
Vol.:(0123456789)1 3

Engineering with Computers (2020) 36:325–344 
https://doi.org/10.1007/s00366-019-00702-7

ORIGINAL ARTICLE

A predictive model based on an optimized ANN combined with ICA 
for predicting the stability of slopes

Wei Gao1 · Mehdi Raftari2 · Ahmad Safuan A. Rashid3 · Mohammed Abdullahi Mu’azu4 · Wan Amizah Wan Jusoh5

Received: 5 December 2018 / Accepted: 2 January 2019 / Published online: 4 February 2019 
© Springer-Verlag London Ltd., part of Springer Nature 2019

Abstract
In this study, we optimized artificial neural network (ANN) with imperialist competition algorithm (ICA) for the problem 
of slope stability design charts. To prepare training and testing datasets for the ANN and ICA–ANN predictive models, an 
extensive number of limit equilibrium analysis modelings (e.g., for the lower bound, LB, limit analysis and upper bound, 
UB, limit analysis) was conducted. The analyses were conducted using OptumG2 computer software and implemented on 
two-layered cohesive soil layer sets. For each of the LB and UB limit analysis, the database consisted of 320 training datasets 
and 80 testing datasets. Variables of the ICA algorithm such as the number of countries, the number of initial imperialists and 
the number of decades were optimized using a series of trial-and-error process. The input parameters that used thorough the 
OptumG2 finite element modeling (FEM) analysis include depth factor (i.e., the ratio of first soil layer thickness to the slope 
height), slope angle, undrained shear strength ratio where the output was taken dimensionless stability number. The estimated 
results for both of datasets (e.g., training and testing) from ANN and ICA–ANN models were assessed based on three known 
statistical indices namely value account for (VAF), root means squared error (RMSE), and coefficient of determination (R2). 
To evaluate the performance of proposed models, color intensity rating (CER) and total ranking method (TRM), i.e., based 
on the result of statistical indices, was used. After 72 trial-and-error processes (e.g., sensitivity analysis on some neurons) 
the optimal architecture of 3 × 6 × 1 were found for both of the ANN–UB and ANN–LB models. As a result, both models 
presented excellent performance, however according to the introduced ranking system the ICA–ANN model could slightly 
perform a better performance compared to ANN. Based on R2, RMSE and VAF values of (0.9999, 0.0107 and 99.9924) and 
(0.9991, 0.0102 and 99.9913), respectively, were found for training and testing of the optimized ICA–ANN–LB predictive 
model. Similarly, for the ICA–ANN–UB predictive model, values of (0.9984, 0.0129 and 99.9659) and (0.9984, 0.01047 
and 99.9915) were obtained for the R2, RMSE and VAF of training and testing datasets, respectively. However, in the ANN 
model, the R2 and RMSE for both of the training and testing datasets were (0.9982 and 0.01815) and (0.9972 and 0.01748), 
respectively. This proves a better performance of the ICA–ANN model in predicting the behaviors of slope stability of 
cohesive soils and consequently more reliable design solution charts provided herein.
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1 Introduction

Calculation of the slope stability has always been one of 
the important tasks for all civil engineers. This concern can 
be mentioned for cut slopes, natural slopes or human-made 
filled slopes (e.g., earth dams, levees, and embankment) 
[1–5]. Sometimes the slope consists of several soil layers 
resting on a rigid bedrock. In particular slopes, there are 
various parameters such as soil properties, geology, and 
hydrology that will affect the factor of safety (FS) [6, 7]. 
Many studies are conducted in order to improvise the way 
that engineers will assess the slope stability [8–10]. One 
of the easiest solutions for designers is to use the design 
solution charts in which they can have a proper approxima-
tion according to the origin of their problems [6, 7, 9, 11]. 
Several researchers provided slope stability design charts 
based on traditional methods of slope stability analysis (e.g., 
[4, 12]). Most traditional methods rely on simplified solu-
tions, i.e., using linear analysis consideration and extensive 
experimental methods [10, 13]. As an easy solution, the ear-
liest slope stability design chart developed by Taylor [14]. 
These simply designed charts were extensively used through 
the slope stability analysis for decades. By advancing math-
ematical solution and engineering computer software, more 
sophisticated numerical modeling was conducted on the 
problem of slope stability. It is well established that the 
artificial neural network (ANN) can be used to approximate 
(e.g., to any desired degree of accuracy) any continuous 
function. The main advantage of ANN is that it can utilize 
any required number of neurons and that it is endowed with 
a limited number of hidden layers [15]. Also, for implement-
ing the ANN, there is no prior knowledge of the data gener-
ating process required. Many types of research have proved 
that the ANNs are reliable methods for approximating the 
slope stability analysis (e.g., [16–18]).

In contrast, there are several problems of using ANN 
models such as being trapped in their local minima and 
slow rate of the learning system. Moreover, the addition 
of hidden layers will lead to overfitting the trained net-
work. This can be seen when the model trained very well, 
however, the testing dataset of the ANN will generate 
inferior results in case of predicting the selected samples 
[19–21]. Note that finding and building up the optimized 
ANN architecture is time-consuming and requires a long 
trial-and-error activity. In recent years, new examples of 
optimizing ANN with optimization algorithms such as 
genetic algorithm (e.g., [22, 23]), particle swarm optimiza-
tion algorithm (e.g., [24, 25]) and imperialist competition 
algorithm (ICA) (e.g., [26]) are used to estimate different 
engineering design parameters. In this regard, the use of an 
optimization algorithm in the assessment of slope stability 
design solution charts is yet to be discovered.

Due to time and cost constraints especially in complex 
problems, providing numerical analysis is not always feasi-
ble and warranted. Hence, the easiest solution for engineer-
ing application is to use a solution design slope stability 
chart. There are very few studies on the use of ANN-based 
models on the problem of slope stability (e.g., [27–29]). The 
hybrid ICA–ANN models presented here are not used in the 
problem of slope stability and also it can be carefully high-
lighted as a new topic in most civil engineering applications. 
There is almost no study performed on the use of hybrid 
ICA–ANN-based learning systems (e.g., to predict the safety 
factor of slope) and its influential parameters. In this study, 
to predict the behaviors of slope stability of two-layered 
cohesive slope (i.e., factor of safety) subjected to its natu-
ral soil weight (e.g., surcharge is not included), 72 different 
ANN models (six iterations based on different number of 
neurons and finite element analysis type) and 29 hybrid ICA 
optimized with artificial neural network (ICA–ANN) mod-
els were designed. All the proposed models were evaluated 
with the use of a trial-and-error process and their influential 
parameters were assessed (e.g., to search for the optimal 
set of parameters setting). In this regard, based on the sug-
gestion from other studies (e.g., [2, 30–34]), the influen-
tial parameters that will affect the stability of a two-layered 
cohesive slope are taken as input parameters (e.g., soil layer 
thickness (d), the slope height (h), slope angle (β), undrained 
shear strength ratio of upper soil layer Cu1) undrained shear 
strength of lower soil layer (Cu2) where the output was taken 
a dimensionless stability number (N2c). Therefore, the main 
objective of this study is to optimize hybrid ANN models 
with ICA optimization algorithms for predicting N2c and 
consequently the slope stability design solution charts for a 
purely cohesive soil.

2  Artificial intelligent systems

2.1  Artificial neural network

The ANN is firstly presented by McCulloch and Pitts 
[35]. There are several rules in ANN based on hypoth-
esis and observations of neuro-physiologic nature. Many 
scholars have examined the expansion of simple and 
non-linear mathematical solutions based on the human 
biological neuron. These investigations lead to generat-
ing a large number of network learning algorithms (e.g., 
[22, 36–38]). ANN-based models process the database in 
a training network and assess the predicted output with 
a testing dataset. The ANN can be developed to solve 
the complex problems, almost in every discipline. This 
technique is known to be a multilayer structure that is 
extremely connectionist systems. During the training 
process of the network, it is able to learn tasks as well as 
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recognize similarities with no pre-defined programming. 
The learning system is normally without any prior infor-
mation about the problems, e.g., different inputs param-
eters that were set in the input dataset layers. Instead, 
the ANN automatically develops identifying features 
from the learning material (e.g., input and output data-
sets) that they process. The three main parts of the ANN 
model structure consists of (1) input, (2) hidden and (3) 
output layers. For a given problem the ANN uses three 
main components namely, (1) transfer function (e.g., a 
continuous, monotonically increasing, differentiable 
function, employed to the weighted input of a neuron to 
generate the final output); (2) network architecture (e.g., 
outline for the requirement of a network’s components 
and their functional configuration), and (3) learning law 
(e.g., mathematical algorithms applied to the neural net-
work’s connection weights on how to change right after 
each learning step). These components are considered in 
order to select the most appropriate model for a given 
problem(s). Note that one of the ANN capability is to 
extract the existing equations between the several input 
dataset variables and the output. This can be done through 
the usage of an appropriate learning method. After the 
learning process, the proposed network can simply gen-
eralize the acquired knowledge to predict the real output 
with an acceptable degree. In another word, the developed 
networks enable to predict the values for an unknown 
output. To assess the validity of the methods, calculation 
of the error is conducted based on a comparison between 
the predicted output (generated output) and the targets 
(desired output). To assess the network outputs different 
statistical indexes can be used namely, variance-account-
for (VAF), root mean squared error (RMSE) and coeffi-
cient of determination (R2). For example, in cases where 
VAF and R2 are higher than the calculated error, the stop-
ping criteria did not meet, hence, the network will back-
propagate and set a new connection weight till it can meet 
the termination criteria. Figure 1 demonstrates the details 
of most common ANN algorithms.

2.2  Imperialist competitive algorithm (ICA)

ICA is one of the optimization algorithms that has been 
widely used thorough literature (e.g., [39]). This optimiza-
tion algorithm firstly suggested by Atashpaz-Gargari and 
Lucas [40]. ICA is a system that search population similar to 
many other evolutionary algorithms (e.g., genetic algorithm, 
evolutionary programming, gene expression programming). 
ICA gets started with a given population by users (e.g., con-
sists of countries defined initially). The pre-defined countries 
are separated into two groups: (1) the first group is called 
Imperialists consists of some of the best countries among 
the pre-defined populations and (2) the second group that 
is called Colonies which is the rest of countries that left to 
be involved in the first group (see Fig. 2). In order to gener-
ate empires, the colonies (e.g., second group) are divided 
among the imperialists (e.g., first group). This distribution 
is determined by a series of pre-defined criterion and it can 
be done based on each colony’s relative strength. Next, the 
empires (i.e., that have a number of colonies) try to expand 
their territories (i.e., become more powerful) by control-
ling more colonies. This can be done by competing with 
other empires. As a result of these competitions, the strong-
est empire could take possession of smaller (i.e., weaker) 
colonies. The process stopped when the pre-defined stopping 
criterion is satisfied. The learning and optimization process 
of the ICA algorithm alone is well described in other studies 
(e.g., [31, 41]).

2.3  Combination of ICA–ANN

There have been many investigations to increase the perfor-
mance of ANN predictive models using optimization algo-
rithms. Some of the well-known optimization algorithms are 
ICA, GA, and PSO. These algorithms can help engineers to 
find a more reliable solution for any engineering problems. 
Since backpropagation-based algorithms are known as a 
local learning algorithm search system, the optimal (e.g., 
with the pre-defined structure that can be obtained based on 
trial and error) search learning process of ANN may not be 

Select the number of 
training cycle

Select the number of 
neurons for hidden layer

Select input transfer 
func�on

Select output transfer 
func�on

ANN Start Calculat End

Yes

No

Is R2 
acceptable?

Fig. 1  A general flowchart for the ANN models
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able to provide an unsatisfied solution [42]. In this regard, 
optimization algorithms can be utilized to optimize the val-
ues of weight and bias of the ANN. Hence the level of error 
rate will reduce and consequently the performance level will 
increase. In addition, to find the local minimum in any ANN 
system, there is a higher probability of convergence since 
optimization algorithms can accurately find the global mini-
mum. Therefore, as the main priority of hybrid ICA–ANN 
model is its searching properties, it can benefit from using 
both the ANN as well as the ICA techniques. For instance, 
in searching for a reliable learning system (e.g., to search for 
the weights and bias), the hybrid optimization algorithm of 
ICA will look after for the global minimum while the ANN 
model helps to find the lowest error for the system (i.e., best 
results of the system).

3  Problem definition and data collection

As stated earlier the slope stability of cohesive soil layers 
is crucial in most engineering projects. The calculation of 
slope stability, however, is a difficult task and can be costly 
as well as time-consuming. Therefore, this study focused on 
providing design solution charts for a cohesive slope (e.g., 
with a maximum of two layers in each example). Conven-
tional methods of slope analysis used extensively since the 
1930s where the first design charts are provided by Taylor 
[14]. Developing advanced design tools, i.e., using optimi-
zation algorithms as well as ANN-based predictive models, 
draw the attention of many researchers. However, most ANN 
training models have problems in their learning systems. 
These problems, i.e., that lead to the low performance of 
ANN results, can be solved by using optimization algo-
rithms such as ICA. Existing applications of ICA predictive 

models to ANN training networks have not been used in the 
area of slope stability; neither measure the important fac-
tors influencing this problem nor the optimal architecture of 
the network. Therefore, the main objective of this paper is 
to propose a new hybrid ICA-based ANN model to predict 
dimensionless stability number (N2c).

This study employs a lower bound (LB) limit analysis 
(e.g., as suggested by Sloan [43], Zhou et al. [44] and Lim 
et al. [45]) and upper bound (UB) limit analysis (e.g., as 
suggested by Donald and Chen [32], Chen et al. [46], Chen 
et al. [47] and Zhao et al. [48]) to assess the short-term sta-
bility of slopes in which the subgrade foundation and slope 
materials have two separated cohesive materials (i.e., hav-
ing only undrained shear strengths). The analysis is con-
ducted with OptumG2 computer software. This computer 
software is a comprehensive finite element program that has 
been recently developed for deformation analysis and geo-
technical stability problems [49] and widely used in other 
studies (e.g., [50–52]). To simplify the stability problem, 
the analysis is conducted using the plane-strain cases (e.g., 
three-dimensional boundary condition was not considered 
as the third dimensions assumed to have no effect in the 2D 
limit analysis).

The description of the problem studies herein is shown 
in Fig. 3. To provide the design solution charts using 
ICA–ANN and ANN techniques, the first need is to pro-
vide a useful slope geometry. The sloping geometry con-
sists of two purely cohesive soils (i.e., having only und-
rained cohesive strength, Cu1). The cohesion in the top 
and bottom soil layers is taken Cu1 and Cu1, respectively. 
These two soil properties can be different. Note that the 
analysis is performed with different slope height (H), 
undrained shear strength and thickness of both soil layers 
(d). Graphical summary of the range of input data versus 

Fig. 2  Taking possession of 
the weakest colony during the 
imperialistic competition (e.g., 
after Atashpaz-Gargari and 
Lucas [40])
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dataset number for d/H ratio, slope angle, and Cu1/Cu2 is 
illustrated in Fig. 4a–c, respectively. In this regard and 
for the case of this research, the database used to train the 
models was obtained from a total of 800 full-scale (i.e., 
for both of the UB and LB limit analysis) simulations. 
The obtained results from 320 (e.g., for each one of the 
UB and LB limit analysis) OptumG2 calculations were 
chosen randomly to train the ANN network. In order to 
test and validate the network, 20% of the database (e.g., 
80 cases for each of the testing and validation dataset) 

was selected. The database was provided for a two-layered 
cohesive slope rested on rigid bedrock.

4  Model development for prediction of N2c

Development of a proper hybrid ANN model requires several 
phases such as, pre-processing (e.g., finding optimal parame-
ters for the main inputs from the ANN predictive model) and 
normalization of the available data (e.g., this is not, however, 

Fig. 3  A view of the model for the two-layered cohesive slope

0

1

2

3

4

5

6

0 100 200 300 400

d/
H 

ra
�o

dataset number

0

10

20

30

40

50

60

70

80

0 100 200 300 400

β⁰

dataset number

0

1

2

3

4

5

6

0 100 200 300 400

Cu
1/

Cu
2

dataset number

(a) (b)

(c)

Fig. 4  Graphical summary of the range of input data versus dataset number for a d/H ratio, b slope angle, c Cu1/Cu2



330 Engineering with Computers (2020) 36:325–344

1 3

a mandatory task and the data can be used without any nor-
malization), finding of a reliable predictive hybrid model 
(e.g., finding a proper hybrid model and its optimization) 
to train input and output(s) datasets in order to train a good 
network, and the last phase which is determination of a suit-
able hybrid network architecture (e.g., using a trial and error 
and parametric study on the influential parameters of each 
model). The input datasets include (1) depth factor, d/H, 
(ratio of first soil layer thickness, d, to the slope’s top layer 
height, H); (2) undrained shear strength ratio (Cu1/Cu2) and 
(3) slope angle (β) where the output was taken N2c. Note that 
to present a non-normalized version of the predicted results 

(e.g., required for the design chart solutions, N2c proposed 
by Taylor [14]) was defined in Eq. (1):

where Fs is the safety factor obtained from the OptumG2 
simulation, � is the soil unit weight which is taken 20 kN/
m3, Cu1 is the undrained shear strength of so the top layer, 
and N2c is dimensionless stability number.

An example of input and output dataset obtained from the 
OptumG2 simulation and effective parameters influencing 
the N2c, as the model output, employed in ANN modeling is 
shown in Table 1. Note that the data were taken randomly 
from the data training input only.

(1)N2c = Cu1∕�HFs,

Table 1  Example of inputs 
and output dataset applied for 
modeling purpose

Model number Input N2c value

Measured output Predicted output

d/H ratio β° Cu1/Cu2 ANN ICA–ANN

1 1.5 15 0.2 0.0855 0.0881 0.0865
2 1.5 15 0.25 0.0855 0.0878 0.0901
3 1.5 15 0.33 0.0855 0.0891 0.095
4 1.5 15 0.4 0.0855 0.0906 0.0996
5 1.5 15 0.5 0.0855 0.0946 0.1056
6 1.5 15 0.57 0.0855 0.0977 0.1102
7 1.5 15 0.66 0.09025 0.1033 0.1158
8 1.5 15 0.8 0.1045 0.1149 0.124
9 2 15 0.2 0.0855 0.082 0.0921
10 2 15 0.25 0.0855 0.0809 0.0964
11 2 15 0.33 0.0855 0.0827 0.1027
12 2 15 0.4 0.0855 0.0845 0.1084
13 2 15 0.5 0.0855 0.0903 0.1162
14 2 15 0.57 0.0893 0.0939 0.122
15 3 15 3.5 0.4522 0.4783 0.5005
16 3 15 4 0.49875 0.5295 0.555
17 3 15 4.5 0.5434 0.5727 0.606
18 3 15 5 0.5852 0.6046 0.6534
19 4 15 0.2 0.0855 0.0956 0.038
20 4 15 0.25 0.0855 0.094 0.0458
21 4 15 0.33 0.0855 0.0963 0.0592
22 5 15 3.5 0.53105 0.563 0.4894
23 5 15 4 0.59565 0.631 0.5459
24 5 15 4.5 0.65835 0.6923 0.6002
25 5 15 5 0.7201 0.7446 0.6517
26 1.5 30 0.2 0.1273 0.1336 0.1238
27 1.5 30 0.25 0.1273 0.133 0.1271
28 1.5 30 0.33 0.1273 0.1334 0.1318
29 5 30 4.5 0.6821 0.7192 0.6378
30 5 30 5 0.74765 0.782 0.6888
31 1.5 45 0.2 0.15865 0.1688 0.1561
32 1.5 45 0.25 0.15865 0.1683 0.1592
33 1.5 45 0.33 0.15865 0.1684 0.1636
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5  Results and discussion

5.1  Optimal artificial neural network predicting N2c

Approximation of the dimensionless stability number (N2c) 
for a two-layered cohesive slope using hybrid ICA–ANN is 
the main objective of this study. Therefore, the most signifi-
cant network parameters on the calculation of the N2c (i.e., 
depth factor, slope angle and the ratio of cohesion strength in 
the top and bottom layers) were used through the FEM limit 
analysis modeling. In this step, to train the proposed ANN 
network, five different datasets were provided for both of 
the LB and UB analysis. The main objective of considering 
different iterations for both training and testing datasets was 
to find the best ANN predictive model. The selection of the 
optimal ANN model can be made based on their error rate or 
prediction performances. To develop the models, consider-
ing suggestions from previous studies (e.g., [19, 23, 53]), the 
training and testing datasets were selected randomly from 
80% of the both LB and UB limit analysis output (320 data-
sets for the training datasets) and 20% (80 datasets for the 
testing datasets), respectively. Similar to other models pro-
vided in this study the ANN modeling needs to be presented 
in its optimal architecture with a well-organized structure. 
This can be done in terms of the number of neurons (or 

nodes) considered in each hidden layer as well as choosing 
of proper ANN learning algorithm [54]. For the purpose of 
ANN training network, in this study, the Levenberg–Mar-
quardt backpropagation (simply called trainlm function) 
was used. This training and learning system algorithm is 
widely used in other studies (e.g., [55–57]). This learning 
system is of interest of researchers due to its less complex-
ity. It is well established that the number(s) of neuron in the 
hidden layer is known to be the most critical feature in the 
progress of trainlm function (e.g., or in most ANN training 
functions). According to recommendation presented in other 
studies (e.g., [58]) and considering the number of datasets 
input parameters used in this study, the number of nodes in 
the hidden layer changed from 1 to 6. Therefore, 36 ANN-
trainlm models were constructed for each of the limit analy-
sis types. Finally, their network performances were evalu-
ated in order to search their optimal performances. Each 
ANN model was iterated six times and the average results 
from this iteration are tabulated in Tables 2, 3, 4 and 5. Note 
that, a network output with the higher R2 or lower RMSE 
values is considered to perform better. A new color intensity 
rating system (CER) was used. The CER ranks the values 
obtained for the above-mentioned indexes. More details on 
how the CER works can be found in other studies (e.g., [1, 
41, 59]).

Table 2  Obtained results of R2 for several ANN (LM) models with different hidden nodes for the LB limit analysis method

Nodes 
in the 
hidden
layer

Network result
R²

Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5 Iteration 6 Average
Average 
Ranking

Total 
ranking

TR1 TS1 TR2 TS2 TR3 TS3 TR4 TS4 TR5 TS5 TR6 TS6 TR TS TR TS
1 0.97110 0.97301 0.97170 0.96670 0.97382 0.96975 0.97081 0.97066 0.97167 0.95595 0.97131 0.97252 0.97174 0.96810 1 1 2
2 0.98942 0.98846 0.98543 0.97587 0.99101 0.99215 0.99010 0.98756 0.99556 0.99573 0.98784 0.99242 0.98989 0.98870 2 2 4
3 0.99402 0.99300 0.99850 0.99822 0.99814 0.99761 0.99698 0.99692 0.99761 0.99763 0.99766 0.99770 0.99715 0.99685 3 3 6
4 0.99722 0.99776 0.99928 0.99836 0.99881 0.99847 0.99820 0.99909 0.99919 0.99896 0.99935 0.99928 0.99867 0.99865 4 4 8
5 0.99944 0.99935 0.99925 0.99906 0.99915 0.99854 0.99949 0.99924 0.99946 0.99922 0.99752 0.99736 0.99905 0.99879 5 5 10
6 0.99936 0.99928 0.99923 0.99906 0.99934 0.99925 0.99926 0.99916 0.99973 0.99970 0.99958 0.99948 0.99942 0.99932 6 6 12

Higher intensity of colour means higher validity

Table 3  Obtained results of RMSE for 14 ANN (LM) models with different hidden nodes for the LB limit analysis method

Model 
number

Nodes in 
the 

hidden
layer

Network result
Average 
Ranking

Total 
rankingRMSE

Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5 Iteration 6 Average
TR1 TS1 TR2 TS2 TR3 TS3 TR4 TS4 TR5 TS5 TR6 TS6 TR TS TR TS

1 1 0.0447
9

0.0387
4

0.0444
0

0.0440
2

0.0449
4

0.0431
0

0.0449
4

0.0431
0

0.0437
0

0.0544
6

0.0430
6

0.0465
9

0.0443
1

0.0450
0 1 1 2

2 2 0.0272
1

0.0270
8

0.0320
0

0.0366
1

0.0264
2

0.0240
6

0.0264
2

0.0240
6

0.0174
0

0.0169
8

0.0282
1

0.0246
0

0.0262
8

0.0255
7 2 2 4

3 3 0.0203
4

0.0215
2

0.0101
6

0.0109
6

0.0125
6

0.0143
5

0.0125
6

0.0143
5

0.0124
9

0.0137
2

0.0126
8

0.0125
8

0.0134
6

0.0145
8 3 3 6

4 4 0.0135
3

0.0134
8

0.0072
0

0.0096
9

0.0090
7

0.0099
8

0.0090
7

0.0099
8

0.0076
2

0.0077
7

0.0066
0

0.0078
3

0.0088
5

0.0097
9 4 4 8

5 5 0.0064
9

0.0064
0

0.0072
0

0.0081
6

0.0082
9

0.0093
4

0.0082
9

0.0093
4

0.0060
7

0.0074
0

0.0129
3

0.0142
2

0.0082
1

0.0091
4 5 5 10

6 6 0.0063
4

0.0076
2

0.0070
8

0.0091
8

0.0070
6

0.0074
6

0.0070
6

0.0074
6

0.0042
9

0.0047
3

0.0054
3

0.0056
5

0.0062
1

0.0070
2 6 6 12
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The network performance R2 and RMSE results changed 
based on the number of hidden nodes in each layer (e.g., 
Tables 2, 3 for the LB limit analysis and Tables 4, 5 for 
the UB limit analysis). Equations of RMSE and R2 indices, 
model evaluation and total ranking used in this study can be 
found in other studies [60]. More details about the evalu-
ation of the results obtained for the network performance 
(e.g., using the total ranking method) can be found in other 
studies (e.g., [61, 62]).

To propose an optimal architecture for the ANN predic-
tive network, for the data obtained from the LB limit analy-
sis, and based on the average R2 and RMSE from all 72 
constructed networks (e.g., including 6 iterations and from 
both testing and training datasets), model number 6, with 6 
hidden neurons, showed better performance results (e.g., in 
regard to both R2 and RMSE results) and could outperform 
the other 6 built models. The final ANN architecture that 
was selected for this model has a 3 × 6 × 1 structure. Note 
that, the highest total ranking of 11 or 12 (e.g., again ranking 
the statistical indexes based on their performance results) 
was obtained for the model number 5 and 6, respectively. 
Sensitivity analysis for the R2 after six iterations for the (a) 

LB limit analysis training datasets; (b) LB limit analysis 
testing datasets is presented in Fig. 5. Similarly, for the UB 
limit analysis, the R2 after six iterations for the (a) UB limit 
analysis training datasets; (b) UB limit analysis testing data-
sets are provided in Fig. 6. On the other hand, having the UB 
limit analysis database, the optimal ANN architecture was 
obtained with the 3 × 6 × 1 structure.

5.2  Hybrid ICA–ANN models predicting N2c

In order to measure the applicability of proposed hybrid 
method results from an extensive number of limit equilib-
rium analysis (e.g., both UB and LB limit analysis) simula-
tions were collected. These results were used in an optimized 
ANN training network (e.g., obtained from the previous sec-
tion). The output of the ANN was then used for the ICA opti-
mization algorithm as the input layer. All important network 
parameters of ICA were assessed using a trial-and-error pro-
cess (e.g., number of countries, number of imperialists, and 
number of decades). Hence, in this step, the optimal struc-
ture of ICA–ANN was also achieved. Apart from this, to 
evaluate the capability of ANN and ICA–ANN methods total 

Table 4  Obtained results of R2 for several ANN (LM) models with different hidden nodes for the UB limit analysis method

Model 
number

Nodes in 
the 

hidden
layer

Network result
R²

Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5 Iteration 6 Average
Average 
Ranking

Total 
ranki
ng

TR1 TS1 TR2 TS2 TR3 TS3 TR4 TS4 TR5 TS5 TR6 TS6 TR TS TR TS

1 1 0.9680
0

0.9762
3

0.9683
6

0.9733
8

0.9738
2

0.9697
5

0.9688
4

0.9726
0

0.9688
5

0.9713
8

0.9687
7

0.9726
1

0.9694
4

0.9726
6 1 1 2

2 2 0.9958
7

0.9957
7

0.9882
7

0.9853
8

0.9910
1

0.9921
5

0.9958
4

0.9946
3

0.9905
2

0.9857
9

0.9964
6

0.9941
9

0.9930
0

0.9913
2 2 2 4

3 3 0.9955
0

0.9971
6

0.9985
1

0.9985
2

0.9981
4

0.9976
1

0.9986
7

0.9982
3

0.9985
5

0.9983
5

0.9982
3

0.9966
9

0.9979
3

0.9977
6 3 3 6

4 4 0.9992
5

0.9988
6

0.9993
4

0.9987
7

0.9988
1

0.9984
7

0.9986
3

0.9977
6

0.9990
4

0.9986
8

0.9983
0

0.9970
7

0.9989
0

0.9982
7 4 4 8

5 5 0.9996
1

0.9993
5

0.9989
6

0.9990
3

0.9991
5

0.9985
4

0.9994
0

0.9994
9

0.9995
5

0.9994
9

0.9997
0

0.9996
4

0.9993
9

0.9992
6 5 6 11

6 6 0.9996
4

0.9993
0

0.9996
5

0.9990
2

0.9993
4

0.9992
5

0.9995
4

0.9990
8

0.9994
4

0.9992
8

0.9996
2

0.9995
5

0.9995
4

0.9992
5 6 5 11

Higher intensity of colour means higher validity

Table 5  Obtained results of RMSE for 14 ANN (LM) models with different hidden nodes for the UB limit analysis method

Mo
del 
nu

mbe
r

Nodes 
in the 
hidden
layer

Network result

Average 
Ranking

Total 
ranking

RMSE

Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5 Iteration 6 Average
TR1 TS1 TR2 TS2 TR3 TS3 TR4 TS4 TR5 TS5 TR6 TS6 TR TS TR TS

1 1 0.0457
6

0.0401
5

0.0449
4

0.0439
9

0.0449
4

0.0431
0

0.0449
4

0.0431
0

0.0450
3

0.0442
5

0.0444
8

0.0446
5

0.0450
2

0.0432
1 1 1 2

2 2 0.0164
7

0.0172
7

0.0281
2
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2

0.0264
2
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6
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2
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6
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9
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8
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4

0.0183
0
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1

0.0236
8 2 2 4

3 3 0.0169
1
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8
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4
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4
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6

0.0143
5
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6

0.0143
5

0.0097
5
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6

0.0112
6
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1

0.0121
8

0.0129
0 3 3 6

4 4 0.0072
0

0.0082
8

0.0067
8

0.0079
0

0.0090
7

0.0099
8

0.0090
7

0.0099
8

0.0081
4

0.0091
9

0.0104
1

0.0150
3

0.0084
4

0.0100
6 4 4 8

5 5 0.0052
0

0.0065
5

0.0083
3

0.0083
1

0.0082
9

0.0093
4

0.0082
9

0.0093
4

0.0054
2

0.0062
0

0.0044
6

0.0051
4

0.0066
7

0.0074
8 5 5 10

6 6 0.0048
1
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0
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0
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1

0.0070
6

0.0074
6
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6
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6
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1
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3
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6
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6
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5 6 6 12

Higher intensity of colour means higher validity
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ranking system (TRS) and color intensity rating (CER) were 
used. These ranking methods were based on the obtained 
result from three statistical indices of R2, RMSE, and VAF. 
These indices are well described in other studies (e.g., [1, 
36, 63]). The performance results of ICA–ANN method 
for different values used for number of countries (e.g., 25, 
50, 100, 150, 200, 250, 300, 350, 400 and 450), number of 
imperialists (e.g., 5, 10, 15, 20, 25, 30 and 35), and num-
ber of decades (50, 100, 150, 200, 250, 300, 400, 500 and 
1000) for the LB and UB limit analysis method are assessed 
herein. TRS and CIR ranking systems for a different number 
of countries for the ICA–ANN–LB and ICA–ANN–UB limit 
analysis method are shown in Tables 6 and 7, respectively. 
Performance results for a different number of countries 
for the ICA–ANN–LB limit analysis and ICA–ANN–UB 
limit analysis methods are also presented in Figs. 7 and 8, 
respectively. Similarly, performance results for a different 

number of initial imperialists for the ICA–ANN–LB limit 
analysis and ICA–ANN–LB limit analysis method are shown 
in Figs. 9 and 10, respectively. From these figures, it can 
be concluded that for the LB and UB limit analysis, the 
ICA–ANN model with number of countries size equal to 
350, number of imperialists equal to 10, and the number of 
decades equal to 200 leads to the best predictive network 
(e.g., for the ICA–ANN) model. Results from developed 
networks are provided for both testing and training datasets.

6  Model assessments

Based on the evaluation results, although both proposed 
models (e.g., ANN, ICA–ANN) have satisfactory approx-
imation results in estimation stability number of N2c, the 
hybrid ICA–ANN model can be presented as a more reli-
able and better simple non-linear ANN model in this field. 

0.965

0.970

0.975

0.980

0.985

0.990

0.995

1.000

0 2 4 6 8

Tr
ai

ni
ng

 R
2

Nodes in hidden layer`

TR1 TR2 TR3 TR4 TR5 TR6

0.965

0.970

0.975

0.980

0.985

0.990

0.995

1.000

0 2 4 6 8

Te
s�

ng
 R

2

Nodes in hidden layer`

TS1 TS2 TS3 TS4 TS5 TS6

(a)

(b)

Fig. 5  R2 sensitivity analysis after six ANN iterations for the a LB 
limit analysis training datasets; b LB limit analysis testing datasets
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The learning process was acceptable in all predictive mod-
els. This could be clearly seen from high-performance 
results of both training and testing network. Based on R2 
and RMSE values of (0.9998 and 0.0017) and (0.9988 and 
0.0018), respectively, were found for training and testing of 
the optimized ICA–ANN–LB predictive model. Similarly, 
for the ICA–ANN–UB predictive model, values of (0.9998, 
and 0.0017) and (0.9987 and 0.0019) were obtained for the 
R2, and RMSE of training and testing datasets, respectively. 
However, in the optimal ANN model, the R2 and RMSE 
for both of the training and testing datasets were (0.9993 
and 0.00621) and (0.9992 and 0.00702), respectively. Note 
that, a high accuracy level of obtained network outputs from 
testing dataset indicates that the prediction result obtained 
from the developed network is reliable. Training and test-
ing results of ANN model in predicting N2c based on ANN 
predictive model (e.g., with 6 nodes for the LB and UB limit 
analysis) and ICA–ANN predictive models are presented in 
Figs. 11 and 12, respectively. Design charts using measured 
data from OptumG2 simulation, ANN–LB neural network 

analysis, ANN–UB neural network analysis, ICA–ANN–LB 
hybrid analysis, and ICA–ANN–UB hybrid analysis are pre-
sented in Figs. 13, 14, 15, 16 and 17.

7  Comparison of design solution charts

The results of design solution charts for both of the ANN 
and ICA–ANN predictive models are presented here. The 
predicted outputs obtained from the trained networks are 
compared with the results obtained from the finite element 
limit analysis (e.g., measured).These results are presented 
based on the comparison between actual with predicted val-
ues from both ANN and ICA analysis. Note that, to show a 
proper comparison between the ANN and ICA, the results 
from LB limit analysis were used. This is mainly because 
the result of R2 in testing datasets was slightly higher. It can 
be seen that in both of the ANN outputs (e.g., as shown in 
Figs. 13, 14, 15, 16, 17 for β = 15° to β = 75°, respectively) 
and ICA–ANN–LB (e.g., as shown in Figs. 18, 19, 20, 21, 

Table 6  TRS and CIR ranking systems for a different number of countries for the ICA–ANN–LB limit analysis method

Model 
number

Number of 
countries

Network result Ranking
Total rankTrain Test Train Test

R2 RMSE VAF R2 RMSE VAF R2 RMSE VAF R2 RMSE VAF
1 25 0.9789 0.0389 99.9157 0.9672 0.0421 99.9663 3 3 3 2 2 2 15
2 50 0.9655 0.0519 99.8501 0.9424 0.0550 99.9425 1 1 1 1 1 1 6
3 75 0.9825 0.0357 99.9290 0.9733 0.0373 99.9736 5 5 5 5 5 5 30
4 100 0.9760 0.0419 99.9024 0.9729 0.0374 99.9735 2 2 2 4 4 4 18
5 150 0.9815 0.0366 99.9255 0.9697 0.0398 99.9698 4 4 4 3 3 3 21
6 200 0.9839 0.0341 99.9352 0.9850 0.0298 99.9831 6 6 6 7 7 7 39
7 250 0.9892 0.0284 99.9552 0.9871 0.0284 99.9846 11 11 11 10 9 9 61
8 300 0.9882 0.0294 99.9520 0.9855 0.0287 99.9843 10 10 10 8 8 8 54
9 350 0.9877 0.0296 99.9513 0.9856 0.0281 99.9850 9 9 9 9 10 10 56

10 400 0.9874 0.0302 99.9491 0.9880 0.0263 99.9869 8 8 8 11 11 11 57
11 450 0.9859 0.0317 99.9439 0.9821 0.0306 99.9822 7 7 7 6 6 6 39

Higher intensity of colour means higher validity

Table 7  TRS and CIR ranking systems for a different number of countries for the ICA–ANN–UB limit analysis method

Model 
number

Number of 
countries

Network result Ranking
Total rankTrain Test Train Test

R2 RMSE VAF R2 RMSE VAF R2 RMSE VAF R2 RMSE VAF
1 25 0.9761 0.0397 99.8997 0.9839 0.0354 99.9842 1 1 1 4 6 7 20
2 50 0.9817 0.0341 99.9259 0.9844 0.0361 99.9835 6 5 5 6 4 5 31
3 75 0.9761 0.0390 99.9032 0.9793 0.0402 99.9796 2 2 2 1 1 1 9
4 100 0.9859 0.0302 99.9418 0.9886 0.0317 99.9873 10 10 11 10 9 10 60

5 150 0.9852 0.0305 99.9407 0.9880 0.0308 99.9880 9 9 10 9 10 11 58

6 200 0.9792 0.0359 99.9176 0.9853 0.0356 99.9840 4 4 4 7 5 6 30
7 250 0.9839 0.0316 99.9362 0.9864 0.0325 99.9866 8 8 8 8 8 9 49
8 300 0.9777 0.0375 99.9104 0.9811 0.0385 99.9813 3 3 3 2 2 3 16
9 350 0.9896 0.0254 99.9387 0.9933 0.0231 99.9800 11 11 9 11 11 2 55

10 400 0.9814 0.0340 99.9263 0.9828 0.0377 99.9821 5 6 6 3 3 4 27
11 450 0.9833 0.0323 99.9337 0.9842 0.0351 99.9844 7 7 7 5 7 8 41

Higher intensity of colour means higher validity
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Fig. 7  performance results for a different number of countries for the ICA–ANN–LB limit analysis method
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Fig. 8  Performance results for a different number of countries for the ICA–ANN–UB limit analysis method
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Fig. 9  Performance results for a different number of initial imperialists for the ICA–ANN–LB limit analysis method
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22 for β = 15° to β = 75°, respectively) analysis, the result 
obtained from ICA–ANN trained network is more accurate 
than a simple ANN model. Also, the result of the design 
solution charts is provided only for the LB limit analysis as 
this was only an example of the solutions provided by the 
ICA–ANN hybrid model showing its superiority to simple 
ANN technique.

8  Conclusions

This study aimed to propose a new hybrid ICA–ANN predic-
tive model in order to provide design solution charts for the 
cohesive slopes. First, after a trial-and-error process (e.g., 
with 72 different ANN architectures) a proper structure for 
the optimal ANN model was presented. The established 
database and ANN modeling procedures were developed 
and finally, the obtained results from each introduced tech-
nique (e.g., ANN and ICA–ANN) compared and the effect 
of their most influential parameters was observed. Next, the 
ICA–ANN methods were optimized using a trial-and-error 

process (e.g., by changing their most influential parameters 
such as the number of countries, number of imperialists and 
number of decades). TRS and CER were used to evaluate the 
applicability of the presented method. These ranking tech-
niques were conducted based on the result of three statistical 
indices namely, R2, RMSE, and VAF. The obtained results 
proved that the hybrid ICA–ANN model (e.g., in its optimal 
conditions that obtained in this study) could be proposed as 
a better and more reliable ANN model, in the estimation of 
slope stability factor of safety, compared to ANN model. 
From high-performance results of the trained network, it can 
be concluded that the learning process was acceptable. In the 
optimal ANN of the LB and UB limit analysis models, the 
R2 and RMSE were (0.9994 and 0.00621) and (0.9995 and 
0.00586) for the training datasets and (0.9993 and 0.00702) 
and (0.9992 and 0.00695) for the testing datasets, respec-
tively. However, according to the ICA–ANN method of LB 
and UB limit analysis, values of (0.9998, and 0.0017) and 
(0.9998 and 0.0017), respectively, were found for R2 and 
RMSE of training datasets and (0.9988 and 0.0018) and 

(a) LB training datasets

(b) LB testing datasets
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Fig. 11  Training and testing results of optimized ICA–ANN model in 
predicting N2c values of LB limit analysis method
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Fig. 12  Training and testing results of optimized ICA–ANN model in 
predicting N2c values of UB limit analysis method
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Fig. 13  Results of ANN–LB limit analysis for measured and predicted N2c in slope with β = 15°

Fig. 14  Results of ANN–LB limit analysis for measured and predicted N2c in slope with β = 30°
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Fig. 15  Results of ANN–LB limit analysis for measured and predicted N2c in slope with β = 45°

Fig. 16  Results of ANN–LB limit analysis for measured and predicted N2c in slope with β = 60°
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Fig. 17  Results of ANN–LB limit analysis for measured and predicted N2c in slope with β = 75°

Fig. 18  Results of ICA–ANN–LB limit analysis for measured and predicted N2c in slope with β = 15°



341Engineering with Computers (2020) 36:325–344 

1 3

Fig. 19  Results of ICA–ANN–LB limit analysis for measured and predicted N2c in slope with β = 30°

Fig. 20  Results of ICA–ANN–LB limit analysis for measured and predicted N2c in slope with β = 45°
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Fig. 21  Results of ICA–ANN–LB limit analysis for measured and predicted N2c in slope with β = 60°

Fig. 22  Results of ICA–ANN–LB limit analysis for measured and predicted N2c in slope with β = 75°
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(0.9987 and 0.0019) for the testing datasets of the opti-
mized ICA–ANN–LB predictive model, respectively. From 
both presented predictive models, i.e., to predict the slope 
stability a dimensionless number of the cohesive slope, the 
ICA–ANN predictive model can provide lower RMSE and 
higher R2 (i.e., higher network performance) in terms of 
introduced statistical indexes for both training and testing 
phases compared to simple ANN method.
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