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Abstract
An attempt has been made to propose a novel prediction model based on the Gaussian process regression (GPR) approach. 
The proposed GPR was used to predict blast-induced ground vibration using 210 blasting events from an open pit mine in 
Ghana. Out of the 210 blasting data, 130 were used in the model development (training), whereas the remaining 80 were 
used to independently assess the performance of the GPR model. The formulated GPR model was compared with the other 
standard predictive techniques such as the generalised regression neural network, radial basis function neural network, 
back-propagation neural network, and four conventional ground vibration predictors (United State Bureau of Mines model, 
Langefors and Kihlstrom model, Ambraseys–Hendron model, and Indian Standard model). Comparatively, the statistical 
results revealed that the proposed GPR approach can predict ground vibration more accurately than the standard techniques 
presented in this study. The GPR had the highest correlation coefficient (R), variance accounted for, and the lowest values 
of the statistical error indicators (mean absolute error and root-mean-square error) applied. The superiority of GPR to the 
other methods is explained by the ability of the GPR to quantitatively model the noise patterns in the blasting data events 
adequately. The study will serve as a foundation for future research works in the mining industry where artificial intelligence 
technology is yet to be fully explored.
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1  Introduction

The Earth is richly endowed with mineral reserves (raw 
materials) which are beneficial to the existence of mankind. 
These raw materials include precious metals such as gold, 
diamond, silver, bauxite, iron, nickel, manganese, cobalt, 
platinum, vermiculite, and zirconium. However, these miner-
als are buried deep down the Earth and, hence, surrounded 
by a large massive waste rock formation. To have access to 
these minerals and make it available to mankind, the process 
of mining is usually employed.

Mining is conventionally done through drill and blast 
operation through which inclined or vertical holes are drilled 
into the rock formation. Explosives are then used to frag-
ment the rock mass into smaller pieces, thereby creating 
shock waves in the drilled holes. The blasting event leads to 
a high chemical reaction which evolves a huge quantity of 
energy which starts propagating away in a radial direction. 
Initially, the intensity of the energy is so high that matter 
near the walls of the blast holes are crushed and displaced 
radially. However, as the energy intensity decreases, due to 
geometric spreading, the energy continues to travel through 
the in situ rock mass as an elastic ground vibration [1, 2]. 
The unused energy in fragmenting the in situ rock mass also 
generates other undesirable effects such as flyrock, noise, air 
overpressure, and backbreak [3–6]. Moreover, blast-induced 
ground vibration which is the focus of this study, could cause 
structural responses and nuisance to humans [7, 8]. In the 
light of that, it has become a mandatory responsibility of 
every mining company to monitor the levels of ground vibra-
tion during each blast event. This monitoring will provide 
management of the mine to have the first-hand information 
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on whether the ground vibration levels are below or within 
the safe levels (standards) set by the Environmental Protec-
tion Agency (EPA) of the country.

In general, the vibration monitoring and measurement are 
done by the use of blasting seismographs. This instrument 
has a triaxial geophone connected to a processor to collect 
and analyse the signals. This triaxial geophone contains 
three mutually perpendicular transducers, each consisting 
of a spring-loaded moving mass system located within a 
moving coil to record the three mutually perpendicular com-
ponents of the motion of the ground particles due to the pas-
sage of blasting vibration. These components are: longitudi-
nal (radial) (x), transverse (y), and vertical (z). The particle 
velocity at a point is the vector sum of the three components 
at the same instant of time, as shown in Eq. (1) [9]:

where vx , vy , and vz are the particle velocity in the longi-
tudinal, transverse, and vertical directions, respectively. 
It is worth mentioning that peak particle velocity (PPV) 
is the most preferable and frequently used indicator for 

(1)Particle velocity =
√

v2
x
+ v2

y
+ v2

z
,

the evaluation of ground vibration. PPV is the velocity of 
motion of a particle on or in the ground induced by the pass-
ing of the blast vibration waves [9].

Over the years, attempt has been made to relate the con-
tributing factors of ground vibration particle motion to the 
measured PPV. This led to the development of many empiri-
cal models presented in Table 1. As these methods have been 
applied throughout the scientific literature, Table 1 provides 
only a summary of the modelling method and a description 
of terms in the related equations.

The aforementioned empirical models (Table 1) are 
based solely on two input parameters, namely, distance and 
maximum charge per delay. Moreover, the empirical pre-
dictors are site-specific and, hence, site constants included 
in the equations (Table 1) must be computed to suit the 
specific civil or mining industry. Researchers who came 
up with these models are of the view that the mentioned 
parameters are the main factors contributing to ground 
vibration induced by blasting. However, other scholars [2, 
19–23 and references therein] argue that the intensity of 
ground vibration depends on two main groups of param-
eters, namely controllable and uncontrollable parameters 

Table 1   Summary of various PPV empirical predictors

Modelling method References Equation Description

USBM Duvall and Petkof [10] PPV = k(D∕
√

Q)−� PPV is the peak particle velocity, D is the distance 
between the blast face to the monitoring station 
(m), Q is the cooperating charge (kg), and k and β 
are the site-specific constants to be determined

Langefors–Kihlstrom Langefors and Kihlstrom [11] PPV = k(Q1∕2∕D3∕4)�

General predictor Davies et al. [12] PPV = k ⋅ D−�
⋅ QA

Ambraseys–Hendron Ambraseys and Hendron [13] PPV = k(D∕ 3

√

Q)−�

Indian Standard Bureau of Indian Standards [14] PPV = k(Q∕D2∕3)�

Ghosh–Daemen 1 Ghosh and Daemen [15] PPV = k(D∕
√

Q)−� ⋅ e−�⋅D

Ghosh–Daemen 2 Ghosh and Daemen [15] PPV = k(D∕ 3

√

Q)−� ⋅ e−�⋅D

Gupta et al. Gupta et al. [16] PPV = k(D∕
√

Q)−� ⋅ e−�⋅(D∕Q)

CMRI predictor Roy [17] PPV = n + k(D∕
√

Q)−1

Rai–Singh Rai and Singh [18] PPV = k ⋅ D−�
⋅ QA

⋅ e−�⋅D

Table 2   Factors that affect 
ground vibration

Controllable parameters Uncontrollable parameters

Blast design parameters Explosive parameters Geotechnical and geome-
chanical parameters

Hole depth Explosive type Rock mass strength
Hole diameter Maximum charge per delay Ground water condition
Bench height Total charge Discontinuity frequency
Burden Powder factor Bedding plane
Spacing Velocity of detonation (VOD)
Stemming Delay time
sub-drilling Direction of initiation
No. of holes and rows
Hole inclination
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(Table 2) that could be considered and quantified in the 
development of ground vibration prediction models. The 
controllable parameters are those that can be changed by 
the blast engineers, whereas the uncontrollable parameters 
cannot be changed by the blast engineers [21]. Besides, 
blast-induced ground vibration is a complex phenomenon 
with highly nonlinear variable interactions which cannot 
be adequately modelled using closed-form mathematical 
equations (Table 1) [24, 25]. In addition, Dindarloo [25] 
is of the view that lack of generalisability is a common 
phenomenon inherent in the empirical prediction mod-
els (Table 1) because of the number of input parameters 
considered.

To address these issues, several research works have 
attempted to explore soft-computing technology as alter-
native technique that can accommodate more contributing 
factors, adequately model nonlinear systems, and produce 
accurate results. Until now, the notable methods found in 
the literature for predicting blast-induced ground vibration 
include artificial neural network (ANN), support vector 
machines (SVM), fuzzy logic, neuro-fuzzy inference sys-
tems (ANFIS), classification and regression tree (CART), 
hybrid intelligent methods, group method of data handling 
(GMDH), and genetic expression [25–36]. These techniques 
have been found to outperform the empirical predictors due 
to their ability to learn, adapt, and generalise well to the data 
set introduced to them without a priori knowledge of the 
mathematical association between input and output param-
eters. Thus, they have the ability to model correctly the 
complex nonlinear and dynamic system interactions of the 
blast design, explosive, and geotechnical and geomechani-
cal parameters. The soft-computing techniques also have 
the capability to tolerate imprecision, uncertainty, approxi-
mate reasoning, and partial truth to achieve tractability and 
robustness on simulating human thinking to match up with 
reality [37].

It is noteworthy that the literature is replete with the 
application of ANN and is regarded as the most standard 
and prominently used soft-computing technique for the 
prediction of ground vibration. Some important studies are 
in Refs. [19, 24, 38–50]. In spite of its wide applicability, 
ANN suffers from many practical limitations such as slow 
convergence speed, poor generalisation performance, over-
fitting problems, and no reasoning capability. It also requires 
a lot of manual tuning of the model parameters to achieve 
global optimum. There is also local minima sticking with 
suboptimal solutions [51–53]. Furthermore, there is no 
proper method to determine the number of hidden neurons 
other than the sequential trial and error process [54, 55]. It 
is agreeable that a model should be simple and easily appli-
cable to solving real-world problem. Therefore, to address 
and overcome some of the weaknesses of the ANN as afore-
mentioned to give better blast-induced ground vibration 

prediction results and improve convergence, there is the need 
to explore the other alternative soft-computing methods.

In that respect, this study adopts Gaussian process regres-
sion (GPR) for modelling and prediction of blast-induced 
ground vibration. GPR is a type of Bayesian non-parametric 
method which can handle the uncertainties in data in a prin-
cipled manner. It has the possibility to include various kinds 
of prior knowledge into the model. The number of model 
parameters, which need to be optimised in the GPR, is less 
than that of the ANN. Moreover, the tuning of these param-
eters is carried out using optimiser unlike the ANN which 
requires human interferences. In addition, the existence of 
noise in the measured data can be modelled quantitatively 
in the GPR, thereby having a little impact on the predic-
tion accuracy of the developed GPR model [56]. GPR has 
been successfully and widely adopted for solving diverse 
engineering and science related problems [54, 57–61 and 
references therein]. Although the GPR technique is already 
in use, quality evaluation of the method in the area of blast-
induced ground vibration prediction studies has not been 
exploited. Furthermore, the GPR technique has not been 
compared with the benchmark ANN methods to ascertain its 
reliability in ground vibration prediction. Therefore, taking 
cognisant of the earlier enumerated mathematical conveni-
ences and benefits provided by the GPR, the paper aims to:

	 (i)	 investigate the viability of GPR as a novel approach 
for predicting blast-induced ground vibration using 
blast event data from an open pit mine in Ghana;

	 (ii)	 make a comparative study between the developed 
GPR model and benchmark methods of back-propa-
gation neural network (BPNN), radial basis function 
neural network (RBFNN), generalised regression 
neural network (GRNN), and four empirical ground 
vibration predictors, namely, United State Bureau 
of Mine (USBM) model, Indian Standard model, 
Ambraseys–Hendron model, and Langefors and 
Kihlstrom model.

The rest of the paper is organised as follows. Section 2 
presents a brief description of the study area. Section 3 pro-
vides a concise overview on the theoretical concept of the 
proposed GPR approach. Section 4 elaborates on the data set 
used, post processing, and how the GPR model was devel-
oped. In Sect. 5, a description of the statistical evaluators 
used to ascertain the predictive capabilities of the various 
models utilised is presented. In Sect. 6, the best GPR model 
is selected. Prediction results from the selected GPR model 
are compared with the results produced by BPNN, RBFNN, 
GRNN, and conventional empirical techniques (USBM 
model, Langefors and Kihlstrom model, Ambraseys–Hen-
dron model, and Indian Standard model). Section 7 ends the 
study with conclusions.
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2 � Brief description of study area

This study was carried out in an open pit mine in Tarkwa, 
Ghana. The Mine is bounded between latitude 5°16′ North 
and longitude 1°59′ West in the south-western corner of 
Ghana. With respect to the map of Ghana, the Mine is situ-
ated 89 km northwest from the port of Takoradi and 6.5 km 
south of Tarkwa [62]. Figure 1 shows the study area.

The open pit mine (study area) has three pits, namely: 
pit M, pit N, and pit O. Active mining is currently ongoing 
in pit O. This pit has been subdivided into O South West 
(OSW), O South East (OSE), O Central West (OCW), O 
Central East (OCE), and O North (ON). The Mine employs 
drill and blast techniques to fragment in situ rock forma-
tion into suitable rock sizes which are hauled using Volvo 
AD35, Komatsu HD 465, and CAT 777F rear dump trucks 
to either the run-of-mine (ROM) or waste dump. Blasting 
is done with Emulsion EX 7000, 250 g Pentolite booster, 
a 500 ms down the hole, and either a 25 ms or 42 ms DDX 
NONEL detonator supplied by Maxam International. The 
bulk explosives used for the column charge are the Emul-
sion EX 7000. A 3 m stemming height is applied at the 
study area with stemming material (gravels) of 15 mm 
blended with 20 mm to ensure effective confinement. The 
surface connectors used for the trunk line connections 
include 17 ms, 42 ms, and 67 ms with an NONEL MS 
firing method. Three main types of rock formation char-
acterise the study area. These rock types are greenstones, 
turbidites (metatuffs), and manganiferous horizon. The 
manganiferous horizon makes up the ore deposit, while 
the greenstones and metatuffs form the host rocks. The ore 

mined are the detrital ore, oxide ore, carbonate-oxide ore 
(carbox), and the manganese carbonate ore. The existence 
of these different types of ore is due to the different rate 
of alteration and weathering at the time of formation [62]. 
The manganese carbonate ore is processed by crushing to 
aggregates of 100 mm, 40 mm, and 20 mm, which are des-
ignated as lumps, logs, and fines, respectively. The crush-
ing plant has a capacity of 300 metric tons per hour. The 
finished product from the plant is stockpiled and further 
conveyed to the port in Takoradi, Ghana for export [63]. 
Monitoring of blast-induced ground vibration is carried 
out by the environmental department of the Mine. Their 
monitoring station is located on flat ground near the first 
house to the mine pit of the nearest community. The moni-
toring is done using a 3000 EZ Plus Portable seismograph.

3 � Methodology

In this section, a concise theoretical concept on the 
proposed Gaussian process regression will solely be 
presented. Theories on the benchmark artificial neu-
ral network techniques (BPNN, RBFNN, and GRNN), 
and empirical techniques (USBM model, Langefors and 
Kihlstrom model, Ambraseys–Hendron model, and Indian 
Standard model) which have been widely and successfully 
applied in blast-induced ground vibration prediction will 
not be treated here. A detailed information on them can be 
found in [10, 11, 13, 14, 64–67].

Fig. 1   Study area
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3.1 � Gaussian process

A Gaussian process is a stochastic process (a collection of 
random variables), such that every finite collection of the 
random variables has a joint Gaussian distribution [68]. A 
Gaussian process t(x) is parameterised by a mean function 
m(x) and a covariance function (or kernel) k(x, x�) evaluated 
at points x and x′ . These functions are defined in Eqs. (2) 
and (3) as follows:

where � denotes the set of hyperparameters. A Gaussian pro-
cess t(x) is, hence, expressed in Eq. (4) as follows:

where GP stands for gaussian process. This means that the 
function t(x) is distributed as a Gaussian process with mean 
m(x) and covariance function k(x, x�).

3.1.1 � Gaussian process for regression

The goal of every regression problem is to model the 
dependence of a response variable y on some predictor 
variables, xi. Each response variable y can be related to an 
underlying arbitrary regression function t(x) with an addi-
tive independent identically distributed Gaussian noise (ε) 
which represents the noise component from the data. This 
is expressed in the following equation:

The noise ε has zero mean and variance �2
n
 that is 

� ∼ N(0,�2
n
). The Gaussian process represented in Eq. (4) 

becomes Eq. (6) [69]:

where I is the identity matrix. Based on the additive nature 
of the noise � and the marginalization property of GPs, the 
joint distribution of the training output y at locations X and 
test outputs f∗ at test points X∗ is given in Eq. (7) [69]:

Conditioning the joint Gaussian prior distribution based 
on X, y, and X∗ , the predictive distribution is given in the 
following equation:

where ȳ∗ (Eq. 9) is the predictive mean and var(y∗) (Eq. 10) 
is the predictive variance [69]:

(2)m(x) = E(t(x))

(3)
Cov(t(x), t(x�)) = k(x, x�;�) = E((t(x) − m(x))(t(x�) − m(x�))),

(4)t(x) ∼ GP(m(x), k(x, x�)),

(5)y = t(x) + �.

(6)t(x) ∼ GP(m(x), k(x, x�) + �2
n
I),

(7)
[

y

f∗

]

∼ N

([

m(X)

m(X∗)

]

,

[

k(X,X + �2
n
I) k(X,X∗)

k(X∗,X) k(X∗,X∗)

])

.

(8)p
(

y∗
|

|

X, y,X∗

)

∼ N
(

ȳ∗, var
(

y∗
))

,

(9)ȳ∗ = m(X∗) + k(X∗,X)[k(X,X) + 𝜎2
n
I]−1(y − m(X))

3.1.2 � Covariance function

A covariance function is the central component in a Gauss-
ian process regression model [68]. Therefore, selecting the 
appropriate covariance function is crucial to the determi-
nation of the sample function being modelled. Given that 
the input points which are closely related are likely to have 
similar target values; likewise, test point near a training point 
should have a corresponding target value close to the train-
ing point. With this analogy, a test point’s target value can 
be predicted. This measure of similarity is expressed by the 
covariance function [70]. There are a number of common 
covariance functions available in the literature. Some of 
these include: constant covariance function, linear covari-
ance function, Gaussian noise covariance function, Orn-
stein–Uhlenbeck covariance function, squared exponential 
covariance function, Gamma exponential covariance func-
tion, Matérn Class of covariance function, Periodic covari-
ance function, Rational quadratic covariance function, and 
others [68]. However, it is notable in the literature that the 
squared exponential is the commonly used covariance func-
tion [71].

3.1.3 � Training a Gaussian process regression model

The parameters of the mean function and covariance (kernel) 
functions are called the hyperparameters of the Gaussian 
process [70]. These hyperparameters define the behaviour of 
the GPR model. To train and formulate a GPR model, all the 
hyperparameters associated with the mean and covariance 
function must be learned. This can be done through either 
optimisation or sampling techniques. However, the widely 
used approach is to maximise the log marginal likelihood 
(Eq. 11) [55]:

where yT is the transpose of vector y and � is a vector con-
taining all the hyperparameters.

To maximise the log marginal likelihood, the conjugate 
gradient method is an efficient gradient-based optimisation 
algorithm that can be used [72].

4 � Model development

In this section, information on the data used, model formu-
lation procedure, and the proposed GPR model developed 
have been presented.

(10)var(y∗) = k(X∗,X∗)[k(X,X) + �2
n
I]−1k(X,X∗).

(11)
log p(y|X, � ) = −

1

2
yT
(

K + �2
n
I
)−1

y −
1

2
log

|

|

|

K + �2
n
I
|

|

|

−
n

2
log 2�,
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4.1 � Data acquisition and processing

A total of 210 historic blast data set acquired from the Min-
ing and Environmental Department of an Open Pit Mine in 
Tarkwa, Ghana were used in this study. The data set involved 
the following parameters: number of blast holes; cooperating 
charge (kg); distance between blasting point and monitoring 
station (m); hole depth (m); powder factor (kg/m3); burden 
(m); spacing (m); peak particle velocity (PPV) (mm/s). For 
the development of the GPR model and the other investi-
gated methods (BPNN, RBFNN, and GRNN), 6 out of the 
8 parameters were used. The input parameters used include 
the number of blast holes, cooperating charge (kg), distance 
between blasting point and monitoring station (m), hole 
depth (m), and powder factor (kg/m3). The output param-
eter is the PPV (mm/s). The burden and spacing parameters 
were not considered due to their constant values used by 
the Mine for each blast. It is worth noting that these param-
eters were carefully measured. Table 3 outlines the statis-
tical range of measured parameters used in this research. 
The values for the number of blast holes, cooperating charge 
(kg), hole depth (m), and powder factor, were computed and 
obtained from the blasting designs. Global positioning sys-
tem (GPS) measurements were used to determine the dis-
tance between blasting point and monitoring station. Here, 
the GPS-recorded coordinates between the blasting face 
and that of the monitoring station were used to calculate 
the distance. The values of PPV were measured by a 3000 
EZ Plus Portable seismograph. It should be noted that the 
monitoring of the ground vibration was done at the nearest 
community to the mining pit. Correlation coefficient matrix, 

which outlines the strength of the relationship between the 
input parameters [number of blast holes, distance between 
blasting point and monitoring station, cooperating charge 
(kg), hole depth (m), and powder factor], and measured PPV 
is presented in Table 4.

To generate good predictions, ANN requires enough data 
for training. However, if the training data are more than 
enough, it will cause overfitting, whereby the model cannot 
perform well with unseen data. Despite the fact that there 
is no universally accepted ratio for splitting the data, the 
hold-out cross-validation technique which has been widely 
and successfully used in ANN modelling was adopted in 
the present for the data partitioning. Therefore, based on 
the principle of hold-out cross-validation, it is important 
that the training data set must be more than the testing set. 
Here, the entire 210 data set was partitioned into two sub-
sets: training and testing sets. In that regard, the first parti-
tion which formed the training data set is made up of 130 
data points representing 62% of the entire blasting data. The 
second partition which formed the testing data set involved 
the remaining 38% of the data representing 80 points. The 
training data were purposely selected to represent the entire 
characteristic of the whole data in the study area. Likewise, 
the testing data chosen are evenly distributed across the area 
of study. Here, the training data set was used to build and 
train the GPR model and the other methods investigated in 
this study, while the testing data set was used to judge how 
the model will perform with unseen data.

In the model construction, the training and testing data 
sets were normalised as part of the pre-processing step. The 
essence is to ensure constant variability and reduce the impact 

Table 3   Statistical description 
of the data set

Parameters Unit Minimum Maximum Average Standard deviation

Number of blast holes – 19 355 122.50 52.37
Explosive per blast hole kg 11.60 123.49 90.08 19.54
Distance from blasting point m 573 1500 915.01 234.62
Hole depth m 3.73 12.58 10.45 1.14
Powder factor kg/m3 0.10 0.97 0.69 0.15
Peak particle velocity mm/s 0.13 1.65 0.79 0.32

Table 4   Correlation coefficient matrix between input parameters and measured PPV

Number of 
blast holes

Cooperating 
charge (kg)

Distance from 
blasting point (m)

Hole depth (m) Powder factor 
(kg/m3)

PPV (mm/s)

Number of blast holes 1
Cooperating charge (kg) 0.0585 1
Distance from blasting point (m) − 0.1161 − 0.1862 1
Hole depth (m) − 0.0528 0.5527 − 0.1431 1
Powder factor (kg/m3) 0.1206 0.7954 − 0.1639 0.2460 1
PPV (mm/s) 0.4715 0.4700 − 0.6957 0.2985 0.5153 1
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of variables with high variance to have minimal effects in the 
model prediction outcomes. This is because the data sets have 
different range of values with different physical units; Eq. (12) 
[73] was used to normalise the data into the range [− 1, 1]:

where Mi is the normalised data, Ni represents the measured 
blast data, and Nmax and Nmin represent the maximum and 
minimum values of the measured blast data with Mmin and 
Mmax values set at − 1 and 1, respectively.

4.2 � Proposed GPR model

In this study, a simple mean function with constant, c, was 
used. For selecting the optimum covariance function for the 
proposed GPR model, the following covariance functions as 
expressed in Eqs. (13)–(17) [68] were tried and tested.
i.	 Squared exponential covariance function:

	 ii.	 Exponential covariance function:

	 iii.	 Rational quadratic covariance function:

	 iv.	 Matérn 3/2 covariance function:

	 v.	 Matérn 5/2 covariance function:

where d =
‖

‖

‖

xi − xj
‖

‖

‖

 is the Euclidean distance between point 

xi and xj, �2
f
 is the signal variance of function, α is the shape 

parameter for the rational quadratic covariance, and � is the 
length scale. Due to the mean function, covariance function, 
and the noisy observations in data, the hyperparameters � 
that were optimised in this study include: constant (c), �2

f
 , 

� , α, and �2
n
 . �2

n
 is the noise variance.

(12)Mi = Mmin +
(Mmax −Mmin) × (Ni − Nmin)

Nmax − Nmin

,

(13)k(xi, xj) = �2
f
exp

[

−d2

2�2

]

.

(14)k(xi, xj) = �2
f
exp

[

−
d

�

]

.

(15)k(xi, xj) = �2
f
exp

[

1 +
d2

2��2

]−�

.

(16)k(xi, xj) = �2
f

�

1 +

√

3d

�

�

exp

�

−

√

3d

�

�

.

(17)k(xi, xj) = �2
f

�

1 +

√

5d

�

+
5d2

3�2

�

exp

�

−

√

5d

�

�

,

5 � Evaluation of model performance

To evaluate the prediction performance of the proposed GPR 
model to the BPNN, RBFNN, GRNN, USBM model, Lange-
fors and Kihlstrom model, Ambraseys–Hendron model, and 
Indian Standard model, five statistical indicators namely: mean 
square error (MSE), root-mean-square error (RMSE), mean 
absolute error (MAE), correlation coefficient (R), and variance 
accounted for (VAF). They are mathematically expressed in 
Eqs. (18)–(23) [6, 74–79]:

where N is the total number of samples, Oi are the observed 
values, Pi are the predicted values, Ō is the mean of the 
observed values, and P̄ is the mean of the predicted values.

Graphical comparison of the efficiency of the various mod-
els in predicting ground vibration was carried out. This was 
done by plotting the observed PPV against predicted PPV with 
a 1:1 line, a 95% confidence interval (CI) (Eqs. 23), and 95% 
prediction interval (PI) (Eq. 24):

where P̄ is the mean of the predicted values, � is the popula-
tion standard deviation, Z�∕ 2 is the Z value for the desired 
confidence level � , and n is the number of predicted values. 
At a 95% confidence interval, Z�∕ 2 = 1.96:

where n is the total number of samples, Oi are the observed 
PPV values, Pi are the predicted PPV values, Ō is the mean 

(18)MSE =

∑N

i=1
(Oi − Pi)

2

N

(19)RMSE =
√

MSE =

�

∑N

i=1
(Oi − Pi)

2

N

(20)MAE =

∑N

i=1
�

�

Oi − Pi
�

�

N

(21)
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∑N

i=1
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�

∑N
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2
×

�
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i=1
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(22)VAF =

[

1 −
var(Oi − Pi)

var(Oi)

]

× 100,

(23)CI = P̄ ± Z𝛼∕2
𝜎
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n
,

(24)PI = Pi ± t(𝛼∕2,n−2)SD

�

�

�

�1 +
1

n
+

(Oi − Ō)
2

∑
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of the observed PPV values, t(�∕ 2,n−2) is the α-level quantile 
of a t-distribution with n − 2 degrees of freedom, and SD is 
the standard deviation of the residuals (Eq. 25):

6 � Results and analysis

In this section, the results of the various techniques con-
sidered are presented. In Sect. 6.1, discussion on the GPR 
models formed based on the different covariance functions 
used are presented. In Sect. 6.2, a detailed comparison of the 
proposed GPR model with the other benchmark techniques 
are presented.

6.1 � GPR model results

Using the MSE and R criteria, the comparative results 
obtained by the various GPR models using the testing data 
sets are presented in Table 5.

From Table 5, it can be observed that the various GPR 
models had very close R values in the range 0.8300–0.8339 
and MSE values falling in the range 0.0245–0.0252. These 
results confirm that the various GPR models can accu-
rately predict blast-induced ground vibration levels. This 
is because they all gave R values close to 1 and MSE val-
ues very close to 0, indicating good predictive capability. 
The results further indicated that the covariance functions 
(Table 5) utilised have similar predictive capabilities. How-
ever, in comparison, the GPR model with the Matérn 3/2 
covariance function had the highest R value and the sec-
ond least MSE to the exponential covariance function. The 
Matérn 3/2 was then selected as the optimum because from 
Table 5, it is noticeable that the MSE difference between the 
Matérn 3/2 and exponential covariance function is 0.0001, 
thus, having very negligible influence on the GPR model 
outcome. By virtue of the results (Table 5), the selected 
proposed GPR model valid for blast-induced ground vibra-
tion prediction has a constant mean function and Matérn 3/2 
covariance function.

(25)s =

�

∑

(Oi − Pi)
2

n − 2
.

6.2 � Comparison of GPR model and other 
investigated techniques

The same data sets (training and testing) applied to the GPR 
technique were further used to develop models based on the 
BPNN, RBFNN, GRNN, and empirical predictors (USBM 
model, Langefors and Kihlstrom model, Ambraseys–Hen-
dron model, and Indian Standard model). The BPNN devel-
oped consists of three layers: input, hidden, and output lay-
ers. One hidden layer was used in this study, because it has 
been proven in the literature to have the capability to uni-
versally approximate any complex problem [80]. Due to the 
nonlinearity of the input data to the network, the hyperbolic 
tangent sigmoid and linear transfer functions were utilised 
in the hidden and output layers. Training of the BPNN was 
done using the Levenberg–Marquardt algorithm [81]. The 
optimum BPNN obtained for this study had five inputs, one 
neuron in the hidden layer and one output, with the struc-
ture [5-1-1]. The developed RBFNN also had three layers 
namely: input, hidden, and output layer. The Gaussian radial 
basis function was used in the hidden layer to process the 
input data to the network. Training was done using the gradi-
ent descent algorithm [82]. In the RBFNN, the width param-
eter of the Gaussian radial basis function and the maximum 
number of neurons in the hidden layer are the only param-
eters that need to be adjusted during the training phase. After 
training, width parameter and maximum number of neurons 
of 1.6 and 13 which had the lowest MSE and highest R were 
selected. This led to an optimum RBFNN model having 
5 inputs, 13 hidden neurons, and 1 output with structure 
[5-13-1]. The developed GRNN has four layers: input, pat-
tern, summation, and output layers. The training parameter 
adjusted to develop the GRNN is the width parameter. In this 
study, the selected width parameter that gave better MSE and 
R results was 0.53. With regards to the development of the 
empirical predictors, site constants were determined. These 
constants were obtained using regression analysis. Table 6 
presents the respective determined model equations for the 
empirical techniques utilised in this study. The empirical 
equations utilised in this study have served as benchmark 
methods over the years when comparison are made with 
soft-computing methods [38, 44, 83–86 and references there 
in]. Hence, the present authors saw it as an opportunity to 
apply and compare them to the proposed GPR technique. 

Table 5   Test results of the various Gaussian process regression model

Model Covariance type R MSE

GPR Squared exponential 0.8300 0.0252
GPR Exponential 0.8325 0.0245
GPR Matérn 3/2 0.8339 0.0246
GPR Matérn 5/2 0.8328 0.0248
GPR Rational quadratic 0.8317 0.0250

Table 6   Formulated models of the empirical techniques

Empirical technique Equations

USBM PPV = 300.7[D∕(Q)1∕2]−1.319

Indian Standard PPV = 0.7676[Q∕D2∕3]0.938

Ambraseys–Hendron PPV = 1724.4[D∕(Q)1∕3]−1.464

Langefors and Kihlstrom PPV = 61.406[Q1∕2∕D3∕4]1.5475
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In addition, the empirical predictors applied in this study 
(Table 6) are being used in the Ghanaian mining industry 
(study area) for blast-induced ground vibration prediction.

A summary of the statistical comparison of the developed 
GPR and other investigated methods is presented in Table 7.

From Table 7 it can be observed that the GPR-Matérn 3/2 
model had the lowest RMSE and MAE of 0.1568 mm/s and 
0.1302 mm/s, respectively. These statistical results indicate 
that the developed GPR-Matérn 3/2 model PPV predictions 
marginally deviated from the observed PPV. The reason 
being that the closer the statistical error indicator (MAE 
and RMSE) is to zero, the better the model could approxi-
mate closely the observed data. Comparatively, it can be 
observed that the soft-computing methods (GPR-Matérn 
3/2 model, BPNN, GRNN, and RBFNN) showed a greater 
strength of relationship and linear dependence between their 
predicted and observed PPVs than the empirical methods. 
This is evident in Table 7 where the GPR-Matérn 3/2 model, 
BPNN, GRNN, and RBFNN had R values above 0.8 while 
the empirical techniques had below 0.8. This indicates that 
the predicted PPV values from the soft-computing methods 
correlate well with the observed PPV than the other mod-
els presented in this study. In comparison, the GPR-Matérn 
3/2 model was superior to all the methods by exhibiting the 
highest R value of 0.8338. In Table 7, it can also be observed 
that, the GPR-Matérn 3/2 approach gave the highest VAF 
value followed by the other ANN techniques and empirical 
predictors. In this study, the VAF was used to verify the 
correctness of the models and how well they could approxi-
mate the unseen data set [87]. That is, a model with a VAF 
value closest to 100% is the most accurate among candidate 
models. It can, thus, be inferred from Table 7 that the GPR-
Matérn 3/2 with the highest VAF value of 68.87% could pro-
duce more promising and satisfactory results than the other 
methods tested. The strength of the GPR-Matérn 3/2 could 
be attributed to its intrinsic ability to add prior knowledge 
and specifications about the shape of the model by learning 
the hyperparameters which are relational to the training and 
testing data. This helps to capture the uncertainties in the 

data using the noise variance hyperparameter in the model 
formulation stage.

Scatter plots along with the regression line, 95% PI, and 
CI for the various models are presented in Figs. 2, 3, 4, 5, 

Table 7   Developed models’ performance for predicting PPV

Method Performance criteria

RMSE MAE R VAR (%)

GPR-Matérn 3/2 0.1568 0.1302 0.8338 68.87
BPNN 0.1873 0.1543 0.8294 66.31
GRNN 0.1760 0.1503 0.8288 66.40
RBFNN 0.1829 0.1471 0.8223 65.34
USBM 0.2369 0.1818 0.7622 39.32
Ambraseys–Hendron 0.2566 0.2009 0.7466 28.02
Indian Standard 0.1849 0.1504 0.7554 56.97
Langefors–Kihlstrom 0.2136 0.1630 0.7833 49.43 1.61.41.21.00.80.60.40.20.0
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Fig. 2   Observed PPV versus predicted PPV by GPR-Matérn 3/2
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Fig. 3   Observed PPV versus predicted PPV by BPNN
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Fig. 4   Observed PPV versus predicted PPV by GRNN
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6, 7, 8, and 9. A critical look at Fig. 2, 3, 4, 5, 6, 7, 8, and 
9 shows that the 1:1 line for each model fell in between the 
95% CI lines. This means that there is a 95% probability 
that the true best-fit line for the population data lies within 
the CI. It can also be observed that 96% of the predicted 

PPV values fell within the 95% PI lines. This indicates that, 
when these models are used to predict new PPV values, 
there is a 95% probability that 96% of the predicted PPV 
values will fall into the prediction interval. Overall, visual 
inspection of the various scatter plots revealed that the pre-
dictions produced by GPR-Matérn 3/2, BPNN, GRNN, and 
RBFN had a narrower prediction interval bandwidth than 
USBM, Ambraseys–Hendron, Langefors–Kihlstrom, and 
Indian standard model. The comparative results showed 
that the proposed GPR-Matérn 3/2 model is superior to the 
benchmark techniques and a promising tool for modelling 
and predicting blast-induced ground vibration. A compari-
son of the predicted and measured PPV using only the test-
ing data sets is illustrated as an additional information in 
Fig. 10. The results demonstrate that predictions through 
GPR model are more acceptable in comparison with BPNN, 
GRNN, RBFNN, and empirical models. Furthermore, due 
to the environmental impacts of blasting operations which 
leads to severe damage to nearby residence and structure, 
accurate prediction of ground vibration intensity is key in 
controlling and minimising its occurrence. For this reason, 
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Fig. 5   Observed PPV versus predicted PPV by RBFNN
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Fig. 6   Observed PPV versus predicted PPV by USBM
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Fig. 7   Observed PPV versus predicted PPV by Ambraseys–Hendron
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Fig. 8   Observed PPV versus predicted PPV by Indian Standard
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Fig. 9   Observed PPV versus predicted PPV by Langefors–Kihlstrom
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any predictive model that produces more accurate prediction 
is of utmost importance to the blast engineer. Therefore, 
looking at the statistical results related to the proposed GPR 
and the other methods, this study reveals the GPR as being 
more accurate and as such should be adopted by the blast 
engineer in predicting blast-induced ground vibration.

7 � Concluding remarks

In this study, a novel approach to predict ground vibra-
tion using the Gaussian process regression (GPR) has suc-
cessfully been applied. Five different GPR models were 
developed based on different types of covariance functions 
using blast data from an Open Pit Mine in Ghana. The GPR 
models developed and analysed were the squared expo-
nential, exponential, Matérn 3/2, Matérn 5/2, and rational 
quadratic. Based on the highest correlation coefficient and 
lowest mean square error criteria, the Matérn 3/2 was the 
selected covariance of the proposed GPR model. The pro-
posed GPR-Matérn 3/2 model was successfully compared 
with the other predictive benchmark techniques of BPNN, 
RBFNN, GRNN, and four empirical techniques (USBM 
model, Langefors and Kihlstrom model, Ambraseys–Hen-
dron model, and Indian Standard model). The results showed 
that the GPR-Matérn 3/2 model yields predicted PPV that 
is better and consistent with the observed PPV than the 
other methods considered. The GPR-Matérn 3/2 gave the 
lowest RMSE and MAE of 0.1568 mm/s and 0.1302 mm/s 
respectively. It also had the highest correlation coefficient 

of 0.8339, and accounted for the highest percentage of the 
variability between the measured and predicted PPV with a 
VAR value of 68.87%. On the basis of the results obtained, 
it was concluded that the proposed GPR-Matérn 3/2 model 
has shown promising application potential in blast-induced 
ground vibration prediction and can serve as suitable sub-
stitute to the other benchmark techniques presented in this 
study. The efficiency of the proposed GPR-Matérn 3/2 
approach was attributed to its intrinsic ability to add prior 
knowledge and specifications about the shape of the model 
by learning the hyperparameters. However, the underlining 
limitation of this study is the lack of application of a specific 
covariance function. That is, one has to iteratively determine 
the best covariance that will best generalise the data set. 
This is because the performance of GPR models is highly 
dependent on the covariance function (or kernel) used. This 
makes it cumbersome and time consuming. For future stud-
ies, automating the selection of the covariance function by 
combining with metaheuristic algorithm to improve the GPR 
prediction ability could be explored.
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