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Abstract
In this paper, the generalized fractional order of the Chebyshev functions (GFCFs) based on the classical Chebyshev poly-
nomials of the first kind is used to obtain the solution of optimal control problems governed by inequality constraints. For 
this purpose positive slack functions are added to inequality conditions and then the operational matrix for the fractional 
derivative in the Caputo sense, reduces the problems to those of solving a system of algebraic equations. It is shown that the 
solutions converge as the number of approximating terms increases, and the solutions approach to classical solutions as the 
order of the fractional derivatives approach one. The applicability and validity of the method are shown by numerical results 
of some examples, moreover a comparison with the existing results shows the preference of this method.

Keywords Optimal control problems · Fractional calculus · Chebyshev functions · Operational matrix · Convergence 
analysis

1 Introduction

In the real world, fractional calculus has been used to 
describe the behavior of many real-life phenomena such 
as hydrologic [1], viscoelastic modelling [2], disease con-
trol and prevention [3], the temperature and motor control 
[4], growths of populations modelling [5], fluid mechanics 
[6], bioengineering [7], etc. So, different types of fractional 
differential equations have became an important topic and 
the theory, details and applications are given in many ref-
erences like [8]. The optimal control problems of integer 
order have occurred in engineering, science, geometry and 
many other fields and the researchers have widely worked 
on this topic. It has been shown that materials with memory 
and hereditary effects, and dynamical processes, including 
gas diffusion and heat conduction, in fractal porous media 
have more accurate models by fractional-order models than 
integer-order models [9–11], so during last few decades, the 
area of fractional optimal control problems is considered. 

The application of fractional optimal control problems can 
be found in engineering and physics.

The general definition of an optimal control problem 
requires extremizing of a performance index over an admis-
sible set of control and state functions. The system should 
be solved subject to constrained dynamics and state and 
control variables. Optimality conditions for fractional opti-
mal control problems were developed by now, for example, 
Agrawal presented a general formulation for this problem 
with Riemann–Liouville derivative in [12] and then solved 
these type of problems with a numerical algorithm in [13]. 
Since the dynamic constraints of this problem involve frac-
tional differential equations, finding exact analytic solu-
tions of Hamiltonian system is difficult. Therefore, finding 
accurate numerical methods to solve different types of frac-
tional optimal control problems has gained much attention 
recently, for instance in [14] a numerical solution of a class 
of fractional optimal control problems is introduced via the 
Legendre orthonormal basis combined with the operational 
matrix and the Gauss quadrature rule. In [15] approxima-
tion methods for the free final time of fractional optimal 
control problems (FOCPs) are displayed. The considered 
problems mainly include the fractional differential equations 
(FDEs) with fractional derivatives (FDs). In [16] an effi-
cient approximate method was presented for solving a class 
of fractional optimal control problems. Some authors have 
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solved fractional optimal control problems directly without 
using Hamiltonian equation, [17–19].

The theory of trajectory inequality constraints was intro-
duced by Dreus [20]. In [21] authors considered the difficul-
ties of presence of inequality constraint. These problems 
arise in many fields of engineering such as human-operated 
bridge crane sketched in Fig. 1a (which is taken from [22]). 
Design of robust nonlinear controllers based on both conven-
tional and hierarchical sliding mode techniques for double-
pendulum overhead crane systems [23] (see Fig. 1b), optimal 
control of feedback linearizable dynamical systems [24], 
Van der Pol oscillator problem [25] and Breakwell problem 
[26]. Recently some authors have considered the general 
model of this problem in fractional area ( [27–29]).

The summary of this paper is as follows: in Sec. 2, some 
cardinal foundations of the fractional area are introduced. 
Generalized fractional order of the Chebyshev functions 
and their operational matrix are introduced in section 3. We 
have devoted Sec. 4, to the problem statement and the con-
vergence of our method. Finally, in Sect. 5, our numerical 
results are reported to show the validity of our method. Sec-
tion 6 is composed of a brief outline of paper.

2  Preliminaries and notations

In this section, some necessary definitions and mathematical 
preliminaries are given.

Definition 1 The Riemann–Liouville fractional integral of 
order � is defined as [8]

Definition 2 Caputo’s fractional derivative of order � is 
defined as [8]

with the following properties

1. I�D�f (t) = f (t) −
∑n−1

i=0
f (i)(0)

ti

i!
,

2. D�c = 0,

3. D�(�1f1(t) + �2f2(t)) = �1D
�f1(t) + �2D

�f2(t),

where c, �1 , and �2 are constants.

3  Generalized fractional order 
of the Chebyshev functions

Some good properties of the Chebyshev polynomials such as 
orthogonality, recursive relation, having simple real roots, 
completeness in the space of polynomials, cause many authors 
to apply these functions in their works [30–33]. In the current 
work, the transformation x = 2(

t

�
)� -1, 𝛼, 𝜂 > 0 was used on 

the Chebyshev polynomials of the first kind and then we apply 
them to solve optimal control problems. The generalized frac-
tional order of the Chebyshev functions (GFCFs ) is defined 

(1)

I𝛼f (t) =

{
1

𝛤 (𝛼)
∫ t

0

f (s)

(t−s)1−𝛼
ds =

1

𝛤 (𝛼)
t𝛼−1 ⋆ f (t), 𝛼 > 0, t > 0,

f (t), 𝛼 = 0.

(2)
D𝛼f (t) =

1

𝛤 (n − 𝛼) �
t

0

f (n)(s)

(t − s)𝛼+1−n
ds,

n − 1 < 𝛼 ≤ n, n ∈ N,

Fig. 1  Crane system.
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in interval [0, �] , and is denoted by �FT�
n
(t) = Tn(2(

t

�
)� − 1) . 

The analytical form of �FT�
n
(t) of degree n� given by

where

The GFCFs are orthogonal with respect to the weight func-
tion w(t) = t

�
2
−1

√
��−t�

 in the interval [0, �]:

where �mn is Kronecker delta, c0 = 2 , and cn = 1 for n ≥ 1.
Also any function y(t), t ∈ [0, �] , can be expanded as 

follows:

where an , can be calculated using the property of orthogo-
nality in the GFCFs as follows:

However, in the numerical methods, the first m-terms of the 
GFCFs are used to approximate y(t)

where A and �(t) are the following coefficients and basis 
vectors.

Theorem  1  Suppose  tha t  Dk�y(t) ∈ C[0, �] for 
k = 0, 1, ...,m, and �F�

m
 is the  generated  subspace by 

{�FT
�
0
(t),� FT

�
1
(t),⋯ ,� FT

�
m−1

(t)}.

If ym = AT� (in the Eq. (5)) is the best approximation to 
y(t) from �F�

m
 , then the error bound is presented as follows:

where M� ≥ |Dm�y(t)|, t ∈ [0, �].

(3)
�FT

�
n
(t) =

n∑
k=0

(−1)k+n
n22k(n + k − 1)!

(n − k)!(2k)!

(
t

�

)�k

=

n∑
k=0

�n,k,�,�t
�k, t ∈ [0, �],

�n,k,�,� = (−1)k+n
n22k(n + k − 1)!

(n − k)!(2k)!��k
and �0,k,�,� = 1.

(4)∫
�

0
�FT

�
n
(t) �FT

�
m
(t)w(t)dt =

�

2�
cn�mn.

y(t) =

∞∑
n=0

an �FT
�
n
(t),

an =
2�

�cn ∫
�

0
�FT

�
n
(t)y(t)w(t)dt, n = 0, 1, 2,⋯ .

(5)y(t) ≈ ym(t) =

m−1∑
n=0

an �FT
�
n
(t) = AT�(t),

(6)A =[a0, a1, ..., am−1]
T ,

(7)�(t) =[ �FT
�
0
(t), �FT

�
1
(t), ..., �FT

�
m−1

(t)]T .

∥ y(t) − ym(t) ∥w≤ �m�M�

2m� (m� + 1)

√
�

�m!
,

Proof See Ref. [33]. ∗   □

Theorem 2 The generalized fractional order of the Cheby-
shev function �FT�

n
(t), has precisely n real zeros on interval 

(0, �) in the form

Proof The Chebyshev polynomial Tn(x) has n real zeros [34] 
so we can write

  and using

 x = 2(
t

�
)� − 1, we have

Now we can obtain the real zeros of �FT�
n
(t) as follows:

In the next theorem, the operational matrix of the Caputo 
fractional derivative of order 𝛼 > 0 for the GFCFs is gener-
alized.   □

Theorem 3 Let �(t) be GFCFs vector in Eq. (7), and �(�) 
be an m × m fractional derivative operational matrix of the 
Caputo fractional derivatives of order 𝛼 > 0 as follows:

 i, j = 0, 1, ...,m − 1.

Proof See Ref. [33]. ∗   □

Theorem 4 If �(�) is the operational matrix of the Caputo 
fractional derivatives of order 𝛼 > 0 for the generalized frac-
tional order of the Chebyshev function, then the error vector 
of this matrix is zero.

tk = �

⎛
⎜⎜⎜⎝

1 + cos

�
(2k−1)�

2n

�

2

⎞
⎟⎟⎟⎠

1

�

, k = 1, 2,⋯ , n.

xk = cos

(
(2k − 1)�

2n

)
, k = 1, 2, ..., n,

Tn(x) = (x − x1)(x − x2)...(x − xn),

Tn(x) = ((2(
t

�
)� − 1) − x1)((2(

t

�
)� − 1) − x2)...((2(

t

�
)� − 1) − xn).

tk = �

(
1 + xk

2

) 1

�

. ∗

(where8)D��(t) = �
(�)�(t).

(for9)

�
(𝛼)

i,j
=

�
2√
𝜋cj

∑i

k=1

∑j

s=0
𝛽i,k,𝜂,𝛼𝛽j,s,𝜂,𝛼

𝛤 (𝛼k+1)𝛤 (s+k−
1

2
)𝜂𝛼(k+s−1)

𝛤 (𝛼k−𝛼+1)𝛤 (s+k)
, i > j

0 otherwise
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Proof The error vector is defined as:

For i = 0, 1, ...,m − 1, we have

and since deg(t�k−�) ≤ (m − 1)� for i = 0, 1, ...,m − 1, Eq. 
(10) can be expanded as follows

where

 Now, by integration of above equation we can conclude that

and as a result for i = 0, 1, ...,m − 1,

  □

ED = D��(t) − �
(�)�(t), ED =

⎡
⎢⎢⎢⎢⎢⎣

e0
e1
⋮

em−2
em−1

⎤
⎥⎥⎥⎥⎥⎦

.

(10)

D�
�
FT�

i
(t) =

i∑
k=0

�i,k,�,� .D
�t�k

=

i∑
k=0

�i,k,�,�
� (�k + 1)

� (�k + 1 − �)
t�k−� ,

(11)
i∑

k=0

�i,k,�,�
� (�k + 1)

� (�k + 1 − �)
t�k−� =

m−1∑
j=0

ai,j �FT
�
j
(t),

ai,j =
2�

�cj ∫
�

0

i�
k=0

�i,k,�,�
� (�k + 1)

� (�k + 1 − �)
t�k−�( �FT

�
j
(t)) w(t) dt.

ai,j =
2�

�cj ∫
�

0

i�
k=0

�i,k,�,�
� (�k + 1)t�k−�

� (�k − � + 1)

j�
s=0

�j,s,�,�t
�s t

�

2
−1

√
�2 − t�

dt =

2�

�cj

i�
k=0

j�
s=0

�i,k,�,��j,s,�,�
� (�k + 1)

� (�k − � + 1) ∫
�

0

t
�(k+s−

1

2
)−1

√
�2 − t�

dt.

ai,j = �
(�)

i,j
,

‖ei‖2 = 0.

4  Problem statement

In the current section, the following class of nonlinear frac-
tional systems with inequality constraints is considered

where

are state and control vectors, respectively, and the initial 
conditions of system are

The aim is to find the optimal control vector u(t) and the 
corresponding state functions satisfying this system and 
minimizing the following performance index

where L ∶ [0, 1] × R2
→ R is a differentiable function. It 

should be noticed that for � = 1, the mentioned fractional 
problem is reduced to the classic optimal control problem. 
For solving these problems, we have focused on fractional 
one as follows and to find the answer for optimal control 
problem of integer order � = 1 is considered.

First we expand the elements of the state and control vec-
tors in terms of GFCFs

therefore, we have

where Xk and Us are the following unknown coefficients 
vectors

Suppose that �̂�(t) and �̂�∗(t) are the following lm × l and 
qm × q matrices, respectively,

D�xi(t) = Fi(t, x(t), u(t)), 0 ≤ � ≤ 1, i = 1, ..., l,

Sj(t, x(t), u(t)) ≤ 0, j = 1, 2, ..., r,

x(t) =[x1(t), x2(t),… , xl(t)]
T ,

u(t) =[u1(t), u2(t),… , uq(t)]
T ,

xi(0) = �i,

min J(x, u) = ∫
1

0

L(t, x(t), u(t))dt,

(12)

xk(t) ≃

m−1∑
n=0

xkn �FT
�
n
(t) = XT

k
�(t),

us(t) ≃

m−1∑
n=0

usn �FT
�
n
(t) = UT

s
�(t),

(13)D�xk(t) ≃ XT
k
�

(�)�(t),

Xk = [xk0, xk1,… , xkm−1]
T ,

Us = [us0, us1,… , usm−1]
T ,

(14)�̂�(t) = Il ⊗𝛷(t), �̂�∗(t) = Iq ⊗𝛷(t),
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where Il and Iq are l × l and q × q identity matrices, respec-
tively, and ⊗ denotes the Kronecker product [35]. So we 
can write

Where X, and U are vectors of order lm × 1 and qm × 1 , 
respectively, given by

and

Now, if these approximations are placed in the cost function, 
we have:

that can be solved numerically by Gauss–Chebyshev inte-
gration method. In the next step, we focus on the mentioned 
dynamical system and write

where zj(t), j = 1, 2, ..., r, are the unknown slacks variable 
added to inequality trajectory to convert them to equality 
condition and can be expanded as

where Zj is the following unknown coefficients vector

Now we consider

where �j,f  and �i,f  , are unknown Lagrange multipliers and 
tf , f = 1, ...,m are collocation points introduced in theorem 2. 
The necessary conditions for finding the extreme of J⋆ , are

and this system should be solved under initial condition, as 
a result, by replacing the obtained values from this system 
in Eq. (12), u(t) and x(t) can be calculated.

u(t) ≃ (UT�̂�∗(t))T , x(t) ≃ (XT�̂�(t))T , D𝛼x(t) ≃ (�̂(𝛼)XT�̂�(t))T .

(15)X = [X1,X2,… ,Xl]
T , U = [U1,U2,… ,Uq]

T ,

�̂
(𝛼) = Il ⊗ �

(𝛼).

J ≃ ∫
1

0

L[t, �̂�(t)TX, �̂�∗(t)TU]dt

Hi(t) =X
T
i
�

(𝛼)𝛷(t) − Fi(t, �̂�(t)TX, �̂�∗(t)TU), i = 1, ..., l,

Gj =Sj(t, �̂�(t)TX, �̂�∗(t)TU) + z2
j
(t), j = 1, 2, ..., r,

zj(t) ≃ ZT
j
�(t),

Zj = [zj0, zj1,… , zjm−1]
T , j = 1, 2, ..., r.

(16)J⋆ = J +

l∑
i=1

m∑
f=1

(Hi)(tf )𝜆i,f +

r∑
j=1

m∑
f=1

(Gj)(tf )𝛾j,f ,

𝜕J⋆

𝜕Xi

= 0, i = 1, ..., l,
𝜕J⋆

𝜕Uj

= 0, j = 1, ..., q,
𝜕J⋆

𝜕zj
= 0, j = 1, ..., r,

𝜕J⋆

𝜕𝜆i,f
= 0, i = 1, ..., l, f = 1, ...,m,

𝜕J⋆

𝜕𝛾j,f
= 0, j = 1, ..., r, f = 1, ...,m,

Theorem 5 The approximate solution x(.) = XT�(.), and 
u(.) = UT�(.), converge, respectively, to the exact solutions 
as m, the number of the generalized fractional order of the 
Chebyshev function of the basis vector �(t) , tends to infinity.

Proof We prove this theorem for each state and control 
variable, the expanding of the results for vector case is 
straightforward. Suppose Wm is the set of all (XT ,UT )�(.) 
where (XT ,UT ) satisfies the constraints. By convergence 
property of fractional Chebyshev polynomials, for every 
(X1,U1)�(.) ∈ Wm, there exists a unique pair of functions 
(x1(.), u1s(.)) such that

According to Theorems  1 and 4 as m ⟶ ∞ , then 
XT
1
�

(�)�(.). tends to D�x1(.) . It is clear that (x1(.), u1(.)) ∈ W 
where W is the set of all (x(.), u(.)) that satisfy the con-
straints, so as m tends to infinity each element in Wm tends 
to an element in W.

Moreover as m → ∞ , then Jm
1
= J((XT

1
�(.),UT

1
�(.)), tends 

to J1 where Jm
1

 is the value of cost function corresponding 
to the pair (XT

1
,UT

1
)�(.) and J1 is the objective value corre-

sponding to the feasible solution (x1(.), u1(.)) . Now,

consequently

that is a non-increasing and bound sequence, therefore, it 
converges to a number � ≥ infW . Now, we need to show that 
� = limm→∞ infWm

Jm = infWJ . Given 𝜀 > 0 , let (x(.), u(.)) be 
an element in W such that

where, by the definition of inf, such (x(.), u(.)) ∈ W  exists. 
Since J(x(.), u(.)) is continuous, for this value of � , there 
exists N(�) so that if m > N(𝜀),

Now if m > N(𝜀) , then using Eq. (17) gives

on the other hand,

(XT
1
,UT

1
)�(t) ⟶ (x1(t), u1(t)),m ⟶ ∞, t ∈ [0, 1]

W1 ⊆ ⋯ ⊆ Wm ⊆ Wm+1 ⊆ ⋯ ⊆ W,

infW1
J1 ≥ ⋯ ≥ infWm

Jm ≥ infWm+1
Jm+1 ≥ ⋯ ≥ infWJ,

J(x(.), u(.)) < infWJ + 𝜀,

(17)|J(x(.), u(.)) − J(XT𝛷(.),UT𝛷(.))| < 𝜀.

J(XT𝛷(.),UT𝛷(.)) < J(x(.), u(.)) + 𝜀 < infWJ + 2𝜀,
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so

or

where � is chosen arbitrary. Thus,

which completes the proof.   □

5  Numerical results

In this section, numerical examples are presented to demon-
strate the applicability and accuracy of the proposed tech-
nique. All the numerical computations have been done using 
Mathematica. The first two examples are devoted to integer 
order problem and in examples 3 and 4 the fractional optimal 
control problems are solved.

Example 1 As a practical and nonlinear example, we con-
sider the following rigid asymmetric spacecraft problem. 
The Euler’s equations for the angular velocities �1 , �2 and 
�3 of the spacecraft are given by [36]

where u1 , u2 , and u3 are the control functions, and I1 = 86.24 
kg m2 , I2 = 85.07 kg m2 and I3 = 113.59 kg m2 are the space-
craft principle inertia.

The performance index to be minimized is given by

we consider the state inequality constraint on �1 given by

infWJ ≤ infWm
Jm ≤ J(XT�(.),UT�(.)),

infWJ ≤ infWm
Jm < infWJ + 2𝜀,

0 ≤ infWm
Jm − infWJ < 2𝜀,

� = lim
m→∞

infWm
Jm = infWJ,

��
1
(t) = −

I3 − I2

I1
�2�3 +

u1

I1
,

��
2
(t) = −

I1 − I3

I2
�1�3 +

u2

I2
,

��
3
(t) = −

I2 − I1

I3
�1�2 +

u3

I3
,

(18)min J =
1

2 ∫
100

0

[u2
1
(t) + u2

2
(t) + u2

3
(t)]dt,

�1 − (5 × 10−6t2 − 5 × 10−4t + 0.016) ≤ 0.

in addition, the following initial and terminal state con-
straints have to be satisfied:

We use transformation t = 100� , 0 ≤ � ≤ 1 to use our 
proposed method.

In Table 1, the results for J of our method together with 
using hybrid of block-pulse and Bernoulli polynomials [37] 
for various values of N, the order of block-pulse functions, 
and M, the order of Bernoulli polynomials, and quasilineariza-
tion and Chebyshev polynomials for different number of basis 
polynomials N [36] are listed.

To show the validity of the numerical findings we consider 
m = 7 and we get

�1(0) = 0.01r∕s, �2(0) = 0.005r∕s, �3(0) = 0.001r∕s,

�1(100) = 0, �2(100) = 0, �3(100) = 0.

�1(t) = 0.01 − 0.0101654t + 0.000238568t2

− 0.0000643454t3 − 0.0000102394t4+

9.27955 × 10−7t5 + 4.48983 × 10−7t6,

�2(t) = 0.005 − 0.00467849t − 0.00047674t2

+ 0.000149936t3 + 6.2321410−6t4

− 7.01435 × 10−7t5 − 2.34996 × 10−7t6,

�3(t) = 0.001 − 0.00094848t − 0.0000762761t2

+ 0.0000243584t3 − 4.34376 × 10−7t4+

1.35975 × 10−6t5 − 5.27776 × 10−7t6,

Table 1  The values of J for Example 1

Methods J

Quasilinearization and Chebyshev polynomials [36]
N = 4 0.00540579
N = 6 0.00536584
N = 8 0.00534427
N = 10 0.00534063
Hybrid functions [37]
N = 6,M = 2 0.00531619
N = 6,M = 3 0.00531097
N = 6,M = 4 0.00530263
N = 6,M = 5 0.00530213
Presented method
m = 2 0.004688899
m = 5 0.004687855
m = 10 0.004687795
m = 15 0.004687795
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and by choosing t = 0, and t = 1, the initial and terminal 
state conditions are obtained. Also Figure 2 shows that the 
obtained state and control functions approximately fulfill 
the constraints. 

Example 2 Consider the two-dimensional fractional optimal 
control problems [38].

s.t.

G1(t) =�
�
1
(t) +

I3 − I2

I1
�2�3 −

u1

I1
= 0,

G2(t) =�
�
2
(t) +

I1 − I3

I2
�1�3 −

u2

I2
= 0,

G3(t) =�
�
3
(t) +

I2 − I1

I3
�1�2 −

u3

I3
= 0,

G4(t) =�1 − (5 × 10−6t2 − 5 × 10−4t + 0.016) ≤ 0.

(19)min J = ∫
1

0

(x2
1
(t) + x2

2
(t) + 0.005u2(t))dt,

D𝛼x1(t) = x2(t), 0 < 𝛼 ≤ 1,

D𝛼x2(t) = −x2(t) + u(t),

x1(0) = 0, x2(0) = −1,

and subject to inequality conditions

x2(t) ≤ 8(t − 0.5)2 − 0.5,

Fig. 2  Curves for constraints G1(t) , G2(t) , G3(t) , and G4(t) , Example 1

Table 2  The values of J for Example 2

Methods J

Chebyshev polynomials [39]
N = 5,K = 12 0.196
N = 9,K = 20 0.187
N = 13,K = 28 0.171
Chebyshev Finite Difference [40]
N = 7 0.174064
N = 13 0.170875
Bernstein polynomials [28]
m = 5 0.173391
m = 7 0.172134
m = 8 0.168986
Presented method
m = 5 0.0917279
m = 7 0.0709874
m = 10 0.0693689
m = 15 0.069361
m = 20 0.069361
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The resulting values of J together with the solutions 
obtained by [39] using Chebyshev finite difference 
method, results reported in [40] using Chebyshev poly-
nomials and method presented in [28] via different m, 
the order of Bernstein polynomials, are summarized in 
Table 2 and we can see that by using our proposed method 
we have obtained state and control functions into the fea-
sible region which give better values for performance 
index.

Example 3 Consider the following problem [28]

s.t.

and initial conditions

Table 3 shows the values of J obtained by the hybrid func-
tions [37], the rationalized Haar Functions [41] and pro-
posed method in [28] for � = 1 , together with the present 
method, comparing the values of J shows that proposed 
approach can solve the problem effectively.

(20)min J =
1

2 ∫
1

0

[x2
1
(t) + u2(t)]dt,

D�x1(t) = x2(t), 0 ≤ � ≤ 1,

D�x2(t) = −x2(t) + u(t),

|u(t)| ≤ 1,

x1(0) = 0, x2(0) = 10.

Table 3  The values of J with � = 1, for Example 3

Methods J

Hybrid functions [37]
N = 4,M = 3 8.07059
N = 4,M = 4 8.07056
Rationalized Haar functions [41]
K = 4 8.07473
K = 8 8.07065
Bernstein polynomials [28]
m = 7 8.07061
m = 9 8.07059
Presented method
m = 5 8.07373
m = 10 8.07059
m = 15 8.07055

Fig. 3  Curves of state and control functions for � = 0.7, 0.8, 0.9, 1 , Example 2

Table 4  The estimated value of J for different � for Example 3

� = 0.7 � = 0.8 � = 0.9 � = 1

J 9.16598 8.87398 8.42329 8.07373
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Table 4 shows the convergence between the values of J for 
different � as � approaches to 1 for m = 5.

Since the exact solution of control and state functions for 
fractional value of � is not known, the reliability of this method 
is measured by Fig. 3.

Also Fig. 4 shows that obtained solution for � = 1 is into 
admissible region.

In Fig. 4, G1(t) , G1(t) and G3(t) are the following constraints.

Example 4 Consider the following problem [28]

G1(t) = x�
1
(t) − x2(t) = 0,

G2(t) = x�
2
(t) + x2(t) − u(t) = 0,

G3(t) = |u(t)| − 1 ≤ 0,

min J = ∫
1

0

(ln2)x(t)dt,

s.t.

D�x(t) = (ln2)(x(t) + u(t)), 0 ≤ � ≤ 1,

x(t) + u(t) ≤ 2,

|u(t)| ≤ 1,

Fig. 4  Curves for constraints G1(t) , G2(t) , and G3(t) , Example 3

Table 5  The values of J with � = 1, for Example 4

Methods J

Hybrid functions [42]
N = 1,M = 4 −0.30682

Rationalized Haar functions [41]
K = 8 −0.3069

Presented method
m = 4 −0.30685380

Table 6  The estimated value of J for different � for Example 4

� = 0.7 � = 0.8 � = 0.9 � = 1

J −0.404626 −0.351967 −0.34231 −0.30685380

Fig. 5  Exact and numerical values of state function for Example 4
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and initial conditions

The exact solution of this problem for � = 1, is 
x(t) = e(ln2)t − 1 , u(t) = 1 , and J = −0.30685281. Table  5 
shows the values of J obtained by the hybrid functions [42], 
where N and M show the order of block-pulse functions and 
Bernoulli polynomials, respectively, and rationalized Haar 
functions [41] for � = 1 , together with the present method, 
comparing the values of J shows that proposed approach can 
solve the problem effectively.

Table 6 shows the convergence between the values of J 
for different � as � approaches 1 for m = 4, and the abso-
lute errors are reported in Table 7. Figure 5 demonstrate the 
validity of obtained solution in fractional case.

6  Conclusion

In this paper, the generalized fractional order of the Cheby-
shev functions (GFCF) of the first kind has been introduced, 
next the fractional derivative operational matrix of these 
functions is used to approximate the fractional or integer 
order derivative of the state functions. It should be noticed 
that this matrix gives the derivative exactly in both frac-
tional and integer cases. As a matter of fact, the functions 
of the problem are approximated by GFCF functions with 
unknown coefficients in the cost function and conditions. 
Therefore, a optimal control problem is reduced to an uncon-
strained optimization problem. Then optimality conditions 
yield a system of algebraic equations which is solved by 
collocation method. As shown, the method is converging 
and has an appropriate accuracy and stability. Illustrative 
examples show that this method has good results for linear 
and nonlinear problems.

Acknowledgements We have to express our appreciation to the review-
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