00
V3

Ka T = — ) =
L L L\ I T4A g h?

{a“,a44,d11,f11,h11}

2 * * ok &3 3k
_ LAy Ay Dy Fiy Hy,
m2Aph?’ Agy m2Agh?’ m2Aggh?’ m2Aggh?

(35
- - - = L210 12 13 14
10312313,14}={ P ) s s
{ ﬂ'-zl()()h2 I()()h2 I()()h2 1()()h2

where Ay, = Ebh and I, = pbh. Thus, the nonlocal strain
gradient governing differential equations of motion for the
refined hyperbolic shear deformable micro/nano-beam can
be rewritten in the following dimensionless form:

) A
(1_ gzaX2><d“ax4 f“ax?)‘(

=G ax2>

o A R N A R Y5 4
[Pf’om+ (2= 1) 330 + (= 1) 3552
" [ ay, <aw>2 PW
o ax |2
+7£</0{ > \ox X2 (36a)
# 6 W * 025" * - ()3W - 625”
Twgxs ~higge ~ 4t =ligga thpa G0
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Now, an improved perturbation method namely as two-
stepped perturbation technique [70-82] is put to use. To con-
tinue the solving process, the independent variables are defined
as the summations of the solutions corresponding to different
orders of the first perturbation parameter, €, as follows:

= Zeiv}i(x, :r\),';’ (X, %\,e) = Z eill_’i(X, %\),

i=1 i=1
(37
in which 7 = ez is considered to improve the efficiency of
the perturbation approach for capturing the solution of vibra-
tion problem. In such a case, the nonlocal strain gradient
governing differential equations of motion take the follow-
2 0

ing form:
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It is assumed that the immovable ends of the micro/nano-
beam are simply supported and the initial conditions are as
follows:

0
W W

=0, 22
2=0 ot

ow

7loo—o.
2=0 ot

7=0

=0, (39)

7=0

We substitute Eq. (37) into Egs. (38a) and (38b) and then
collect the expressions with the same order of e result in a
set of perturbation equations. Subsequently, the asymptotic
solutions corresponding to each individual variable can be
obtained as follows:

W (X, 7,€) = eAD(z)sin(mX) + O(e*) (40a)

(X, 7,6) = eB(2)sin(mX) + € B cos(mX) + O(e*)
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x sin(mX) + <—> <€A(l)(1’)> sin(mX) + 0(c*),
(40c)
where

& =1+'m*G & =1+ n*m’G. (41)

For a free vibration analysis, one will have Pq =0.Asa
consequence, after applying the Galerkin method, it yields
the following:
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Thereby, the nonlinear nonlocal strain gradient frequency
of the micro/nano-beam made of the nanoporous material
can be extracted explicitly as follows:

3 ( r2mta), )
4 2

W 5
4 mt&, « frymitay, max
13 flla L~ m?

1+

(43)

Wy, = 0,

where the linear nonlocal strain gradient natural frequency

(44)

(40b) can be defined as follows:
m4§2 " )‘”m +a44
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Fig.6 Nonlinear frequency-
deflection response of micro/
nano-beams made of nano-
porous material with different
pore sizes (4 =1=0pm): a
h=10nm; b A = 15nm

Fig.7 Size-dependent and
size-independent nonlinear
frequency-deflection response
of micro/nano-beams made of
nanoporous material corre-
sponding to different pore sizes
(!=0pm):ah=10nm; b
h=15nm

5 Results and discussion

Herein, selected numerical results are presented for the
size-dependent nonlinear large-amplitude vibrations of
micro/nano-beams made of nanoporous material including
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different pore sizes. It is assumed that the biomaterial is
made from Ti6Al4V-ELI Titanium alloy having an elastic

modulus of E= 122.3GPa, and Poisson’s ratio of v= 0.342
[83]. In addition, the geometrical parameter of the micro/
nano-beam are selected as: 2 = b. In addition, the links of
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Fig.8 Size-dependent and a b
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the refined truncated cubic cells have a circular cross section
with radius of r.

In Figs. 4 and 5, the variation of frequency ratio
(wnp/op) with dimensionless maximum deflection of micro/
nano-beam is shown corresponding to the different values of
nonlocal parameter and strain gradient length-scale param-
eter, respectively. It is assumed that L = 500h and the pore
size of £ /r = 10. It can be observed that, by increasing the
maximum deflection of micro/nano-beam, both types of size
dependence have more significant effect on the frequency
ratio, so the gap between different curves increases. This
anticipation is more considerable for micro/nano-beams with
lower thickness.

Figure 6 displays the nonlinear frequency-deflection
response of micro/nano-beams made of nanoporous mate-
rials with different pore sizes (various values of £/r). It
is supposed that L = 500nm. It is seen that, by increasing
the pore size, the nonlinear frequency of large-amplitude
vibration of micro/nano-beams made of nanoporous mate-
rial reduces, but the rate of this reduction becomes lower
for higher pore size. In addition, the slope of the nonlinear
frequency-deflection variation is higher for micro/nano-
beams made of nanoporous material with smaller pore size.
In addition, it is observed that the influence of the pore size
on the nonlinear large-amplitude vibration of micro/nano-
beam with higher thickness is more prominent.

Figures 7, 8 illustrate, respectively, the effects of nonlo-
cality and strain gradient size dependence on the nonlinear
frequency-deflection response of micro/nano-beams made of
nanoporous material corresponding to various pore sizes. It

@ Springer
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is supposed that L = 500nm. It is revealed that, for all pore
sizes, by increasing the maximum deflection of the micro/
nano-beam, both types of size effect diminishes, so the gap
between the size-dependent and size-independent frequency-
deflection curves decreases.

In Tables 1 and 2, the size-dependent nonlinear fre-
quency of micro/nano-beams made of nanoporous material
with different pore sizes are given corresponding to vari-
ous nonlocal and strain gradient parameters, respectively.
The percentages given in parentheses indicate the amount
of the reduction or increment in nonlinear frequency due to
the size effect. It is found that, by increasing the maximum
deflection, both types of size dependence in the nonlinear
frequency of micro/nano-beam reduce, as for the linear fre-
quency (W, = 0), the size effects are the maximum for
all the pore sizes. Moreover, it can be observed that, for
all values of maximum deflection and pore sizes, the strain
gradient size effect has more effect than nonlocality on the
nonlinear frequency of micro/nano-beam made of nanopo-
rous material, as for the same small-scale parameter, the
percentage associated with the strain gradient size effect is
more than that of nonlocal one.

6 Concluding remarks

In this paper, the size-dependent nonlinear large-ampli-
tude vibrations of micro/nano-beams made of nanoporous
material was studied. To accomplish this end, first, refined
truncated cube cells were defined to model the porosity of
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Table 1 Size-dependent nonlinear frequency (MHz) of micro/nano-beams made of nanoporous material corresponding to different nonlocal

parameters and pore sizes (h = b = 10nm, L = 500nm, and/ = Opm)

4(pm) Z/r=10 Z/r=20 Z/r =30
Whax =0
0 14.3149 7.0539 4.6892
0.02 14.2032 (- 0.780%) 6.9988 (—0.780%) 4.6526 (= 0.780%)
0.04 13.8831 (= 3.016%) 6.8411 (= 3.016%) 4.5478 (=3.016%)
0.06 13.3946 (- 6.429%) 6.6004 (— 6.429%) 43877 (- 6.429%)
0.08 12.7900 (- 10.652%) 6.3025 (—10.652%) 4.1897 (- 10.652%)
0.1 12.1209 (— 15.327%) 5.9727 (- 15.327%) 3.9705 (- 15.327%)
Wax = 0.005
0 22.1210 10.9004 7.2463
0.02 22.0489 (—0.326%) 10.8649 (—0.326%) 7.2226 (—0.326%)
0.04 21.8441 (- 1.252%) 10.7640 (- 1.252%) 7.1556 (— 1.252%)
0.06 21.5369 (—2.641%) 10.6126 (—2.641%) 7.0549 (—2.641%)
0.08 21.1661 (—4.317%) 10.4299 (—4.317%) 6.9335 (—4.317%)
0.1 20.7686 (—6.114%) 10.2340 (- 6.114%) 6.8033 (—6.114%)
W = 0.01
0 36.6417 18.0557 12.0029
0.02 36.5982 (—0.119%) 18.0342 (—0.119%) 11.9886 (—0.119%)
0.04 36.4751 (—0.455%) 17.9736 (—0.455%) 11.9483 (—0.455%)
0.06 36.2919 (—0.955%) 17.8833 (—0.955%) 11.8883 (—0.955%)
0.08 36.0731 (—1.552%) 17.7755 (— 1.552%) 11.8166 (—1.552%)
0.1 35.8412 (=2.185%) 17.6612 (= 2.185%) 11.7406 (—2.185%)

Table 2 Size-dependent nonlinear frequency (MHz) of micro/nano-beams made of nanoporous material corresponding to different strain gradi-

ent parameters and pore sizes (h = b = 10nm, L = 500nm, andy = Opm)

I(pim) ¢/r=10 ¢/r=120 ¢/r=30
W, =0
0 14.3149 7.0539 4.6892
0.02 14.4275 (+0.787%) 7.1093 (+0.787%) 47261 (+0.787%)
0.04 14.7601 (+3.110%) 7.2732 (+3.110%) 4.8350 (+3.110%)
0.06 15.2983 (+6.870%) 7.5385 (+6.870%) 5.0113 (+6.870%)
0.08 16.0216 (+11.922%) 7.8948 (+11.922%) 5.2482 (+11.922%)
0.1 16.9060 (+18.101%) 8.3307 (+18.101%) 5.5380 (+18.101%)
W, = 0.005
0 22.1210 10.9004 7.2463
0.02 22.1941 (+0.330%) 10.9364 (+0.330%) 7.2702 (+0.330%)
0.04 224117 (+1.314%) 11.0437 (+1.314%) 7.3415 (+1.314%)
0.06 22.7698 (+2.933%) 11.2202 (+2.933%) 7.4588 (+2.933%)
0.08 23.2620 (+5.158%) 11.4627 (+5.158%) 7.6200 (+5.158%)
0.1 23.8798 (+7.951%) 117671 (+7.951%) 7.8224 (+7.951%)
W, = 0.01
0 36.6417 18.0557 12.0029
0.02 36.6858 (+0.121%) 18.0774 (+0.121%) 12.0173 (+0.121%)
0.04 36.8179 (+0.481%) 18.1425 (+0.481%) 12.0606 (+0.481%)
0.06 37.0371 (+1.079%) 18.2505 (+1.079%) 12.1324 (+ 1.079%)
0.08 373417 (+1.911%) 18.4007 (+1.911%) 12.2322 (+1.911%)
0.1 37.7298 (+2.970%) 18.5919 (+2.970%) 12.3593 (+2.970%)
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material. An analytical approach was utilized to extract the
mechanical properties of the nanoporous material explicitly
in terms of pore size. Afterwards, the nonlocal strain gra-
dient elasticity theory was incorporated to the hyperbolic
shear deformable beam theory to construct a refined size-
dependent beam model. The Galerkin method together with
an improved perturbation technique was employed to pro-
pose the analytical expression for nonlocal strain gradient
frequency-deflection response of micro/nano-beams made
of nanoporous materials with different pore sizes.

It was found that, by increasing the maximum deflection
of micro/nano-beam, both types of size dependence have
more significant effect on the frequency ratio (wy /@),
especially for lower beam thickness. Furthermore, it was
indicated that, by increasing the pore size, the nonlinear fre-
quency of large-amplitude vibration of micro/nano-beams
made of nanoporous biomaterial reduces, but the rate of this
reduction becomes lower for higher pore size. In addition,
it was seen that the influence of the pore size on the non-
linear large-amplitude vibration of micro/nano-beam with
higher thickness is more prominent. In addition, it was dem-
onstrated that for all pore sizes, by increasing the maximum
deflection of the micro/nano-beam, both types of size effect
diminish. Moreover, it was displayed that, for all values of
maximum deflection and pore sizes, the strain gradient size
effect has more effect than nonlocality on the nonlinear fre-
quency of micro/nano-beam made of nanoporous material.
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