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Abstract
In this study, we propose a new hybrid algorithm fusing the exploitation ability of the particle swarm optimization (PSO) with 
the exploration ability of the grey wolf optimizer (GWO). Our approach combines two methods by replacing a particle of the 
PSO with small possibility by a particle partially improved with the GWO. We have evaluated our approach on five differ-
ent benchmark functions and on three different real-world problems, namely parameter estimation for frequency-modulated 
sound waves, process flowsheeting problem, and leather nesting problem (LNP). The LNP is one of the hard industrial 
problems, where two-dimensional irregular patterns are placed on two-dimensional irregular-shaped leather material such 
that a minimum amount of the material is wasted. In our evaluations, we compared our approach with the conventional PSO 
and GWO algorithms, artificial bee colony and social spider algorithm, and as well as with three different hybrid approaches 
of the PSO and GWO algorithms. Our experimental results reveal that our hybrid approach successfully merges the two 
algorithms and performs better than all methods employed in the comparisons. The results also indicate that our approach 
converges to more optimal solutions with fewer iterations.

Keywords  Exploitation · Exploration · Grey wolf optimizer (GWO) · Leather nesting problem (LNP) · Particle swarm 
optimization (PSO)

1  Introduction

Optimization problem is a common issue of many engineer-
ing domains, where an optimal solution is searched inside 
a complex space. When the problem is not solvable analyti-
cally or it is solvable but requires too much time, numeri-
cal approaches could help, although a globally optimized 
solution is not guaranteed. Meta-heuristic algorithms are 
among these numerical approaches taking their inspira-
tion usually from the nature [1]. Besides developing a new 
meta-heuristic algorithm, another common approach is to 

hybridize different algorithms to merge powerful sides of 
the algorithms with the aim of getting a better algorithm.

The particle swarm optimization (PSO) algorithm is one 
of the most successful optimization algorithms frequently 
used in the literature. As reviewed below, there are many 
studies utilizing the PSO algorithm to solve various opti-
mization problems successfully due to its simplicity, small 
number of parameters and fast convergence speed. Since the 
PSO algorithm is very successful on various problems from 
different domains, we select it as one of the algorithms in 
this hybridization study. When we examine the PSO algo-
rithm, its exploitation ability is very high but its exploration 
ability is poor [2–5]. By exploitation, we mean that the algo-
rithm is very successful to perform a local search. Explora-
tion ability makes an algorithm better at finding good start-
ing positions, possibly near the global minimum. A good 
optimization algorithm is required to balance exploitation 
and exploration [2]. High exploration ability makes the PSO 
algorithm to suffer from converging to local minimum when 
its starting position is far away from global minimum [2–5]. 
To reduce the chance of trapping into a local minimum, the 
PSO algorithm do not directly accept new candidate posi-
tions. Instead, it prefers to chose random positions with a 
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small possibility for some particles while the algorithm is 
proceeding on its iterations. However, this approach may 
be very risky since a random position may coincide with a 
terrible point in the search space. Our aim in this study is to 
improve this downside of the PSO algorithm. For this pur-
pose, we need an algorithm with a good exploration ability. 
At this point, we utilized the recently proposed grey wolf 
optimizer (GWO) algorithm [6], since it is reported as start-
ing with a high exploration [7]. In our approach, the GWO 
algorithm is used to support the PSO algorithm by replacing 
some particles with the new ones obtained by running the 
GWO algorithm for a small number of iterations. Hence, 
instead of jumping to a risky random position (which may 
result in trapping into a local minima or slowing down the 
optimization before reaching global minimum), we aim to 
find a better alternative by making use of exploration ability 
of the GWO algorithm.

In the literature, there are many hybrid approaches using 
meta-heuristic optimization methods. Below, we first review 
the literature proposing various hybrid approaches combin-
ing various methods and then the literature hybridizing only 
the PSO algorithm with different methods.

Mahmood et al. developed a hybrid GA method to opti-
mize the real-time task allocation problem aiming to mini-
mize the power consumption of DVS-enabled multiproces-
sor systems [8]. They have developed their hybrid method 
by combining the exploitation of the stochastic evolution 
algorithm with exploration ability of the GA. They proposed 
a specialized crossover operator and also defined a perturb 
operator to replace the mutation operator in the GA. Liu 
et al. presented a hybrid approach by combining ant colony 
optimization (ACO) algorithm and the GA algorithm [9]. 
They transferred the ants to the new generation using crosso-
ver, mutation and selection operators of the GA. They tested 
their method with optimal path selection problem. Torkaman 
et al. developed a hybrid approach using the GA and the SA 
methods [10]. The initialized population with the GA was 
improved using the SA to achieve a high fitness value. Lam 
et al. used the GA with the gradient method [11]. Since the 
GA was sufficient in the global search but insufficient in 
the local search, they integrated the gradient method which 
was successful in the local search. They started the search 
using the GA method to reduce to the local search area, and 
then quickly achieved the optimum position with the gradi-
ent method. In a similar approach, Yuce et al. developed a 
hybrid method to enhance the weakness of the bees algo-
rithm (BA) in the global search combining it with the GA 
method [12]. The GA algorithm was forced to run the global 
search again at the best locations found by the BA. They 
tested their hybrid approach on the single machine sched-
uling problem. Vosoughi and Darabi developed a hybrid 
approach combining the conjugate gradient (CG) and the 
GA methods [13]. First, they divided the problem space into 

evenly spaced layers. Then, they found the point of each 
layer that had the highest fitness value by the CG method. 
Finally, they performed a curved line/plane matching pro-
cess through the best locations of all layers. Based on this 
curved line/plane, the entire search space was divided into 
several sub-spaces. Each sub-space was ranked in ascending 
order of fitness values and the GA method was activated. 
The GA method run the search process starting from the 
lowest sub-space and continued until the stop criteria was 
met. Chen and Huang developed a hybrid approach by com-
bining the extension matrix (EM) and the GA for feature 
selection [14]. They first established an integer program-
ming model using the EM, and then applied the GA to find 
an optimal feature subset. They showed the working of their 
method by applying it to intrusion detection problem. Dur-
ing the training phase of the detector, optimal features were 
selected with their hybrid approach.

Mafarja and Mirjalili developed two different hybrid 
optimization models by combining the SA method with the 
whale optimization algorithm (WOA) in two different ways 
[15]. In the first model, they used the SA method as an oper-
ator of the WOA method. In the WOA method, the best posi-
tion was achieved by optimizing random movements with 
the SA. In the second model, the position with the highest 
fitness value was first found by the WOA, and then a final 
local search was performed with the SA method to find the 
best location. They have tested their hybrid approach with 
the feature selection process. Taheri et al. developed a hybrid 
artificial neural network (ANN)–artificial bee colony (ABC) 
algorithm that estimates ground vibration during mine blast-
ing [16]. The ANN’s weight and bias values for the network 
structure were determined by the ABC algorithm. Xue et al. 
developed a hybrid approach aiming to improve the ABC 
algorithm [17]. They used differential evolution (DE) algo-
rithm in the generation of the new population where the 
ABC is weak. They improved the performance of the ABC 
algorithm, using the candidate solution generation strategy.

Singh and Singh used the GWO and sine cosine algorithm 
(SCA) together [18]. They optimized the position changes 
of the wolves with the SCA by removing random move-
ments of alpha wolves in the GWO algorithm. Pan et al. 
developed a hybrid algorithm using the GWO and flower 
pollination algorithm (FPA) [19]. They updated the posi-
tion of the wolves in the GWO algorithm using the position 
updates of the FPA algorithm.

Javidrad and Nazari developed a hybrid approach using 
the PSO algorithm and simulated annealing (SA) algorithms 
[20]. They applied a turn-based switching approach between 
the algorithms to combine them. The optimization started 
with the PSO algorithm, and was switched to the SA algo-
rithm when the PSO could not find a better result than its 
previous iteration. While the SA algorithm was continuing 
the optimization, the turn passed to the PSO algorithm when 
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the SA algorithm was not able to find a better fitness value. 
This iterative switching process between two algorithms 
continued until the desired number of iterations was reached 
or a stop criteria was met.

Kumar and Vidyarthi developed another hybrid approach 
by mixing the GA and the PSO methods [21]. They aimed 
to find the optimum location by starting the search process 
with the PSO method to reduce the search domain to a local 
region, and then proceeding with the GA method.

Garg proposed a hybrid approach by combining the 
strengths of the PSO and the GA methods [22]. The GA 
aims to transfer good individuals to the next generation. In 
the PSO, however, all individuals continue to take part in the 
population throughout the iterations. Garg fused two meth-
ods such that at each iteration the GA method prepared the 
next generation to be used by the PSO by applying crossing, 
mutation and selection processes.

In another study, Ali and Tawhid combined the PSO and 
the GA methods in three phases [23]. First, the PSO algo-
rithm was utilized to find a stable fitness value. Second, they 
divided the current population into sub-populations and then 
increased the diversity within each of the sub-populations 
using the GA’s crossover operator. In this phase, the GA’s 
mutation operator prevented falling to local minima. In the 
last phase, the optimization was again switched to the PSO 
algorithm, and the PSO was repeated until a maximum num-
ber of iterations was reached or the stop criteria was met.

Kaur and Mahajan developed a hybrid method using ant 
colony algorithm (ACA) and the PSO algorithm [24]. In 
this method, the population was first developed with the 
ACA and then the optimization was continued by the PSO 
algorithm.

Ghasemi et al. combined the adaptive neuro-fuzzy infer-
ence system (ANFIS) and the PSO algorithm [25]. They 
optimized the ANFIS structure with the PSO to minimize 
the difference between the outputs obtained with the ANFIS 
training and the actual results.

Hasanipanah et al. used support vector regression (SVR) 
and the PSO method to predict air-overpressure caused by 
mine blasting [26]. The hyper-parameters of each kernel was 
computed by the PSO method. They tested the SVR method 
with three different kernels.

Similar to our study, there are hybrid methods employing 
the PSO and GWO algorithms. In Chopra et al. and Kam-
boj, the PSO and GWO algorithms were used at each itera-
tion one after the other [27, 28]. The population obtained 
with one algorithm was utilized by the other one in the next 
iteration. Here, the aim was to improve the population by 
exploiting the strengths of the algorithms at each iteration 
separately. The difference between these two studies is that 
in [27], all of the population were being transferred from one 
method to the other at every iteration, however, in [28], the 
population of one method was being updated with the best 

individual of the other method obtained in its last iteration. 
Singh and Singh conducted another hybrid study using the 
PSO and GWO algorithms [29]. Instead of running the algo-
rithms one by one at each iteration, they run them in parallel 
using a mixture of the algorithms’ governing equations.

When the method of Chopra et al. is examined, no method 
can focus on solving the problem alone due to different 
characteristics of the algorithms. The method of Kamboj 
also faces a similar situation such that, though the whole 
population is not transferred, algorithms affect each other 
by directing the other algorithm towards the best solution 
they obtained on their turn. Updating the population of one 
method with the best individual of other method may harm 
the stability of both methods and hence, instabilities may 
arise. Although, the method of Singh and Singh run both 
algorithms in parallel, it is similar to the method of Kamboj 
such that the governing equations of the PSO method were 
updated to utilize the best three individuals of the GWO 
directly instead of using its own global best particle. Simi-
larly, this approach also may result in instabilities. We have 
included these three hybrid methods in our experiments to 
compare their performances with our hybrid approach. For 
the sake of simplicity, in the rest of the paper, we will call 
these three studies, namely [27], [28], and [29] as HC, HK 
and HS, respectively.

In our study, unlike the PSO and GWO hybrid approaches 
reported above, the optimization process is under control of 
the PSO method. Some individuals of the PSO algorithm 
which is selected with a small possibility are replaced by 
the best individual of the GWO algorithm. The GWO algo-
rithm is run with a small population for a small number of 
iterations so that partially improved individuals are created. 
Since the GWO algorithm starts with a high exploration abil-
ity, these partially improved individuals have an important 
potential to avoid falling into a local minimum. With our 
hybrid approach, the stability of the PSO algorithm remains 
intact and gets support from the GWO algorithm in terms 
of exploration.

The performance of an optimization algorithm should be 
tested on some benchmark functions as well as on a real-life 
problem to assess its effectiveness. For these purposes, we 
evaluated our hybrid approach on several benchmark func-
tions taken from the literature [30], on the optimal nesting 
problem of two-dimensional patterns which is encountered 
as a hard optimization problem in many sectors today, and 
as well as on other two different real-world problems. These 
two problems are the parameter estimation for frequency-
modulated (FM) sound waves [31] and process flowsheeting 
problem [32].

When we consider the optimal nesting problem of two-
dimensional patterns, at the forefront are the sectors such 
as leather, textiles, paper, glass and furniture. In the major-
ity of these sectors, the desired patterns are cut out from a 
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spool-wounded material whose width is fixed and length is 
variable. However, unlike others, there is no specific shape 
of the material in the leather sector. Leather materials have 
irregular shapes and may include low-quality and non-usable 
regions with again irregular shapes. Therefore, two-dimen-
sional nesting problem is more difficult in the leather sector 
than in other sectors. In addition, since the natural leather 
is a non-recyclable raw material, the nesting and cutting 
operations have to be done much more carefully than other 
sectors.

The leather materials used in this study are natural leather 
and have irregular shapes. It is aimed to place the two-
dimensional irregular-shaped patterns on two-dimensional 
irregular-shaped material in the most suitable way to mini-
mize wastage. In the literature, this problem is also known 
as two-dimensional irregular nesting problem [33] or two-
dimensional cutting stock problem [34, 35]. Cherri et. al 
developed two different models for this problem and evalu-
ate them in a real-world scenario for metal cutting industry. 
Their two models were based on direct trigonometry and 
no-fit polygon covering, respectively. They reported their 
no-fit polygon covering model as outperforming their direct 
trigonometry model and one other model based on no-fit 
polygon (NFP). In [34] and [35], the LNP problem in auto-
motive industry to produce car seats was studied. Optimum 
placement of the patterns without any overlap was solved 
with the help of the NFP technique. Before placement, the 
patterns were grouped according to their shape, and they 
were placed by giving precedence to big and regular pat-
terns. In [36], Crispin et al. aimed to place shoe patterns onto 
real leather using genetic algorithm (GA) and also utiliz-
ing the NFP technique. In another study [37], Yuping et al. 
studied placement of irregular-shaped patterns onto leather 
by developing a fast algorithm based on simulated annealing 
(SA). During the placement, they utilized shifting operation 
to prevent overlaps between the patterns and overflow of the 
patterns outside of the leather hide.

The main highlights of this study are as follows: (1) we 
have developed a new hybrid PSO–GWO optimization 
method. (2) We validated our method using five differ-
ent benchmark functions taken from the literature. (3) We 
evaluated our method on 3 different real-world problems, 
namely parameter estimation for frequency-modulated 
sound waves [31], process flowsheeting problem [32] and 
the leather nesting problem  [34, 35]. (4) We compared 
the performance of our algorithm with the PSO, GWO, 
ABC [38], social spider algorithm (SSA) [39] algorithms 
as well as with three different and recently proposed hybrid 
PSO–GWO algorithms [27–29].

The rest of the paper is organized as follows. Section 2 
explains the employed optimization methods and our hybrid 
approach. In Sect. 3, we define the optimization problems 
utilized to evaluate our approach. Section 4 presents the 

experimental results along with the discussions. Finally, 
Sect. 5 concludes the paper.

2 � Optimization methods

The hybrid algorithm proposed in this study utilizes the PSO 
and GWO meta-heuristic methods. The PSO is a well-known 
and widely used method [40–43]. The GWO, although being 
relatively new in the literature, is again a meta-heuristic 
method reported to give successful results like the PSO algo-
rithm [6, 44, 45]. A hybrid approach has been introduced 
using these two algorithms that yields successful results. 
We describe our method in detail in the following sections.

2.1 � Particle swarm optimization (PSO)

The PSO is a population-based meta-heuristic optimiza-
tion method developed by Kennedy and Eberhart [40]. It 
is inspired by the social behavior of bird flocking or fish 
schooling when searching for food. Initially, the initial 
population is generated randomly within the search domain 
in the PSO method. The best location of each particle and 
the position information of the best particle in the swarm 
are constantly kept in memory. All particles in the swarm 
update their positions using the following equations in each 
iteration:

Here, i refers to the particle in the swarm. n is the iteration 
step carried out, and r1 and r2 values represent random num-
bers in the range [0, 1]. � is the inertia weight parameter. 
The coefficients c1 and c2 represent the optimization param-
eters, x is the position vector, v is the velocity vector, and pi 
is the best position information that ith particle has achieved 
and finally, pg represents the best position information avail-
able in the swarm.

In the PSO algorithm, the new position and veloc-
ity of a particle are not accepted with a small possibility; 
instead, it is replaced by a random position within the search 
space. The aim of this operation is to escape from the local 
minimums.

The search continues until an optimum result is achieved 
or a maximum predefined number of iterations is reached.

2.2 � Grey wolf optimizer (GWO)

The GWO algorithm is inspired by the leadership hierarchy 
of grey wolves [6, 44, 45]. Grey wolves are at the top of the 
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food chain. There are four types of grey wolves within the 
leadership hierarchy. These are alpha, beta, delta and omega 
wolves. In the GWO algorithm, alpha wolves represent the 
solution with the best result. Beta and delta wolves represent 
the second and third best solutions in the population. Omega 
wolves are the best solution candidates. The GWO algorithm 
assumes that hunting is performed by alpha, beta and delta 
wolves, while omega wolves follow these wolves.

Grey wolves’ hunting includes the following three main 
parts: (1) Tracking, chasing, and approaching the prey. (2) 
Pursuing, encircling, and harassing the prey till it stops mov-
ing. (3) Attacking the prey. Encircling the prey is modeled 
mathematically in the following equations:

Here, t is the number of instantaneous iterations, Xp is the 
position of the prey, X is the location of grey wolves, and A 
and C are the coefficients for the vectors. The coefficients A 
and C are calculated as shown below:

Here, the number of a is linearly decreasing from 2 to 0, as 
the number of iterations decreases. r1 and r2 represent uni-
formly selected random numbers between [0,1].

Grey wolves are led by alpha wolves to detect the location 
of the prey. Sometimes beta and delta wolves help the alpha 
wolf. The GWO algorithm assumes that the best solution is 
the alpha wolf, and the second best and the third solutions 
are beta and delta wolves, respectively. For this reason, the 
other wolves in the population move according to the posi-
tion of these three wolves. This is formulated mathemati-
cally in the following equations:

The values X� , X� and X� represent the best three wolves in 
each iteration, respectively.

(3)D = |C × Xp(t) − X(t)|,

(4)X(t + 1) = Xp(t) − A × D.

(5)A = a × (2 × r1 − 1),

(6)C = 2 × r2.

(7)

D� = |C1 × X� − X(t)|,
D� = |C2 × X� − X(t)|,
D� = |C3 × X� − X(t)|.

(8)

X1 = |X� − a1D�|,
X2 = |X� − a2D�|,
X3 = |X� − a3D�|,

Here, the new position of the prey is expressed as Xp(t + 1) 
as the mean of the positions of three best wolves in the 
population.

Grey wolves finish the hunting by attacking the prey. For 
attacking, they must get close enough to the prey. When 
Eq. 5 is examined, A takes values that vary from [− 2a, 2a] 
while a takes decreasing values from 2 to 0. When |A| value 
is greater than or equal to 1, existing hunts are abandoned 
to find better solutions. Assuming that the prey got close 
enough for values less than 1, grey wolves are forced to 
attack the prey. This approach prevents the wolves getting 
stuck on local minimum.

When the GWO algorithm reaches the desired number of 
iterations, the search is completed.

2.3 � Hybrid PSO–GWO (HPSGWO)

Our Hybrid PSO–GWO algorithm (HPSGWO) has been 
developed without changing the general operation of the 
PSO and GWO algorithms. The PSO algorithm can achieve 
successful results in almost all real-world problems. How-
ever, a solution is needed to reduce the possibility of the 
PSO algorithm to trap into a local minimum. In our proposed 
method, the GWO algorithm is utilized to support the PSO 
algorithm to reduce the possibility of falling into a local 
minimum. As mentioned in Sect. 2.1, the PSO algorithm 
directs some particles to random positions with small pos-
sibility to avoid local minimums. As explained in Sect. 1, 
these directions may have some risks causing to move away 
from global minimum. The exploration ability of the GWO 
algorithm is used to prevent these risks by directing some 
particles to positions that are partially improved by the GWO 
algorithm instead of directing them to random positions. 
However, the running time is extended since the GWO algo-
rithm is also employed in addition to the PSO algorithm. 
But, as will be presented in Sect. 4, when the success of the 
results and the amount of extra time needed are taken into 
consideration, the extended time can be regarded as toler-
able depending on the optimization problem solved. The 
increased success can tolerate additional time requirement 
in sector such as leather where the wastage is much more 
critical as long as the solution is obtained in a feasible time 
(in minutes).

(9)Xp(t + 1) =
X1 + X2 + X3

3
.
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Algorithm 1 HPSGWO algorithm
1: MAXITR: the number of maximum iterations set by the user
2: PS: the number of population sizes set by the user
3: prob: small possibility rate set by the user
4: procedure
5: Initialize particles
6: for i = 1 to MAXITR do
7: for j = 1 to PS do
8: Run PSO
9: Update the velocity and the position of current particle
10: if rand(0, 1) < prob then � to avoid from the local minima
11: Set a, A, C values
12: for k = 1 to 10 do � small number of iterations
13: for m = 1 to 10 do � small number of population sizes
14: Run GWO
15: Update the position of α, β, δ wolves
16: Update a, A, C values
17: end for
18: end for
19: position of current particle = mean of the positions of three best wolves
20: end if
21: end for
22: end for
23: end procedure

Fig. 1   Flowchart of the 
HPSGWO
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The algorithm and the flowchart of our HPSGWO method 
are given in Algorithm 1 and Fig. 1, respectively.

3 � Definition of optimization problems

We evaluate our hybrid approach on five different bench-
mark functions ( F1,F2,F3,F4 and F5 ) and on three differ-
ent real-world problems. Table 1 presents the definition of 
these benchmark functions which are taken from Congress 
on Evolutionary Computation (CEC) 2005 benchmark func-
tions [30]. All of these functions have a dimension of 30. 
The global minimum values, Fmin , of these functions are 
also given in Table 1. The real-world problems utilized 
are parameter estimation for frequency-modulated sound 
waves  (PEFMSW)  [31], process flowsheeting problem 
(PFP) [32] and the leather nesting problem [34, 35]. The 
definitions for the PEFMSW and PFP are given in Table 2 
together with their dimensions and Fmin values. We will also 
call the PEFMSW and PFP as F6 and F7 , respectively, in the 
rest of the paper. The following section defines the leather 
nesting problem.

3.1 � Definition of the leather nesting problem

The leather nesting problem (LNP) is an optimization prob-
lem where desired patterns are required to be placed on a 
leather material with an objective of minimizing the wasted 
material. When the material is an imitation leather, the wast-
age can be easily recycled as in wood, glass, textile, and 
paper materials. However, when it is the natural leather, the 
wastage should be reduced to minimum, since the natural 
leather is a non-recyclable raw material. Unnecessary wast-
age brings big losses to large-scale companies. In addition 
to the non-recyclable characteristics of the natural leather, 
there are also some other issues which make the problem 
even harder: (1) natural leather does not have a regular 
shape, and can have tears and holes, and (2) the shoe pat-
terns used in the production also do not have regular shapes.

The LNP problem is also named in the literature as a two-
dimensional irregular nesting process [33–35].

The LNP problem aims to place shoe patterns 
(P = {P1,P2,P3,… ,PN}) with irregular shapes onto the 
irregular shaped leather material (M) with minimal waste. 
Rotation of the patterns is allowed. However, overlap which 

Table 1   Definitions of the benchmark functions

Function no Function description Function name Dimension Fmin

F1
D∑
i=1

(
kmax∑
k=0

[ak cos(2�bk(zi + 0.5))]

)

− D

kmax∑
k = 0

[ak cos(2�bk(zi × 0.5))] + fbias

a = 0.5, b = 3, kmax = 20, z = (x − o) ×M

x = [x1, x2,… , xD], o = [o1, o2,… , oD]x ∈ [−0.5, 0.5], fbias = 90

Shifted Rotated Weierstrass Function [30] 30 90.0

F2
D∑
i=1

(z2
i
) + fbias

z = x − o, x = [x1, x2,… , xD], o = [o1, o2,… , oD]

x ∈ [−100, 100], fbias = −450

Shifted Sphere Function [30] 30 − 450.0

F3
D∑
i=1

(z2
i
− 10 cos(2�zi) + 10) + fbias

z = x − o, x = [x1, x2,… , xD], o = [o1, o2,… , oD]

x ∈ [−5, 5], fbias = −330

Shifted Rastrigin’s Function [30] 30 − 330.0

F4
D∑
i=1

(z2
i
− 10 cos(2�zi) + 10) + fbias

z = (x − o) ×M, x = [x1, x2,… , xD], o = [o1, o2,… , oD]

x ∈ [−5, 5], fbias = −330

Shifted Rotated Rastrigin’s Function [30] 30 − 330.0

F5 D∑
i=1

(
i∑

j=1

zj

)2

+ fbias

z = x − o, x = [x1, x2,… , xD], o = [o1, o2,… , oD]

x ∈ [−100, 100], fbias = −450

Shifted Schwefel’s Problem 1.2 [30] 30 − 450.0
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indicates that there are at least two patterns intersecting, 
and overflow which means that there is at least one pattern 
whose boundaries are exceeding the leather are not allowed. 
The following equation gives the definition of these two 
constraints:

Here, N denotes the number of patterns that are placed. The 
problem to be minimized after defining the constraints is 
expressed as shown below:

The acceptable solutions are those where the sum of the 
overlap and overflow values is zero. The cost function, given 
in the following equation, determines the quality of the solu-
tion in acceptable situations:

Here, C is the number of vertexes for a polygon (representing 
a pattern). While the cost_vertex function calculates the cost 
of a vertex, first, the minimum distances from this vertex to 
the material boundary and all other polygons are calculated. 
Then, the shortest value in all calculated distances gives the 
cost of that vertex. Since the polygons are placed one by 
one, the cost function forces the placement polygons closer 
to other previously placed polygons and the bounds of the 

(10)
Pi ∩ Pj = � 1 ≤ i, j ≤ N

Pi ⊆ M 1 ≤ i ≤ N.

(11)

Minimize
N∑

i = 1

N∑
i = 1

i ≠ j

Overlap(Pi,Pj) +
N∑

i = 1

Overflow(Pi) + Cost(Pi)

subject to Pi ∩ Pj = � 1 ≤ i, j ≤ N

Pi ⊆ M 1 ≤ i ≤ N.

(12)Cost =

C∑

i = 1

cost_vertex(i).

material so that the wasted material is minimized. In Fig. 2, 
the calculation of cost for one of the vertexes of a polygon is 
illustrated. See Appendix for a detailed explanation of how 
the minimum distances between polygons are calculated.

4 � Experimental results and discussion

To evaluate the performance of our hybrid optimization 
method and to compare it with the PSO, GWO, ABC, SSA, 
HC, HK and HS methods, we conducted experiments with 

Table 2   Definitions for two real-world problems, namely the PEFMSW and PFP

Function no Function description Function name Dimension Fmin

F6
100∑
t=0

(y(t) − y0(t))
2

y(t) = a1sin(�1t� + a2sin(�2t� + a3sin(�3t�)))

y0(t) = (1.0)sin((5.0)t� − (1.5)sin((4.8)t� + (2.0)sin((4.9)t�)))

� = 2�∕100, xi,�i ∈ [−6.4, 6.35] for i ∈ {1, 2, 3}

Parameter estimation for frequency-
modulated sound waves [31]

6 0.0

F7 − 0.7x3 + 5(x1 − 0.5)2 + 0.8

⎧⎪⎨⎪⎩

g1 = − exp(x1 − 0.2) − x2 ≤ 0

g2 = x1 − 1.2x3 − 0.2 ≤ 0

g3 = x2 + 1.1x3 + 1.0 ≤ 0

x1 ∈ [0.2, 1], x2 ∈ [−2.22554,−1], x3 ∈ {0, 1}

Process flowsheeting problem [32] 3 1.0765

Fig. 2   Calculation of Cost for one of the vertexes of U-shaped 
polygon. The minimum distances of the vertex point to other 
polygons and to the bounds of the material are as follows: 
d1 = 7, d2 = 3, d3 = 6

√
2 . The cost of the vertex point equals to 

min(d1, d2, d3) = d2 which is 3 units
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five different benchmark functions and three different real-
world problems presented in Sect. 3.

In all of the experiments, parameters of the PSO 
were selected as follows  [46–49]: � = 0.7298 , and 
c1 = c2 = 1.49445 . Similarly, during the whole experi-
ments, parameters of the SSA were set to: [50–52]: ra = 1.0 , 
pc = 0.7 and pm = 0.1.

Experiments on F1,F2,F3,F4 and F5 were repeated 25 
times for each method and for each function. Experiments 
with F6 and F7 (PEFMSW and PFP) were conducted by 
applying each method 100 times to each problem. In these 
experiments, the methods are compared in terms of their best 
and worst results along with the mean and standard deviation 
statistics of their results. In the experiments performed with 
F1 ∼ F7 , we terminated the algorithms in each run when 
they reach a maximum number of 104 × D objective func-
tion evaluations. Here, D denotes the dimension of the cor-
responding function.

In the LNP experiments, we used four different shoe 
models with a total of 40 patterns and four different leather 
materials by representing them as polygons. Figure 3 shows 
these patterns belonging to real shoe models. The leather 

materials extracted from real hides and used in the evalua-
tions are illustrated in again Fig. 3. We should note that all 
the patterns and materials have irregular shapes. During the 
evaluations, each of four shoe model patterns were placed 
onto four different materials separately. For each model and 
material pair, each optimization method was repeated five 
times. Furthermore, each optimization method was given 
with the same number of shoe patterns to be placed onto the 
current material. In these experiments, the population size 
is set to 50 and each method was run for 150 iterations in 
each test. However, since HK and HS methods resulted in 
very poor performance with default values, we had to run 
them by increasing the population size and the number of 
iterations to 150 and 450, respectively, only then we were 
able to obtain a comparable performance.

To evaluate the results of the LNP experiments, two dif-
ferent performance metrics are utilized, namely: (1) mean 
efficiency (ME) calculated as the average percentage of 
the occupied area of the placed patterns at the end of the 
optimization over the used area, and (2) mean placement 
time (MPT) calculated by averaging the required times to 
place all patterns in each of five different runs. During the 

Fig. 3   The patterns of the 
four different shoe models and 
leather materials used: a Model 
1, b Model 2, c Model 3, and d 
Model 4 patterns; e Material 1, 
f Material 2, g Material 3, and h 
Material 4

Fig. 4   The results of nest-
ing for the GWO, PSO, and 
our HPSGWO methods using 
Model 2 and Material 4 are 
illustrated to explain the defini-
tion of used area necessary to 
calculate ME metric
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calculation of the ME, the used area is taken as the area 
extracted from the whole area of the material by removing 
its unused portion beginning from the boundary point of the 
farthest pattern along the placement direction. For instance, 
the used areas for three example placements shown in Fig. 4 
are the areas below straight lines for each of them. Experi-
ments related with MPT were all conducted on the same 
computer with Intel Core i5-6500 3.2 GHz processor and 
4 GB of RAM.

In Table 3, the results of the experiments performed with 
F1,F2,F3,F4 and F5 are illustrated. When the results are 
examined, our approach, HPSGWO, remarks as the only 
method achieving the best positions not reachable by other 
methods for all functions. The HPSGWO is able to find the 
global minimum for F2 , and its best position obtained for 
F5 is very close to the global minimum. In all aspects, our 
approach outperforms the GWO, ABC, HC, HK and HS 
methods.

The PSO is giving better results than the GWO accord-
ing to Table 3. Our hybrid approach is performing better 
than the PSO in all functions except for F4 . This means that 

Table 3   Results of the experiments conducted with F1,F2,F3,F4 and F5

Bold values indicate the best solutions found by each algorithm

Function 
name

Metrics PSO GWO ABC SSA HC HK HS HPSGWO

F1 Best 105.7006 114.9096 121.7113 111.0104 114.2313 143.0604 128.9681 102.9137
Worst 121.9920 126.4352 128.5150 119.7598 123.4563 156.2101 134.4481 120.8254
Mean 112.8334 121.6975 125.7962 117.0926 119.0227 149.2469 131.2379 112.7126
Std 3.8747 3.0525 1.5707 1.7962 2.2277 3.6614 1.4385 4.4379

F2 Best 125.9714 1783.9904 2031.7467 − 427.3725 50.0422 21545.0398 56327.9534 − 450.0000
Worst 1841.3794 105138.4783 18486.3973 − 322.9848 575.4239 56821.2616 87825.3125 937.5272
Mean 888.9429 6693.6779 9535.5799 − 385.7636 365.7421 36361.7848 73613.2514 283.6992
Std 501.9531 20099.7929 3934.2590 26.7099 131.4265 9479.0740 7553.2712 390.3624

F3 Best − 305.2286 − 182.8422 − 245.0817 − 93.3633 − 130.0256 1.1063 96.3287 − 317.0655
Worst − 203.6240 − 120.3764 − 140.4272 − 56.6294 − 81.9586 345.6842 166.8426 − 230.9049
Mean − 264.0750 − 159.3470 − 179.3599 − 74.3561 − 108.9474 143.0156 129.6237 − 283.1083
Std 23.6911 14.4012 21.8508 10.3420 13.4839 65.9474 23.8654 18.8635

F4 Best − 233.6276 − 132.4912 126.9666 − 45.9506 − 136.6507 180.7946 248.7985 − 236.4742
Worst − 114.8198 − 64.7051 326.2495 − 16.1413 − 36.4332 547.4909 491.7458 − 94.3715
Mean − 185.3406 − 98.8701 242.8365 − 31.9284 − 87.8573 315.1692 396.0627 − 170.6654
Std 30.9942 15.9753 56.9670 7.9571 25.8372 85.7930 52.4145 39.6899

F5 Best − 449.9946 5791.9056 45326.6877 2684.4428 706.9211 109313.7942 68222.8633 − 449.9995
Worst 3215.1047 22324.2271 75212.9893 5495.1434 2038.6187 2855039.8527 128822.8073 584.8864
Mean 338.0734 9925.1390 61538.5074 4020.6433 1439.1417 939871.9197 90447.5096 − 143.0111
Std 816.6653 3735.4339 7488.1730 649.0649 364.6407 803748.8532 14636.8432 269.1572

Table 4   Results of the 
experiments conducted with F6 
and F7

Bold values indicate the best solutions found by each algorithm

Func-
tion 
name

Metrics PSO GWO ABC SSA HC HK HS HPSGWO

F6 Best 0.0000 10.3444 6.6878 0.4444 7.8791 27.4715 24.2852 0.0000
Worst 25.9758 25.1607 23.7307 20.1060 26.3509 130.877 30.4727 25.0971
Mean 14.0708 18.5759 17.4936 14.0765 18.5890 41.6903 28.3669 13.6978
Std 6.6699 4.3529 3.3131 3.3880 4.4055 17.7599 1.3863 5.4824

F7 Best 1.0765 1.0941 1.0780 1.0767 1.0792 1.3942 1.0845 1.0765
Worst 1.2500 1.2500 1.3305 1.3500 1.2500 3.2384 1.3484 1.2500
Mean 1.1879 1.2357 1.1375 1.1308 1.1986 2.3627 1.2596 1.1771
Std 0.0828 0.0410 0.0487 0.0554 0.0693 0.5877 0.0633 0.0856
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via hybridizing the PSO with a less performing method, 
we are getting a better method than both of the PSO and 
GWO which clearly shows the success of our hybridization 
strategy. From this successful result, we can deduce that we 
managed to improve reportedly poor exploration ability of 
the PSO by merging it with the GWO.

There are only two cases where HPSGWO falls behind 
only the PSO and SSA methods in terms of only mean 
value. The SSA and PSO give better mean results than the 
HPSGWO only for F2 and F4 , respectively. However, when 
we consider best values, our method is able to reach better 
positions than these two methods indicating the improved 
exploration ability of our approach.

Table 4 presents the results of the experiments conducted 
with F6 and F7 . The HPSGWO and PSO are the only two 
methods able to reach the best values which are also global 
minimums. In this case, we can compare two methods by 
looking at the mean values. In terms of mean values, the 
HPSGWO is giving better results then the PSO in both prob-
lems. This indicates that via the exploration contribution of 
the GWO, our approach is able to obtain better results on the 
average. Although the SSA results in better mean value for 
F7 than the HPSGWO, it is not able to find global minimum 
which is achieved by our approach.

The results of the LNP experiments are given in Table 5. 
When the mean efficiency is considered, the HPSGWO 
algorithm is more successful than all of the other methods. 
When we calculate the average ME increases1 over all exper-
iments, the HPSGWO performs better than the PSO, GWO, 
ABC, SSA, HC, HK and HS with 4.77%, 4.85%, 28.55%, 
16.39%, 12.05%, 21.87% and 40.75%, respectively. When 
we consider the SSA, although it gives comparable results 

for F1 ∼ F7 , for the LNP its ME results are always behind 
our approach. The low performances of the HK and HS even 
with an increased population size and number of iterations 
indicate that they are not suitable for the LNP.

If we examine the visual placement results in Fig. 4 given 
to better illustrate the calculation of our ME metric, the bet-
ter performance of the HPSGWO is seen when the differ-
ence between the straight lines is inspected. The HPSGWO 
managed to place all of the patterns into a smaller used area, 
hence leaving a larger remaining area for a later use. The 
PSO and GWO methods have produced similar results to 
each other. We can deduce from these placements that the 
PSO and GWO trap into local minimums while our approach 
achieves a better result.

When the mean placement times in Table 5 are consid-
ered, the results show that the HPSGWO performs better 
than the other hybrid methods but not better than the PSO, 
GWO, ABC and SSA. When we consider that our approach 
utilizes the GWO whenever needed without modifying the 
governing equations of the PSO and GWO, this increased 
time complexity is inevitable. In the worst case, 2.77 times 
(for Material 1 and Model 1), in the best case, 1.63 times (for 
Material 2 and Model 2), and on the average 2.07 times more 
time is needed. However, when we consider the enhance-
ment in the ME, the longer time need is not intolerable as the 
order of the placement time is in minutes. Since the natural 
leather is not recyclable, the decreased leather wastage is 
more critical for the leather industry.

Additionally, in Fig. 5, we present average convergence of 
only the PSO, GWO and HPSGWO methods to better illus-
trate the success of our hybrid approach. This convergence 
graph is depicted by running three methods on Model 4 and 
Material 4. For each method and for each iteration in Fig. 5, 
the cost of all patterns is averaged. We should note that, in 
the experiments, each pattern is placed onto the material 
one by one, and methods are iterated 150 times to place one 
pattern. This result clearly indicates that our hybrid approach 
converges to a lower cost value with less iterations than the 
PSO and GWO. Hence, we can conclude that our approach 
successfully enhances the exploration ability of the PSO.

5 � Conclusion

In this paper, a new hybrid algorithm has been presented 
using the PSO and GWO algorithms. Our approach aims to 
prevent the PSO algorithm from falling into local minimums 
by utilizing the exploration ability of the GWO algorithm. 
For this purpose, some particles in the PSO algorithm were 
replaced with a small possibility by a partially improved par-
ticle obtained via the GWO algorithm. We have tested the 
performance of our algorithm and compared it with the PSO, 
GWO, ABC, SSA meta-heuristic methods, and as well as with 

20 40 60 80 100 120 140
Iterations

340

360

380

400

420

440

C
os
t

PSO
GWO
HPSGWO

Fig. 5   The convergence comparison graph for the placement of a sin-
gle sample pattern

1  These values are calculated by first taking the ME differences 
between the HPSGWO and other algorithms, then converting these 
differences to the percentages with respect to minimum ME value, 
and finally taking the average of these percentages.
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three different hybrid approaches of the PSO and GWO pro-
posed in the literature. To evaluate our method comprehen-
sively, we conducted experiments with five different bench-
mark functions and three different real-world problems. The 
results of the experiments indicate that our hybrid approach 
performs better than the conventional PSO, GWO algorithms, 
ABC, SSA and three hybrid PSO–GWO approaches. Since 
our hybrid approach do not modify the governing equations 
of the methods and apply the GWO with a small probability 
in the main flow of the PSO, its time complexity is higher 
than the PSO and GWO. However, our average convergence 
experiment demonstrate that our approach converges to lower 
cost values with few number of iterations. Additional time 
complexity of our approach should be considered depending 
on the problem it is applied, since in problems such as the 
LNP, obtaining more optimal solutions is much more critical 
as long as the increased time complexity is feasible.

Appendix

In Sect. 3.1, we have given Eq. 12 for the calculation of 
cost and Fig. 2 for illustrating the procedure with sample 
polygons. In this appendix, we give the details of distance 
calculations needed to compute the cost.

A polygon consists of multiple edges. To calculate mini-
mum distance of a vertex point to a polygon, dmin , we need 
to calculate the minimum distances from that point to all 
different edges of the polygon. The minimum of these dis-
tances gives us dmin . For this reason, we will below explain 
how the minimum distance of a vertex point to one of the 
edges is calculated.

In Fig. 6, we depicted three different cases for a point, PC , 
and an edge, PAB , where the intersection of the perpendicular 
line from PC to PAB falls into three different sections, namely: 
(1) outside the PAB and close to PA , (2) over PAB , and (3) out-
side the PAB and close to PB . Here, we define a parameter 
t whose magnitude is calculated by dividing dA to dAB , but 
we determine its sign as follows. When the intersection of 
the perpendicular line is outside the PAB and close to PA , t 
is negative, for the other cases t is positive. In other words, 
PA is considered as a reference point. We can formulate the 

coordinates of the perpendicular intersection point, D, in 
terms of t and coordinates of points PA and PB as in Eq. 13. 
Our aim is to find t, and for this purpose, we first express the 
distance, |DPC| , between D and PC as shown below:

Since DPC segment is perpendicular to the given edge only 
when |DPC| is minimum, we can find an equation to calculate 
t by minimizing |DPC| . To minimize |DPC| , we can take the 
first derivative of Eq. 14 in terms of t and equate it to zero. 
For the sake of simplicity, we can use the derivative of the 
terms inside the square root sign, since the minimization 
of those terms will also minimize |DPC| . Such a derivation 
will result in Eq. 15. When we equate Eq. 15 to zero, we 
find Eq. 16 for t.

Given a point PC and an edge, after calculating t with Eq. 16, 
we can find minimum distance of PC to the edge, dCmin

 , using 
Eq. 17. Note that, for the Cases 1 and 3 in Fig. 6, closest 
distances are to the points PA and PB , respectively.

(13)
DX = PAX

+ t × (PBX
− PAX

),

DY = PAY
+ t × (PBY

− PAY
),

(14)|DPC| =
√

((PAX
+ t × (PBX

− PAX
)) − PCX

)2+

((PAY
+ t × (PBY

− PAY
)) − PCY

)2.

(15)

d

dt
|DPC|2 = 2 × ((PAX

+ t × (PBX
− PAX

)) − PCX
) × (PBX

− PAX
)

+ 2 × ((PAY
+ t × (PBY

− PAY
)) − PCY

) × (PBY
− PAY

),

(16)

t =
(PCX

− PAX
) × (PBX

− PAX
) + (PCY

− PAY
) × (PBY

− PAY
)

(PBX
− PAX

)2 + (PBY
− PAY

)2
.

(17)

dCmin
=

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

�
(PAX

− PCX
)2 + (PAY

− PCY
)2 t < 0�

((PAX
+ t × (PBX

− PAX
)) − PCX

)2+

((PAY
+ t × (PBY

− PAY
)) − PCY

)2
0 ≤ t ≤ 1

�
(PBX

− PCX
)2 + (PBY

− PCY
)2 t > 1.

Fig. 6   Three different cases for 
a point, P

C
 , and an edge, P
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