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Abstract
Overbreak is an undesirable phenomenon in blasting operations. The causing factors of overbreak can be generally divided 
as blasting and geological parameters. Due to multiplicity of effective parameters and complexity of interactions among 
these parameters, empirical methods may not be fully appropriated for blasting pattern design. In this research, artificial 
neural network (ANN) as a powerful tool for solving such complicated problems is developed to predict overbreak induced 
by blasting operations in the Gardaneh Rokh tunnel, Iran. To develop an ANN model, an established database comprising 
of 255 datasets has been utilized. A three-layer ANN was found as an optimum model for prediction of overbreak. The 
coefficient of determination (R2) and root mean square error (RMSE) values of the selected model were obtained as 0.921, 
0.4820, 0.923 and 0.4277 for training and testing, respectively, which demonstrate a high capability of ANN in predicting 
overbreak. After selecting the best model, the selected model was used for optimization purpose using artificial bee colony 
(ABC) algorithm as one of the most powerful optimization algorithms. Considering this point that overbreak is one of the 
main problems in tunneling, reducing its amount causes to have a good tunneling operation. After making several models of 
optimization and variations in its weights, the optimum amount for the extra drilling was 1.63 m2, which is 47% lower than 
the lowest value (3.055 m2). It can be concluded that ABC algorithm can be introduced as a new optimizing algorithm to 
minimize overbreak induced by tunneling.
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1  Introduction

The tunnels have been excavated for various purposes such 
as road construction and water transferring in civil and min-
ing works. Although new mechanized excavation methods 
such as tunnel boring machine (TBM) have been success-
fully utilized for tunnel excavation, drilling and blasting as 
a traditional technique can be still used for excavation of 
tunnels with different shapes and sizes [1]. In fact, it is a 
primary excavation technique due to its advantages of high 
flexibility and low cost [2]. Nevertheless, because of using 
explosive material for rock mass excavation, damages to the 
peripheral rock mass around the excavation are inevitable. 
After the blast operation, the excavation cross-section can 
have two major problems. These two problems (Fig. 1) are 
called overbreak and underbreak. The over break is defined 
as a surplus drilled section of the tunnel and the underbreak 
is defined as the remainder of the blast operation.

Overbreak phenomenon in the executive process of 
a tunneling project is always one of the most important 
issues. Nowadays, according to the progress of industry and 
entrance of new technologies to tunneling industry and grad-
ual acceptance, the new methods are replaced instead of tra-
ditional methods (drilling and blast). Though, the tunneling 
industry uses advanced equipment, there are still reports of 
the overbreak phenomenon. The main reason is referred to 
the variety of gender stone and various geological effects 
which generally cannot be predicted until approaching time. 
On the other hand, tunnel projects with low volumes, small 
to medium scale, employers and contractors are unwilling to 
invest for entering the new mechanized equipment instead of 
traditional methods. Therefore, it can be argued that the tra-
ditional methods specially drilling and blasting are the most 
common tunnel excavation method for small-to-medium-
scale projects. It should be noted that, as far as writers are 
concerned, there is no experimental and analytical method 
on the determination of overbreak in the tunnels.

Recently, artificial intelligence (AI) methods such as arti-
ficial neural networks (ANN), fuzzy inference system (FIS), 

and neuro-fuzzy inference system (ANFIS) are developed 
to solve geotechnical problems [3–18]. Several researchers 
used AI methods to predict the uniaxial compressive strength 
of the rock [19–22]. Momeni et al. [23] highlighted the use 
of ANN technique to predict bearing capacity of the pile. In 
addition, this method was utilized to solve the problem of 
ground settlement induced by tunneling in the study carried 
out by Ocak and Seker [24]. Gordan et al. [25] predicted 
the stability of homogeneous slopes using a combination of 
particle swarm optimization (PSO) and ANN.

The effective factors of overbreak can be divided into 
three groups of rock mass characteristics, geometric prop-
erties of the explosion pattern and blasting properties [26]. 
So far, many researches worked on overbreak in mines and 
tunnels. Monjezi and Dehghani [27] considered the ratio 
of stemming to burden, charge the last row to total charge, 
special charge, special charge per delay and the number of 
explosion rows in each stage in the GOL-GOHAR mine, Iran 
as the most influencing factors on overbreak. Hyongdoo Jang 
and Erkan Topal [28] predicted the overbreak of the Gyby 
tunnel in South Korea with a value of 0.945 for correlation 
coefficient (R) between the output of model and the actual 
data, using ANNs. Their model inputs include uniaxial com-
pressive strength of the rock mass, quality index of rock 
mass, rock weathering conditions, groundwater conditions, 
and geomechanical classification index values of rock mass 
to predict over break.

To propose a comprehensive ANN model, Monjezi et al. 
[29] used parameters of uniaxial compressive strength, 
especially drilling, underground water content, burden, hole 
spacing, stemming, the diameter of the hole, stair height, 
special charge and consumer charge in ever delay as model 
inputs. They surveyed the sensitivity analysis on the men-
tioned parameters and concluded that burden and under-
ground water content are the most effective and least impor-
tant parameters, respectively. Hook and Brown [30] reported 
that when discontinuities are parallel along the tunnel axis, 
they have undesirable effects on over break. Ebrahimi et al. 
[31] introduced burden, spacing and charge per delay as 
the most influential parameters on overbreak. Developing 
an ant colony optimization algorithm, Saghatforoush et al. 
[32] reduced overbreak and flyrock resulting from blasting, 
61 and 58%, respectively.

Gates et al. [33] expressed that insufficient delay time and 
the number of explosive rows are the most effective factors 
on over break. Esmaeili et al. [34] suggested that the last row 
of charge and special charge are the most important factors 
on over break, while the ratio of burden to spacing, stiffness 
and density are the least important ones. Ibarra et al. [35] 
mentioned that the charge factor of environment from explo-
sive can create underbreak in tunnels and the reduction of 
rock quality may create over break. Mandal [26] expressed 
that in addition to the rock conditions, in situ stress has also a Fig. 1   A schematic photo of overbreak and underbreak in tunnels
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deep effect on overbreak. Several researchers have suggested 
empirical models to estimate overbreak [36, 37]. Singh and 
Xavier [38] carried out a series of small experiments on 
the physical-scale models to predict the blast damage. They 
considered characteristics of the rock mass and the explo-
sive material as the most effective parameters on overbreak. 
Recently, Koopialipoor et al. [39] used a hybrid of genetic 
algorithm (GA)-ANN model for prediction of overbreak in 
tunnels and successfully demonstrated that their developed 
models can predict overbreak with high degree of accuracy.

By reviewing mentioned works, it can be concluded that 
due to the multiplicity of the effective factors as well as 
the complex relationship between these parameters, there 
is a need to develop a new technique to predict and control 
overbreak phenomenon. On the other hand, parameters influ-
encing overbreak are related to the specific condition of the 
project. Therefore, it is necessary to evaluate overbreak phe-
nomenon for each project before conducting the operations. 
The present study attempts to predict overbreak phenomenon 
at Gardaneh Rokh tunnel, Iran, using ANN approach. Then, 
artificial bee colony (ABC) is considered and proposed to 
optimize the blast pattern parameters for minimization of 
overbreak in the tunnel.

This paper is presented in seven sections: after the cur-
rent section, the studied location together with data collec-
tion will be explained in Sect. 2. Sections 3 and 4 are about 
background of ANN model and how to implement it for 
prediction of over-break, respectively. Some material regard-
ing structure of ABC can be found in Sect. 5 and in Sect. 6, 
modelling process of ABC and its effective parameters to 
optimize over-break will be described. Finally, the conclu-
sions of this paper are given in the last section.

2 � Case study

The Gardaneh Rokh tunnel is one of the most important tun-
nels in West of Iran. The tunnel is the main road of commu-
nication between two centers of Esfahan, and Chaharmahal 
and Bakhtiari provinces. The road to Isfahan–Shahrekord 
is economically and strategically crucial highways in Iran. 
The mentioned tunnel which is a communication path was 
removed to 7 km from the capital of the provinces and about 
100 twists and accident-prone points on this axis. The tunnel 
with a length of 1300 m and width of 13 m was investigated 
in Chaharmahal and Bakhtiari Province which is located 
at a distance of 30 km from Shahrekord city. The location 
of the study area can be seen in Fig. 2. Excavation of this 
tunnel, as shown in Fig. 3, was performed in two sections: 
the top one which was excavated using drilling and blast-
ing method, and the bottom one which was excavated using 
hydraulic hammer.

In excavation operations of top section, the relatively 
constant explosive pattern was used to drill the tunnel. In 
this project, there are some minor changes in the pattern of 
explosions, but the changes were not varied enough to be 
considered in different arrangements for each stage of the 
explosion. Table 1 shows general specifications of excava-
tion at top section of the tunnel with a period of explosive 
design parameter changes in different conditions of rock 
mass.

In this study, eight parameters were selected as inputs 
of model for prediction of overbreak, which included 255 
datasets of RMR, advanced length, special charge, the holes 
periphery burden, the end row burden, periphery spacing, 
end row spacing, and number of applied delay. A simple 
description of these parameters (input and output) is shown 
in Table 2.

3 � Artificial neural network

Artificial neural network (ANN) was developed by McCull-
och and Pittsin [40]. This flexible technique is a type of 
artificial intelligent (AI) sytem which can solve problems 
faster with a high degree of accuracy. Furthermore, it can be 
used to solve non-linear nature issues where input and output 
parameters are considered as unknown [41]. The ANN is an 
imitation of the mechanism of data analysis of biological 
cells. The brain is a high complex network which can act as 
a parallel processor. Such networks are designed mainly for 
a series of non-linear mapping between input and outputs. 
ANNs are learned from previous experiences and general-
ized using the training samples. They are able to change 
their behavior based on the environment and are appropriate 
for the required algorithms for mapping. In ANN systems, 
the data used to create models are known as training data. 
In other words, ANNs use training data to learn patterns 
in the data which can prepare them to achieve the different 
outputs and results [42]. The structure of ANNs is created 
by processor units (neurons or nodes), which are responsi-
ble for the organization. These neurons can be combined 
with each other to form the layer. There are different ways 
to link neural in ANN. Feedforward (FF)-back-propagation 
(BP) is a common procedure for application in ANNs that its 
successful use has been reported by many researchers [14, 
23, 43–46]. Each neuron has multiple inputs. These inputs 
are combined and then the combination of them provides 
an output after processing. Network cells are connected to 
each other which output of each cell is considered as the 
next cell input. The first layer on the left side of the input 
layer does not play any role in processing and, inputs only 
import in this section, through existing communications sent 
to the next layer to the process. The end layer (layer right) is 
an output layer that provides network response. The layers 
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between input and output layer are called hidden or inter-
mediate layers [47].

One of the most widely learning algorithms in ANN is 
learning algorithm of error back propagation [48]. The algo-
rithm works on the basis of the error correction learning law, 
which can be considered extended algorithm of at least aver-
age. In general, learning propagation consists of two steps: 
forward step and back step. In forward stage, the inputs are 
forward layer by layer in the network, and finally a series of 
network output will be obtained as predicted values. Dur-
ing the forward stage, synaptic weights will be achieved. 
On the other hand, in the backward process, the weights 
are set the error by regulating laws. The difference between 
predicted response and network response (expected), which 
is called the error signal, will be released in the opposite 

Fig. 2   The location of the study area

Fig. 3   Cross-section of the studied tunnel
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direction of network connections and the weights change in 
a way that predicted response becomes closer to favorable 
response. Since the recent distribution is made in contrast to 
the weighted connections, error back propagation is chosen 
to explain the modification behavior of network. Different 
performance indices can be used to evaluate system results 
[42, 49–54]:

A.	 The correlation coefficient (R2)
B.	 The root mean square error (RMSE)

4 � Developing ANN model

In the current study, the perceptron ANN model, which con-
sists of three layers, was used to predict overbreak. Herein, 
three different learning algorithms were used to learn the 

ANN. These three algorithms include Levenberg–Markvart 
(LM), one-step secant (OSS) and scaled conjugate gradient 
(SCG), which can be compared between common functions 
for choosing the best learning function. Some researchers 
have proven that three layers can solve various and non-
linear issues (e.g., Hornik et al. [55]). For this, the number 
of neurons in the first layer is equal to the number of input 
data (nine neurons). In addition, since the goal is an outlet, 
a neuron is also determined in the output layer. Finally, for 
determining hidden layer, several research studies have been 
conducted to select the number of hidden layer neurons in 
which they suggested appropriate numbers. There is a need 
to conduct trial and error methods to obtain the appropri-
ate values for hidden neuron number. In Table 3, several 
researchers have proposed relationships to select the number 
of neurons in which Ni is the number of inputs, no is the 
number of outputs of the model.

According to the values of relationships presented in 
Table 3, for all three neural network learning algorithms 
from a range between 2 and 18 neurons for hidden neuron 
number was considered. Considering the importance of R2 
and RMSE of each series of training and testing systems, 

Table 1   General specifications 
of excavation at top section of 
the tunnel using drilling and 
blasting

Features Description

Shape Horseshoe
The cross-section of the top 32.15 (m2)
The tunnel periphery at top section 15.052 (m)
Hole diameters 45 and 51 (mm)
The type of consumption explosive Gelatin dynamite
Number of holes 45–85
Consumption detonator Delay 0.5 s—with different numbers
Hole depth 1.2–3 (m)
Arrangement of holes in the cutting area Wedge shape
Cut the hole angle relative to a line perpendicular to the axis of the 

tunnel
69–72 (°)

The total weight of consumption explosives 48–118 (kg)
Charge of holes Continuous
Stemming length According to the conditions stone 

from 15 to 60 cm

Table 2   Statistical description of input and output data

Standard 
deviation

Minimum Maximum Symbol Unit Parameters

1.2 4 10 ND – Number of delay
0.2 0.6 2 B1 m Periphery 

burden
0.22 0.6 1.8 B2 m End row burden
0.17 0.3 1.7 S1 m Periphery spac-

ing
0.17 0.6 1.25 S2 m End row spacing
0.23 0.49 1.65 Q kg/m3 Special charge
0.58 0.9 3.96 AL m Advanced length
6.47 30 39 RMR - Rock mass 

rating
2.47 3.05 8.37 OB m2 Overbreak

Table 3   Existing relationships to determine hidden layer neurons

References Relationships

[56] ≤ 2 × Ni + 1
[57] (Ni + N0)/2
[58] 2+N0×Ni+0.5N0×(N0

2+Ni)−3

Ni+N0

[59] 2Ni/3
[60]

√

N
i
× N

0

[61, 62] 2Ni
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a comparison was made between them to select the best 
model. This comparison is based on a proposed technique by 
Zorlu et al. [63], where each section is evaluated assigning a 
score. Based on this method, every performance index (R2 or 
RMSE) was calculated in its own class and best of them got 

highest ratin/ranking. For instance, values of 0.913, 0.913, 
0.904, 0.908, 0.902, 0.912, 0.912, 0.913, 0.913, 0.902, 
0.898, 0.931, 0.925, and 0.915 were obtained for section 
of R2 training dataset for models 1–14, respectively. Rank-
ing results of the mentioned 12 models were, respectively, 

Table 4   Prediction values of 
overbreak using ANN model

Learning 
function

No. model No. neuron Train Test Train rat-
ing

Test rating Total rank

R2 RMSE R2 RMSE R2 RMSE R2 RMSE

SCG 1 2 0.913 0.411 0.919 0.3787 31 14 38 42 125
2 3 0.913 0.409 0.902 0.4144 31 16 30 32 109
3 4 0.904 0.416 0.923 0.3881 27 13 40 38 118
4 5 0.908 0.42 0.937 0.3818 28 11 41 40 120
5 6 0.902 0.424 0.921 0.4263 26 9 39 26 100
6 7 0.912 0.394 0.908 0.464 30 27 33 13 103
7 8 0.912 0.403 0.912 0.4277 30 23 35 25 113
8 9 0.913 0.404 0.893 0.4722 31 22 28 10 91
9 10 0.913 0.391 0.906 0.4582 31 29 32 17 109

10 11 0.902 0.431 0.91 0.4188 26 7 34 30 97
11 12 0.898 0.431 0.885 0.4835 25 7 23 8 63
12 14 0.931 0.363 0.87 0.4795 40 41 21 9 111
13 16 0.925 0.364 0.891 0.5474 37 40 26 2 105
14 18 0.915 0.391 0.885 0.5 32 30 23 5 90

LM 15 2 0.923 0.38 0.906 0.4494 36 36 32 19 123
16 3 0.917 0.4 0.902 0.4511 33 25 30 18 106
17 4 0.923 0.384 0.902 0.4716 36 31 30 11 108
18 5 0.913 0.406 0.912 0.3896 31 19 35 37 122
19 6 0.913 0.378 0.904 0.4131 31 37 31 33 132
20 7 0.919 0.382 0.913 0.4477 34 34 36 20 124
21 8 0.921 0.372 0.923 0.4308 35 39 40 24 138
22 9 0.919 0.411 0.896 0.4955 34 15 29 6 84
23 10 0.904 0.42 0.921 0.4187 27 12 39 31 109
24 11 0.929 0.38 0.883 0.4896 39 35 22 7 103
25 12 0.904 0.545 0.887 0.4429 27 3 25 21 76
26 14 0.927 0.384 0.886 0.5517 38 33 24 1 96
27 16 0.935 0.407 0.866 0.5428 41 17 19 3 80
28 18 0.944 0.33 0.868 0.5018 42 42 20 4 108

OSS 29 2 0.891 0.438 0.912 0.4618 24 5 35 15 79
30 3 0.902 0.439 0.913 0.433 26 4 36 23 89
31 4 0.91 0.426 0.908 0.3834 29 8 33 39 109
32 5 0.902 0.421 0.938 0.3715 26 10 42 41 119
33 6 0.915 0.393 0.917 0.4395 32 28 37 22 119
34 7 0.917 0.404 0.904 0.3947 33 21 31 36 121
35 8 0.912 0.405 0.913 0.4257 30 20 36 27 113
36 9 0.921 0.384 0.912 0.4225 35 32 35 29 131
37 10 0.91 0.407 0.904 0.4242 29 18 31 28 106
38 11 0.929 0.372 0.893 0.4644 39 38 27 12 116
39 12 0.921 0.391 0.893 0.4604 35 30 27 16 108
40 14 0.898 0.436 0.923 0.4063 25 6 40 35 106
41 16 0.913 0.394 0.91 0.4638 31 26 34 14 105
42 18 0.912 0.402 0.913 0.409 30 24 36 34 124
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obtained as 31, 31, 27, 28, 26, 30, 30, 31, 31, 26, 25, 40, 
37, and 32. It should be noted that scores are generated for 
42 models, the highest score of which is assigned to the 
best section, and if the two sections are the same, the same 
score is awarded to them. Finally, the score of each row 
is aggregated from the models and is considered as a total 
score. Table 4 presents the results of this neural network. 
As shown in Table 4, Model No. 21 created with the LM 
learning algorithm was selected as the best model based on 
the highest score.

Figures 4 and 5 show the results of training and testing 
stages for the selected model (model number 21). As it can 
be seen, R2 values of 0.921 and 0.923 for training and test-
ing show ability of ANN model in predicting overbreak. In 

fact, ANN can provide a high-level prediction capacity for 
the estimation of overbreak with a low error.

In the following, basis of an optimization algorithm, 
namely, artificial bee colony (ABC), in optimizing overbreak 
and its effective parameters are described. After that, mini-
mization process of overbreak and input parameters will be 
presented and discussed.

5 � Artificial bee colony

In this research, one of the new optimization algorithms 
called ABC algorithm has been used. This algorithm is 
based on the life of bees and is introduced by Karaboga 

Fig. 4   Prediction values of 
overbreak for train model No. 
21

Fig. 5   Prediction values of 
overbreak for test model No. 21
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[64]. In this algorithm, the bees form a colony together. 
In Clooney, the bees are just as simple components of 
the whole collection, which can be used to explore and 
search resources (answers). The same thing causes use 
of this algorithm to find the answers of the various prob-
lems. There are three major groups in each colony that 
work together to look for the best answer. The first group, 
known as scout bees, is used in the environment (search 
space) to seek resources (goals or problem answers). 
After returning the bees to the hive and exchanging infor-
mation with the second-group bees (employed bees), the 
discovered resources begin to extract. Finally, the third 
group of bees (onlooker bees) in the hive uses resource 

information to evaluate responses in terms of fitness and 
provide the best sources (answers) to the hive (system). In 
this research, algorithm coding is implemented in MAT-
LAB environmental software. The general flowchart of 
this algorithm, which is used to optimize overbreak in 
tunnels, is presented in detail in Fig. 6.

Recently, this algorithm has been applied in various 
engineering fields [31, 65–69]. Its major applications are to 
optimize engineering issues. Furthermore, some research-
ers have recently used this algorithm to improve the per-
formance of ANN [3, 44]. More details regarding ABC 
structure and how to work, can be found in other studies 
[64, 70, 71].

Fig. 6   Structure of ABC algo-
rithm to optimize the overbreak 
in tunnels
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6 � Optimization of overbreak by ABC

In this research, after selecting the best ANN network (No. 
21), the ABC algorithm was used to minimize overbreak 
results of the tunnel. Considering the amount of RMR which 
is varies from 30 to 39, the highest number of samples was 
selected with a RMR of about 36, and an optimization for 
this range was obtained from the rock mass of the tunnel 
pathway. As the complete explanation of this algorithm 
is given above, this search continues to find the minimum 
amount of over break. Several models of the ABC algorithm 
were implemented with different bees. In Fig. 7, several 
results of the algorithm show the best cost of over break.

As shown in Fig. 7, the bee impacts were evaluated con-
sidering total iteration number of 300 and number of bees 
in the range of 15–60. As a result, generally, system per-
formance would be better by increasing number of bees. 
Nevertheless, after number of bees = 40 there was a very 
small difference between results of system. Hence, 40 was 
selected as the appreciate bee number. Focusing on iteration 
number, it was also found that after iteration number = 150, 
there was almost no changes, so this number was selected 
and utilized as the optimum one.

After analyzing the output parameters, the optimized 
parameters are given in Table 5. According to the ABC algo-
rithm, the optimized particle for overbreak in tunnels, which 
is executed by drilling and blasting method, was 1.63 m2. 
As indicated in Table 2, the minimum amount for overbreak 
was about 3.055 m2, which was reduced as 47% compared 
to the original state using the optimization ABC algorithm. 

Moreover, the values of 4, 0.921, 1.796, 1.695, 1.242, 1.235 
and 3.927 in the sequence for the number of delays, the load 
of the last row of the chess, the row of the first row of the 
hull, the intervals of the last row headers, the distance to 
the front end hulls, the special spending, and the length of 
the advance were achieved by ABC algorithm. The results 
indicate that by developing an ABC algorithm, the optimum 
values can be obtained and the overbreak values resulting 
from drilling and blasting in tunell can be minimized. Con-
sidering that overbreak is one of the main problems in tun-
neling, the reduction of this amount can contribute to have 
a good tunneling operation and its stability.

7 � Conclusions

In the present study, using the help of AI models, prediction 
and optimization of overbreak in tunnel were conducted. 
After identifying the effective parameters in the overbreak 
phenomenon, eight input parameters were used to create a 
neural network of three types of learning function. After 
selecting the best model based on scoring, the selected 
model was used for optimization. The R2 and RMSE values 
of the selected model were 0.921, 0.4820, 0.923 and 0.4277 
for training and testing, respectively. The ABC algorithm, 
one of the new optimization algorithms, was used to opti-
mize these parameters of the explosion pattern. Considering 
that overbreak is one of the main problems in tunneling, 
the reduction of this amount can contribute to have a good 
tunneling operation and its stability. After making several 

Fig. 7   The best costs of over break
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models of optimization and variations in its weights, the 
optimum amount for the extra drilling was 1.63 m2, which 
is 47% lower than the lowest value (3.055 m2). Finally, 
this method can obtain the optimal pattern minimizing the 
amount of overbreak in the tunnels. It can be concluded that 
the developed algorithms in this study can be used in indus-
try and practice considering ranges of model inputs with 
caution.
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