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Abstract
The current work suggests a mathematical model for the dynamic response of sandwich plates subjected to a blast load 
using a numerical method. The sandwich structure is made from an auxetic honeycomb core layer integrated by multiphase 
nanocomposite facesheets. The facesheets are composed of polymer–carbon nanotube (CNT)–fiber where the equivalent 
material properties of the multiphase nanocomposite layers are obtained using fiber micromechanics and Halpin–Tsai equa-
tions in hierarchy. The top and bottom layers are subjected to magnetic field and the material properties of them are assumed 
temperature and moisture dependent. The Kelvin–Voigt model is employed to consider the viscoelastic properties of the 
structure. The sandwich structure is rested on a viscoelastic foundation which is modeled by orthotropic visco-Pasternak 
medium. Based on refined zigzag theory (RZT), energy method and Hamilton’s principle, the motion equations are derived. 
A new numerical method, namely differential cubature method (DCM) in conjunction with Newmark method is utilized for 
obtaining the dynamic deflection of the structure for different boundary conditions. The effects of various parameters such as 
blast load, viscoelastic foundation, structural damping, magnetic field, volume fraction of CNTs, temperature and moisture 
changes, geometrical parameters of honeycomb layer and sandwich plate are considered on the dynamic deflection of the 
structure. The results show that the magnetic field to the facesheets can be considered as effective parameters to control the 
dynamic deflection. In addition, hygrothermal condition leads to increase of 24% in the dynamic displacement of system.

Keywords  Dynamic analysis · Blast load · Auxetic honeycomb core layer · Multiphase nanocomposite facesheets · Visco-
refined zigzag theory

1  Introduction

The sandwich structures can be used in many industries such 
as automotive design and production, sport equipment fab-
rication, aeronautic, marine and oil industries due to high 
strength and low weight. One of the suitable candidates for 
the core layer is auxetic honeycomb material due to its excel-
lent energy absorption capacity and high strength to weight 

ratio. The facesheets of sandwich structure which are thinner 
than the core layer have many important roles in improving 
the strength of these structures. Polymer–CNT–fiber mul-
tiphase nanocomposite layers are a good choice for the layers 
of sandwich structures since adding a few weight percent of 
CNTs makes them much stiffer than steel while being three 
to five times lighter [1].

Dynamic analysis of sandwich plates with nanocomposite 
layers has been of intense interest among the researchers. 
The static response of an inhomogeneous fiber-reinforced 
viscoelastic sandwich plate was investigated by Allam et al. 
[2] using the first-order shear deformation theory. Large 
amplitude vibration problem of laminated composite spheri-
cal shell panel under combined temperature and moisture 
environment was analyzed by Mahapatra et al. [3]. Nguyen 
et al. [4] presented an isogeometric finite element formula-
tion based on Bézier extraction of the non-uniform rational 
B-splines (NURBS) in combination with a generalized 
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unconstrained higher order shear deformation theory 
(UHSDT) for laminated composite plates. The nonlinear free 
vibration behavior of laminated composite spherical shell 
panel under the elevated hygrothermal environment was 
investigated by Mahapatra and Panda [5]. Mahapatra et al. 
[6] studied the geometrically nonlinear transverse bend-
ing behavior of the shear-deformable laminated composite 
spherical shell panel under hygro-thermo-mechanical load-
ing. Nonlinear free vibration behavior of laminated compos-
ite curved panel under hygrothermal environment was inves-
tigated by Mahapatra et al. [7]. Nonlinear flexural behavior 
of laminated composite doubly curved shell panel was inves-
tigated by Mahapatra et al. [8] under hygro-thermo-mechan-
ical loading by considering the degraded composite material 
properties through a micromechanical model. Based on Grey 
Wolf algorithm, Kolahchi et al. [9] studied optimization of 
embedded piezoelectric sandwich nanocomposite plates for 
dynamic buckling analysis. Duc et al. [10] studied nonlinear 
dynamic response and vibration of imperfect functionally 
graded carbon nanotube-reinforced composite (FG-CNTRC) 
double-curved shallow shells based on analytical solution. In 
another work by Duc et al. [11–13], thermal and mechani-
cal stabilities of FG-CNTRC truncated conical shells [11], 
static, dynamic and free vibration responses of FG-CNTRC 
rectangular plates surrounded on elastic foundations [12, 13] 
were investigated. They obtained the effective material prop-
erties of the structure through the rule of mixture. The geo-
metrically nonlinear thermomechanical transverse deflection 
responses of the functionally graded curved structure under 
the influence of nonlinear thermal field were reported by 
Mahapatra et al. [14]. Kar et al. [15] investigated numeri-
cally the postbuckling load parameter of the functionally 
graded shell panels under uniform and non-uniform thermal 
environment using nonlinear finite element method. The fre-
quency responses of free vibrated composite sandwich panel 
structure were investigated numerically by Katariya et al. 
[16] considering the geometrical nonlinearity via general-
ized Green–Lagrange strain kinematics in the framework of 
the equivalent single-layer theory. The vibration frequen-
cies of multi-walled carbon nanotube-reinforced polymer 
composite structure were examined by Mehar et al. [17] 
via a generic higher order shear deformation kinematics for 
different panel geometries. The nonlinear eigen frequency 
response of the functionally graded single-walled carbon 
nanotube-reinforced sandwich structure was investigated 
by Mehar et al. [18] considering the Green–Lagrange non-
linear strain under uniform thermal environment. The vibra-
tion characteristics of carbon nanotube-reinforced sandwich 
curved shell panel were investigated by Mehar and Panda 
[19] under the elevated thermal environment. Electro-mag-
neto wave propagation in piezoelectric sandwich plates made 
from nanocomposite core layer integrated with viscoelastic 
piezoelectric layers was presented by Kolahchi et al. [20]. 

Using Halpin–Tsai equations, Zarei et al. [21] investigated 
dynamic buckling of a sandwich truncated conical shell with 
polymer–carbon nanotube (CNT)–fiber multiphase nano-
composite layers. Hajmohammad et al. [22] presented the 
dynamic buckling behavior of a sandwich plate composed 
of laminated viscoelastic nanocomposite layers integrated 
with viscoelastic piezoelectric layers. The nonlinear static 
responses of the skew sandwich flat/curved shell panel 
including the corresponding stress values were examined 
by Katariya et al. [23] under the influence of the unvary-
ing transverse mechanical load. Physics of the laminated 
composite plate with internal debonding was expressed by 
Hirwani et al. [24] mathematically via two kinds of mid-
plane displacement functions based on Reddy’s simple shear 
deformation kinematic theory. The vibroacoustic responses 
of laminated composite curved panels subjected to harmonic 
point excitation in a combined temperature and moisture 
environment were investigated by Sharma et al. [25] numer-
ically using a novel higher order finite-boundary element 
model. With respect to the development of the research 
works in the field of structures subjected to blast load and 
auxetic honeycomb materials, there are several works in the 
literature. A theoretical study was conducted by Qin et al. 
[26] to predict the large deflection response of fully clamped 
rectangular sandwich plates subjected to blast loading. The 
in-plane dynamic crushing behavior of re-entrant honey-
comb was analyzed and compared by Hou et al. [27] with 
the conventional hexagon topology. The dynamic behavior 
of the delaminated composite plate subjected to blast loading 
was investigated by Hirwani et al. [28].

The response of multibody structures with plastic hinges 
subjected to confined blast loading was investigated by Ling 
et al. [29] through experimental tests, theoretical calculation 
and numerical simulation. Duc et al. [30–34] studied many 
works in the mentioned field. He and co-authors studied 
dynamic response and vibration of different structures such 
as composite double-curved shallow shells with auxetic hon-
eycomb core [30], sandwich auxetic composite cylindrical 
panels [31], imperfect functionally graded CNT-reinforced 
composite double-curved shallow shells [32], imperfect 
functionally graded material (FGM) thick plates [33] and 
sandwich plates with negative Poisson’s ratio in auxetic hon-
eycombs [34].

To the best of the authors’ knowledge, the blast analysis 
of sandwich plates with auxetic honeycombs and multiphase 
nanocomposite facesheets cannot be found in the literature. 
However, in this paper, dynamic response of viscoelastic 
nanocomposite sandwich plates resting on orthotropic vis-
coelastic foundation subjected to blast load is presented. 
The core of the sandwich plates is auxetic honeycombes 
and the facesheets are polymer reinforced by carbon fibers 
and CNTs. The structure is subjected to magnetic field and 
hygrothermal load. The viscoelastic property of the structure 
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is taken into account to achieve the realistic simulation based 
on Kelvin–Voigt model. The RZT is used for accurate simu-
lation and considering the continuity boundary condition 
between layers. DCM and Newmark method are applied 
for solution of the motion equation to obtain the dynamic 
deflection of the sandwich structure. The effect of various 
parameters such as blast load, viscoelastic foundation, struc-
tural damping, magnetic field, volume fraction of CNTs, 
temperature and moisture changes, geometrical parameters 
of honeycomb layer and sandwich plate are examined on the 
dynamic deflection of the structure.

2 � Schematic of sandwich plate and auxetic 
honeycomb cell

Figure 1 shows a sandwich plate with auxetic honeycomb 
core and multiphase nanocomposite facesheets where the 
Cartesian coordinate system (x, y, z) is located at the mid-
plane of the core layer. The geometrical parameters of 
plates, length a, plate width b, thickness of core layer hc, 
thickness of the top layer ht and thickness of bottom layer 
hb, are considered. The structure is located in orthotropic 
visco-Pasternak foundation with spring, shear and damper 
elements. The structure is subjected to magnetic field, blast 
load, temperature and moisture changes. The unit cells of the 
core are shown in Fig. 2 where the geometrical parameters 
of length of the inclined cell rib l, the length of the vertical 
cell rib d, and inclined angle, θ are indicated.

3 � Refined zigzag theory

Based on the refined zigzag theory, the displacement fields 
can be written as follows [35]:

(1)uk
1
(x, y, z, t) = u(x, y, t) + z�x(x, y, t) + Υk

x
(z)�x(x, y, t),

(2)uk
2
(x, y, z, t) = v(x, y, t) + z�y(x, y, t) + Υk

y
(z)�y(x, y, t),

where superscript (k) shows the first layer [bottom (b)], sec-
ond layer [core (c)] and third layer [bottom (b)]; u, v and w 
describe the displacements of mid-plane along x-, y- and 
z-directions, respectively; �x and �y indicate the average 
bending rotations around the x- and y-axes, respectively; �x 
and �y present the spatial amplitudes of the zigzag rotation; 
Υk

x
 and Υk

y
 show the zigzag functions which are [35]
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Fig. 1   A sandwich plate with 
auxetic honeycomb core and 
multiphase nanocomposite 
facesheets resting on orthotropic 
visco-Pasternak foundation

Fig. 2   Geometrical parameters 
of the honeycomb core layer 
cell
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where Ck
11

 and Ck
22

 are elastic constants of layers. Using the 
above relations, the strain–displacement equations can be 
written as

4 � Stress–strain relation

In this section, the stress–strain relations for the auxetic 
honeycomb core layer and nanocomposite facesheets are 
presented.

4.1 � Auxetic honeycomb core layer

The stress–strain relation for the auxetic honeycomb core 
layer can be written as

(8)
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where the elastic constants can be defined as

where [33]

where Ec, Gc and ρc are the core Young’s moduli, shear 
moduli and mass density of the origin material, respectively.

4.2 � Nanocomposite facesheets

The stress–strain relation for the nanocomposite face sheets 
can be written as

where �t,b
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 are thermal expansion and mois-

ture coefficients, respectively and elastic constants can be 
expanded as

where the Young’s moduli and shear moduli of the 
facesheets can be obtained by Halpin–Tsai model.
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5 � Halpin–Tsai model

Here, the facesheets are reinforced by carbon fibers and 
CNTs. However, the equivalent material properties of the 
facesheets can be calculated by Halpin–Tsai model [36] as 
follows:

where E,G, �,V  and � are, respectively, Young’s modulus, 
shear modulus, mass density, volume fractions and Pois-
son’s ratio. The superscript or subscript F and MNC are 
related to the fibers and matrix of nanocomposite, respec-
tively. However, the elastic modulus of nanocomposite can 
be expressed as

where

where EMand V
M

 are Young’s modulus and volume fraction 
of the matrix, respectively; ECN , tCN , dCN , �CNand V

CN
 rep-

resent, respectively, the Young’s modulus, thickness, outer 
diameter, length and volume fraction of CNTs which can 
be defined as

where wCN , �m and �CN are mass fraction of CNTs, density 
of matrix and CNTs, respectively. The Poisson’s ratio and 
mass density of the MNC can be given as
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where �M and �MNC are Poisson’s ratio of the matrix and 
MNC, respectively. Noted that due to the small amount of 
CNTs, the Poisson’s ratio of the matrix and MNC are con-
sidered equal [36]. The longitudinal and transverse thermal 
expansion coefficients can be expressed as

where �F
11

 and �F
22

 are the fiber thermal expansions and �MNC 
is the thermal expansion of MNC which can be given as

where �CN and �M are thermal expansion coefficients of 
CNTs and matrix, respectively. Since the matrix absorbs all 
the water content, the effect of moisture on the CNTs or fiber 
can be neglected [37]. However, the moisture coefficients of 
the nanocomposite may be stated as

where �M is the moisture coefficient of matrix. The tempera-
ture and moisture distributions are considered as

where ΔT  and ΔC are temperature and moisture changes, 
respectively; T0 andH0 show the reference temperature and 
moisture concentration, respectively.

6 � Energy method

In the energy method, three energies of potential, kinetic and 
work done by external forces should be calculated.
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6.1 � Potential energy

Using Eqs. (1)–(3), the total potential energy of the structure 
can be expressed as

where the resultant forces, moments and transverse shear 
stresses may be defined as
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,Υt

y
�t
xy

)
zdz,

(43)

(
Qx,Qy

)
= ∫

−hc∕2

−hb−hc∕2

(
�b
xz
, �b

yz

)
dz+

∫
hc∕2

−hc∕2

(
�c
xz
, �c

yz

)
dz+∫

hc∕2+ht

hc∕2

(
�t
xz
, �t

yz

)
dz,

6.2 � Kinetic energy

Using Eqs. (1)–(3), the kinetic energy of the sandwich struc-
ture can be expressed as

where the mass moments of inertia can be defined as below:

6.3 � External works

The applied external works due to the viscoelastic medium, 
magnetic field, hygrothermal environment and blast load can 
be expressed as

6.3.1 � Orthotropic visco‑Pasternak medium

The external force due to the orthotropic visco-Pasternak 
medium can be expressed as [9]

(44)

(
QΥ

x
,QΥ

y

)
=

−hc∕2

∫
−hb−hc∕2

(
�Υb

x

�z
�b
xz
,
�Υb

y

�z
�b
yz

)
dz

+ ∫
hc∕2

−hc∕2

(
�Υc

x

�z
�c
xz
,
�Υc

y

�z
�c
yz

)
dz

+ ∫
hc∕2+ht

hc∕2

(
�Υt

x

�z
�t
xz
,
�Υt

y

�z
�t
yz

)
dz.

(45)

Ktotal =
1

2 ∫
A

[
I0
(
u̇2 + v̇2 + ẇ2

)
+ I1

(
2u̇𝜃̇x + 2v̇𝜃̇y

)

+ I2

(
𝜃̇2
x
+ 𝜃̇2

y

)
+ I

Υx

0

(
2u̇𝜓̇x

)

+ I
Υy

0

(
2v̇𝜓̇y

)
+ I

Υx

1

(
2𝜃̇x𝜓̇x

)
+I

Υx

1

(
2𝜃̇x𝜓̇x

)

+I
Υy

1

(
+2𝜃̇y𝜓̇y

)
+ I

Υx

2

(
𝜓̇2

x

)
+ I

Υy

2

(
𝜓̇2

y

)]
dA,

(46)

(
I0, I1, I2, I

Υj

0
, I

Υj

1
, I

Υj

2

)

= ∫
−hc∕2

−hb−hc∕2

�b
(
1, z, z2,Υb

j
, zΥb

j
,

(
Υb

j

)2
)
dz

+ ∫
hc∕2

−hc∕2

�c
(
1, z, z2,Υc

j
, zΥc

j
,

(
Υc

j

)2
)
dz

+ ∫
ht

hc∕2+ht

�t
(
1, z, z2,Υt

j
, zΥt

j
,

(
Υt

j

)2
)
dz j = x, y.

(47)W = −
1

2 ∫A

(
qv + qm + qh + qb

)
u3dA.
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where angle � denotes is the orthotropic foundation angle 
with respect to the global; kw , cd , kg1 and kg2 are normal 
spring, damping and shear constants, respectively.

6.3.2 � Magnetic field

Assuming the 2D magnetic field as H0 = Hx𝛿x𝜗
⌢
ex + Hy𝛿y𝜗

⌢
ey , 

the Lorentz force in the facesheets can be obtained as [21]

in which � is the magnetic field permeability, ∇ indicates 
the gradient operator, u = (ut,b

1
, u

t,b

2
, u

t,b

3
) denotes the dis-

placement field vector, h represents the distributing vector 
of magnetic field, and J is the current density. Substituting 
Eqs. (1)–(3) into Eq. (49) yields

The resultant force and bending moments can be obtained 
as below:

(48)

qv = kwu3 + cdu̇3 − kg1

(
cos2𝜑

𝜕2u3

𝜕x2
+ 2 cos𝜑 sin𝜑

𝜕2u3

𝜕x𝜕y

+sin2𝜑
𝜕2u3

𝜕y2

)
− kg2

(
sin

2𝜑
𝜕2u3

𝜕x2
− 2 sin𝜑 cos𝜑

𝜕2u3

𝜕x𝜕y

+cos2𝜑
𝜕2u3

𝜕y2

)
,

(49)
fm = �

⎛
⎜⎜⎜⎝
∇ ×

�
∇ ×

�
u × H0

��
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

h

⎞
⎟⎟⎟⎠

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
J

×H0,

(50)
fx = �H2

y

[(
�2u

�x2
+

�2u

�y2

)
+ z

(
�2�x

�x2
+

�2�x

�y2

)

+Υt,b
x

(
�2�x

�x2
+

�2�x

�y2

)]
,

(51)

fy = �H2

x

[(
�2v

�x2
+

�2v

�y2

)
+ z

(
�2�y

�x2
+

�2�y

�y2

)

+Υt,b
y

(
�2�y

�x2
+

�2�y

�y2

)]
,

(52)
fz = �

[
H2

y

(
��x

�x
+

�2w

�y2

)
+ H2

x

(
��y

�y
+

�2w

�x2

)]
.

(53)

(
F
xm
,F

ym
,F

zm

)
= ∫

−hc∕2

−hb−hc∕2

(
f b
x
, f b
y
, f b
z

)
dz + ∫

hc∕2+ht

hc∕2

(
f t
x
, f t
y
, f t
z

)
dz,

(54)

(
M

xm
,M

ym
,M

zm

)
= ∫

−hc∕2

−hb−hc∕2

(
f b
x
, f b
y
, f b
z

)
zdz

+ ∫
hc∕2+ht

hc∕2

(
f t
x
, f t
y
, f t
z

)
zdz,

6.3.3 � Hygrothermal environment

The internal force due to the thermal and moisture loads can 
be expressed as

In the above relations, NH
x

 and NH
y

 are

6.3.4 � Blast load

The blast wave pressure is considered to be uniformly 
applied to the plate. The force done by the blast load can be 
expressed as [32]

where “1.8” is a factor for considering the hemispherical 
blast, a is wave decay coefficient, PS0 is the maximum pres-
sure of blast and Ts is the parameter of duration of the blast 
pulse which can be expressed as [38–40]

(55)

(
MΥx

xm
,M

Υy

xm,M
Υx

ym
,M

Υy

ym

)
= ∫

−hc∕2

−hb−hc∕2

(
f b
x
Υb

x
, f b
x
Υb

y
, f b
y
Υb

x
, f b
y
Υb

y

)
zdz

+ ∫
hc∕2+ht

hc∕2

(
f t
x
Υt

x
, f t
x
Υt

y
, f t
y
Υt

x
, f t
y
Υt

y

)
zdz.

(56)qh = ∫
[
NH
x

2

(
�w

�x

)2

+
NH
y

2

(
�w

�y

)2
]
dA.

(57)

NH
x
= −∫

−hc∕2

−hb−hc∕2

[(
Cb
11
�b
xx
+ Cb

12
�b
yy

)
ΔT

+
(
Cb
11
�b
xx
+ Cb

12
�b
yy

)
ΔC

]
dz

− ∫
−hc∕2

−hb−hc∕2

[(
Ct
11
�t
xx
+ Ct

12
�t
yy

)
ΔT

+
(
Ct
11
� t
xx
+ Ct

12
� t
yy

)
ΔC

]
dz,

(58)

NH
y
= −∫

−hc∕2

−hb−hc∕2

[(
Cb
12
�b
xx
+ Cb

22
�b
yy

)
ΔT

+
(
Cb
12
�b
xx
+ Cb

22
�b
yy

)
ΔC

]
dz

− ∫
−hc∕2

−hb−hc∕2

[(
Ct
12
�t
xx
+ Ct

22
�t
yy

)
ΔT

+
(
Ct
12
� t
xx
+ Ct

22
� t
yy

)
ΔC

]
dz.

(59)Pblast = 1.8PS0

[
1 −

t

Ts

]
exp

{
−at

Ts

}
,

(60)PS0 = 0.085
(
1

Z

)
+ 0.3

(
1

Z

)2

+ 0.8
(
1

Z

)3

,

(61)
Ts = 1.2

6
√
W
√
R,
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where P0 is atmosphere pressure and Z is

where R is the distance of center of blast to center of the 
structure and W is the mass of explosive materials in terms 
of TNT.

7 � Motion equations

Employing Hamilton’s principle, the equations of motion 
can be derived as below:

Substituting Eqs. (1)–(18) into Eqs. (40)–(44), consider-
ing structural damping using Kelvin–Voigt [41] theory 

(62)a = Z2 − 3.7Z + 4.2,

(63)Z =
R

W0.33
,

(64)

�u ∶
�Nx

�x
+

�Nxy

�y
= I0

�2u

�t2
+ I1

�2�x

�t2
+ I

Υx

0

�2�x

�t2
− F

xm
,

(65)
𝛿v ∶

𝜕Nxy

𝜕x
+

𝜕Ny

𝜕y
= I0

𝜕2v

𝜕t2
+ I1

𝜕2𝜃y

𝜕t2
+ I

𝜒̄Y

0

𝜕2𝜓y

𝜕t2
− F

ym
,

(66)
�w ∶

�Qx

�x
+

�Qy

�y
+

�

�x

(
NH
x

�w

�x

)
+

�

�y

(
NH
y

�w

�y

)

− qv − qh − qb = I0
�2w

�t2
− F

zm
,

(67)

��x ∶
�Mx

�x
+

�Mxy

�y
− Qx = I1

�2u

�t2
+ I2

�2�X

�t2
+ I

Υx

1

�2�X

�t2
−M

xm
,

(68)

��y ∶
�Mxy

�x
+

�My

�y
− Qy = I1

�2v

�t2
+ I2

�2�y

�t2
+ I

Υy

1

�2�y

�t2
−M

ym
,

(69)
𝛿𝜓x ∶

𝜕MΥ
x

𝜕x
+

𝜕MΥ
xy

𝜕y
− QΥ

x
= I

Υx

0

𝜕2u

𝜕t2
+ I

𝜒̄Υx

1

𝜕2𝜃x

𝜕t2

+ I
Υx

2

𝜕2𝜓x

𝜕t2
−MΥx

xm
−M

Υy

xm,

(70)
��y ∶

�MΥ
yx

�x
+

�MΥ
y

�y
− QΥ

y
= I

Υy

0

�2v

�t2
+ I

Υy

1

�2�y

�t2

+ I
Υy

2

�2�y

�t2
−MΥx

ym
−M

Υy

ym.

(
Ck
ij
= Ck

ij
(1 + g�∕�t)

)
 where g denotes the structural damp-

ing coefficient, the stress resultants can be obtained as

(71)

Nx = Ak
11

�u

�x
+ Bk

11

��x

�x
+ Gk

11

��x

�x
+ Ak

12

�v

�y
+ Bk

12

��y

�y

+ Hk
12

��y

�y
+ g

�

�t

(
Ak
11

�u

�x
+ Bk

11

��x

�x
+ Gk

11

��x

�x

+Ak
12

�v

�y
+ Bk

12

��y

�y
+ Hk

12

��y

�y

)
,

(72)

Ny = Ak
12

�u

�x
+ Bk

12

��x

�x
+ Gk

12

��x

�x
+ Ak

22

�v

�y

+ Bk
22

��y

�y
+ Hk

22

��y

�y
g
�

�t

(
Ak
12

�u

�x
+ Bk

12

��x

�x

+Gk
12

��x

�x
+ Ak

22

�v

�y
+ Bk

22

��y

�y
+ Hk

22

��y

�y

)
,

(73)

Nxy = Ak
66

(
�u

�y
+

�v

�x

)
+ Bk

66

(
��x

�y
+

��y

�x

)

+ Gk
66

��x

�y
+ Hk

66

��y

�x
+ g

�

�t

(
Ak
66

(
�u

�y
+

�v

�x

)

+Bk
66

(
��x

�y
+

��y

�x

)
+ Gk

66

��x

�y
+ Hk

66

��y

�x

)
,

(74)

Mx = Bk
11

�u

�x
+ Dk

11

��x

�x
+ Ik

11

��x

�x
+ Bk

12

�v

�y

+ Dk
12

��y

�y
+ Jk

12

��y

�y
+ g

�

�t

(
Bk
11

�u

�x
+ Dk

11

��x

�x

+Ik
11

��x

�x
+ Bk

12

�v

�y
+ Dk

12

��y

�y
+ Jk

12

��y

�y

)
,

(75)

My = Bk
12

�u

�x
+ Dk

12

��x

�x
+ Ik

12

��x

�x
+ Bk

22

�v

�y

+ Dk
22

��y

�y
+ Jk

22

��y

�y
+ g

�

�t

(
Bk
12

�u

�x
+ Dk

12

��x

�x

+Ik
12

��x

�x
+ Bk

22

�v

�y
+ Dk

22

��y

�y
+ Jk

22

��y

�y

)
,

(76)

Mxy = Bk
66

(
�u

�y
+

�v

�x

)
+ Dk

66

(
��x

�y
+

��y

�x

)

+ Ik
66

��x

�y
+ Jk

66

��y

�x
+ g

�

�t

(
Bk
66

(
�u

�y
+

�v

�x

)

+Dk
66

(
��x

�y
+

��y

�x

)
+ Ik

66

��x

�y
+ Jk

66

��y

�x

)
,



1149Engineering with Computers (2019) 35:1141–1157	

1 3

where

(77)

MΥ
x
= Gk

11

�u

�x
+ Ik

11

��x

�x
+ Kk

11

��x

�x
+ Gk

12

�v

�y

+ Ik
12

��y

�y
+ Lk

12

��y

�y
+ g

�

�t

(
Gk

11

�u

�x
+ Ik

11

��x

�x

+Kk
11

��x

�x
+ Gk

12

�v

�y
+ Ik

12

��y

�y
+ Lk

12

��y

�y

)
,

(78)

MΥ
y
= Hk

12

�u

�x
+ Jk

12

��x

�x
+ Lk

12

��x

�x
+ Hk

22

�v

�y

+ Jk
22

��y

�y
+Mk

22

��y

�y
+ g

�

�t

(
Hk

12

�u

�x
+ Jk

12

��x

�x

+Lk
12

��x

�x
+ Hk

22

�v

�y
+ Jk

22

��y

�y
+Mk

22

��y

�y

)
,

(79)

MΥ
xy
= Gk

66

(
�u

�y
+

�v

�x

)
+ Ik

66

(
��x

�y
+

��y

�x

)

+ Kk
66

��x

�y
+ Lk

66

��y

�x
+ g

�

�t

(
Gk

66

(
�u

�y
+

�v

�x

)

+Ik
66

(
��x

�y
+

��y

�x

)
+ Kk

66

��x

�y
+ Lk

66

��y

�x

)
,

(80)

MΥ
yx
= Hk

66

(
�u

�y
+

�v

�x

)
+ Jk

66

(
��x

�y
+

��y

�x

)

+ Lk
66

��x

�y
+Mk

66

��y

�x
+ g

�

�t

(
Hk

66

(
�u

�y
+

�v

�x

)

+Jk
66

(
��x

�y
+

��y

�x

)
+ Lk

66

��x

�y
+Mk

66

��y

�x

)
,

(81)
Q

x
= Ak

55

(
�w

�x
+ �x

)
+ Nk

55
�x + g

�

�t

(
Ak
55

(
�w

�x
+ �x

)
+ Nk

55
�x

)
,

(82)

Q
y
= Ak

44

(
�w

�y
+ �y

)
+ Ok

44
�y + g

�

�t

(
Ak
44

(
�w

�y
+ �y

)
+ Ok

44
�y

)
,

(83)
QΥ

x
= Nk

55

(
�w

�x
+ �x

)
+ Pk

55
�x + g

�

�t

(
Nk
55

(
�w

�x
+ �x

)
+ Pk

55
�x

)
,

(84)

QΥ
y
= Ok

44

(
�w

�y
+ �y

)
+ Qk

44
�y + g

�

�t

[
Ok

44

(
�w

�y
+ �y

)
+ Qk

44
�y

]
,

(85)Ak
ij
= ∫

−hc∕2

−hb−hc∕2

Ck
ij
dz + ∫

hc∕2

−hc∕2

Ck
ij
dz + ∫

hc∕2+ht

hc∕2

Ck
ij
dz,

(86)

Bk
ij
= ∫

−hc∕2

−hb−hc∕2

Ck
ij
zdz + ∫

hc∕2

−hc∕2

Ck
ij
zdz + ∫

hc∕2+ht

hc∕2

Ck
ij
zdz, Also, the boundary conditions are considered as below:

(87)

Dk
ij
= ∫

−hc∕2

−hb−hc∕2

Ck
ij
z2dz + ∫

hc∕2

−hc∕2

Ck
ij
z2dz + ∫

hc∕2+ht

hc∕2

Ck
ij
z2dz,

(88)

Gk
ij
= ∫

−hc∕2

−hb−hc∕2

Ck
ij
Υxdz + ∫

hc∕2

−hc∕2

Ck
ij
Υxdz + ∫

hc∕2+ht

hc∕2

Ck
ij
Υxdz,

(89)

Hk
ij
= ∫

−hc∕2

−hb−hc∕2

Ck
ij
Υydz + ∫

hc∕2

−hc∕2

Ck
ij
Υydz + ∫

hc∕2+ht

hc∕2

Ck
ij
Υydz,

(90)

Ik
ij
= ∫

−hc∕2

−hb−hc∕2

Ck
ij
Υxzdz + ∫

hc∕2

−hc∕2

Ck
ij
Υxzdz + ∫

hc∕2+ht

hc∕2

Ck
ij
Υxzdz,

(91)

Jk
ij
= ∫

−hc∕2

−hb−hc∕2

Ck
ij
Υyzdz + ∫

hc∕2

−hc∕2

Ck
ij
Υyzdz + ∫

hc∕2+ht

hc∕2

Ck
ij
Υyzdz,

(92)

Kk
ij
= ∫

−hc∕2

−hb−hc∕2

Ck
ij

(
Υx

)2
dz + ∫

hc∕2

−hc∕2

Ck
ij

(
Υx

)2
dz

+∫
hc∕2+ht

hc∕2

Ck
ij

(
Υx

)2
dz,

(93)

Lk
ij
= ∫

−hc∕2

−hb−hc∕2

Ck
ij
ΥxΥydz + ∫

hc∕2

−hc∕2

Ck
ij
ΥxΥydz + ∫

hc∕2+ht

hc∕2

Ck
ij
ΥxΥydz,

(94)

Mk
ij
= ∫

−hc∕2

−hb−hc∕2

Ck
ij

(
Υy

)2
dz + ∫

hc∕2

−hc∕2

Ck
ij

(
Υy

)2
dz

+∫
hc∕2+ht

hc∕2

Ck
ij

(
Υy

)2
dz,

(95)

Mk
55

= ∫
−hc∕2

−hb−hc∕2

Ck
ij

�Υx

�z
dz + ∫

hc∕2

−hc∕2

Ck
ij

�Υx

�z
dz + ∫

hc∕2+ht

hc∕2

Ck
ij

�Υx

�z
dz,

(96)

Pk
55

= ∫
−hc∕2

−hb−hc∕2

Ck
ij

�2Υx

�z2
dz + ∫

hc∕2

−hc∕2

Ck
ij

�2Υx

�z2
dz + ∫

hc∕2+ht

hc∕2

Ck
ij

�2Υx

�z2
dz,

(97)

Ok
55

= ∫
−hc∕2

−hb−hc∕2

Ck
ij

�Υy

�z
dz + ∫

hc∕2

−hc∕2

Ck
ij

�Υy

�z
dz + ∫

hc∕2+ht

hc∕2

Ck
ij

�Υy

�z
dz,

(98)

Qk
55

= ∫
−hc∕2

−hb−hc∕2

Ck
ij

�2Υy

�z2
dz + ∫

hc∕2

−hc∕2

Ck
ij

�2Υy

�z2
dz + ∫

hc∕2+ht

hc∕2

Ck
ij

�2Υy

�z2
dz.
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•	 Clamped supported at four surfaces

•	 Simply supported at four surfaces

•	 Clamped supported at two surfaces and simply supported 
at two another surfaces

8 � Solution method

8.1 � DCM

DCM is a numerical procedure expressing a calculus opera-
tor ( ℜ ) value of the function ( f (x, y) ) at a discrete point in 
the solution domain as a weighted linear sum of discrete 
function values chosen within the overall domain of a prob-
lem. For a two-dimensional problem, supposing that there 
are N arbitrarily located grid points, the cubature approxi-
mation at the ith discrete point can be expressed as [42]

where C
ij
 and N are the cubature weighting coefficients and 

total number of grid points in the solution domain, respec-
tively. The computation of the weighting coefficients can be 
done using the following expression:

The above equation may be written in matrix form as

(99)

x = 0, a ⇒ u = v = w = �x = �y = �x = �y = 0,

y = 0, b ⇒ u = v = w = �x = �y = �x = �y = 0.

(100)

x = 0, a ⇒ v = w = �y = �y = My = MΥ
y
= M

xy
= 0,

y = 0, b ⇒ u = w = �x = �x = Mx = MΥ
x
= M

xy
= 0.

(101)

x = 0, a ⇒ u = v = w = �x = �y = �x = �y = 0,

y = 0, b ⇒ u = w = �x = �x = Mx = MΥ
x
= M

xy
= 0.

(102)ℜf (x, y)i ≈

N∑
j=1

C
ij
f (xj, yj),

(103)
ℜ{x�−�y�}i =

N∑
j=1

C
ij
f (x

�−�

j
y
�

j
), � = 0, 1, 2,… , �,

� = 0, 1, 2, ...,N − 1, i = 1, 2, ...,N.

(104)
�
x
�−�

j
y
�

j

�

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

C
i1

C
i2

.

.

.

C
in

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
�
ℜ{x�−�y�}i

�
.

The coefficient matrix, 
[
x
�−�

j
y
�

j

]
, can be expanded with j 

in column wise and one row of each pair of (�,�) . Also, each 
pair of (�,�) is required to fill the column on the right of the 
equal sign. The cubature weighting coefficients may be 
obtained by solving Eq. (104) repeatedly for i = 1, 2,… ,N , 
respectively.

However, using DCM, the motion equations can be writ-
ten in matrix form as

in which [K] denotes the stiffness matrix, [C] is the damp 
matrix, [M] is the mass matrix, 

[
Qb

]
 is the external blast load, 

{Y} =
{
u, v,w, �x, �y,�x,�y

}
 is the displacement vector; 

subscripts b and d indicate the boundary and domain points.

8.2 � Newmark method

In this section, Newmark method [43] is applied in the time 
domain to obtain the time response of the structure under the 
blast loads. Based on this method, Eq. (105) can be written 
in the general form as below:

where subscript i + 1 indicates the time t = ti+1 , K∗(di+1) and 
Qi+1 are the effective stiffness matrix and the effective load 
vector which can be considered as

where [43]

in which � = 0.5 and � = 0.25 . Based on the iteration 
method, Eq. (106) is solved at any time step and modified 
velocity and acceleration vectors are calculated as follows:

(105)

[
Mbb Mbd

Mdb Mdd

][
Ÿb

Ÿd

]
+

[
C
bb

C
bd

C
db

C
dd

][
Ẏ

Ẏd

]

+

[
K
bb

K
bd

K
db

K
dd

] [
Yb

Yd

]
=

[
0

Qb

]
,

(106)K∗(di+1) = Qi+1,

(107)K∗(di+1) = KL + KNL(di+1) + �0M + �1C,

(108)
Q∗

i+1
= Qi+1 +M

(
𝛼0di + 𝛼2ḋi + 𝛼3d̈i

)
+ C

(
𝛼1di + 𝛼4ḋi + 𝛼5d̈i

)
,

(109)

�0 =
1

�Δt2
, �1 =

�

�Δt
, �2 =

1

�Δt
,

�3 =
1

2�
− 1, �4 =

�

�
− 1,

�5 =
Δt

2

(
�

�
− 2

)
, �6 = Δt(1 − �), �7 = Δt� ,

(110)d̈i+1 = 𝛼0(di+1 − di) − 𝛼2ḋi − 𝛼3d̈i,

(111)ḋi+1 = ḋi + 𝛼6d̈i + 𝛼7d̈i+1.
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Then for the next time step, the modified velocity and 
acceleration vectors in Eqs. (110) and (111) are employed 
and all these procedures mentioned above are repeated.

9 � Numerical results

In this section, the dynamic response of the present structure 
is studied for different parameters. For this purpose, a sand-
wich plate with length to width ratio of a∕b = 1 , length to 
total thickness of a∕h = 10 , length of the vertical cell rib to 
length of the inclined cell rib of d∕l = 1 , thickness to length 
of the inclined cell rib of t∕l = 0.0138 and inclined angle of 
rosmarinic acid is considered. Furthermore, the explosive 
weight is W = 5 kg and distance of blast center to center of 
the structure is chosen, R = 1 m [44].

9.1 � Material properties

The material properties of the core and facesheets are as 
follows.

9.1.1 � Auxetic honeycomb core layer

Young’s modulus of E = 69.2 GPa , Poisson’s ratio of 
� = 0.33 and mass density of � = 2700 kg/m3 [33].

9.1.2 � Facesheets

The facesheets are made from epoxy reinforced by carbon 
fibers and CNTs with the following properties [36]:

9.1.2.1  Epoxy  Young’s modulus: 
EM = (3.51 − 0.0034T + 0.142H)GPa , Poisson’s ratio: 

Fig. 3   Validation of present work with Ref. [34]
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Fig. 4   Convergence and accuracy of DCM

�M = 0.3 , density: �M = 1200 kg/m3 , thermal expansion 
coefficient: �M = 45(1 + 0.001ΔT) × 10−6 K−1 , and mois-
ture coefficient: �M = 2.68 × 10−3 wt%−1.

9.1.2.2  Carbon fibers  Young’s modulus: EF
11

= 233.05GPa 
and EF

11
= 23.1GPa , shear modulus: GF

12
= 8.96GPa , 

Poisson’s ratio: �F = 0.2 , density: �F = 1750 kg/m3 , ther-
mal expansion coefficient: �F

11
= −0.54 × 10−6 K−1 and 

�F
22

= 10.08 × 10−6 K−1 , and volume percent: VF = 0.6.

9.1.2.3  CNTs  Young’s modulus: 
ECN = 640(1 − 0.0005ΔT)GPa , Poisson’s ratio: �CN = 0.27 , 
density: �CN = 1350 kg/m3 , outer diameter: dCN = 1.4 nm , 
thickness: tCN = 0.34 nm , length �

CN = 25 × 10−6 m , 
thermal expansion coefficient: �CN = 1350 kg/m3 , 
�CN = 4.5361 × 10−6 K−1 and �CN = 4.6677 × 10−6 K−1 , 
respectively, at T = 300 K , T = 500 K and T = 700 K.

9.2 � Verification

To validate the results of this work, neglecting the core 
and top face sheet, CNTs as the reinforcement, structural 
damping, magnetic field, hygrothermal load and viscoelastic 
medium, the dynamic response of a plate subjected to blast 
load is studied. Considering the material properties to be the 
same as in Ref. [34], the dynamic deflection of the structure 
is shown in Fig. 3. As can be seen, the present results are in 
good agreement with Ref [34], which shows the accuracy of 
the obtained results.

9.3 � Convergence of DCM

Figure 4 presents the maximum dynamic deflection of the 
sandwich structure for different grid points of the DCM. 
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It can be seen that with increasing the grid points of the 
DCM, the maximum dynamic deflection decreases rapidly 
until N = 113, the changes in the grid points do not affect 
on the maximum dynamic deflection. However, for accurate 
results, the grid points in this work are assumed 113.

9.4 � The effect of different parameters

The effect of CNT weight percent on the dynamic deflec-
tion of the sandwich plates with honeycomb core layer is 
shown in Fig. 5. As can be seen, reinforcing the facesheets 
with CNTs leads to stiffer structure and consequently lower 
dynamic deflection. For example, the maximum dynamic 

displacement for wcnt = 0 (facesheets without CNTs) is 10.88 
while for the facesheets reinforced by 2% CNTs, the maxi-
mum dynamic displacement becomes 7.05. It means that 
by reinforcing the facesheets with 2% CNTs, the maximum 
dynamic deflection reduces about 54%.

The temperature and moisture change effects on the 
dynamic displacement of the sandwich plate with respect 
to the time are illustrated in Figs. 6 and 7. From both the 
figures, it can be found that with increasing the temperature 
and moisture changes, the dynamic displacement enhances. 
This is physically due to this fact that the stiffness of the 
sandwich structure decreases with increasing the tempera-
ture and moisture changes. It is also worth to mention that 
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Fig. 5   The effect of CNT weight percent on the dynamic deflection of 
the structure
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the effect of hygrothermal load on the dynamic deflection of 
the structure is about half time of the effect of CNT weight 
percent. In other words, considering the hygrothermal envi-
ronment ( ΔT = 400 K, ΔC = 2%, ), the maximum dynamic 
deflection decreases about 24%.

The effects of geometrical parameters on the dynamic 
deflection of the structure are presented in Figs. 8 and 9 for 
the sandwich plate and in Figs. 10 and 11 for the auxetic 
honeycomb core cell. Figure 8 shows the effect of length to 
width ratio of the sandwich plate on the dynamic response. 
It can be observed that with increasing the length to width 
ratio, the dynamic deflection increases due to reduction 
in the stiffness of the sandwich plate. From Fig. 9 which 

demonstrates the effect of length to total thickness ratio of 
the sandwich plate, it can be found that enhancing the length 
to total thickness ratio leads to higher dynamic displace-
ment. Figures 10 and 11 present the effect of vertical cell 
rib length to inclined cell rib length ( d∕l ) and inclined angle 
( � ) on the dynamic response of the structure, respectively. 
As can be seen, with increasing the d∕l and � , the dynamic 
deflection increases due to reduction in the stiffness of the 
core.

For quantitative analysis of the above figures, it can 
be found that increasing the length to width ratio of the 
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Fig. 9   The effect of the length to total thickness of the sandwich plate 
on the dynamic deflection of the structure
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Fig. 10   The effect of the vertical cell rib length to inclined cell rib 
length on the dynamic deflection of the structure
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dynamic deflection of the structure
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sandwich plate from 1 to 3, the maximum dynamic deflec-
tion increases 2.5 times. In addition, with enhancing the 
length to total thickness ratio of the sandwich plate from 10 
to 30, the maximum dynamic deflection becomes 3.5 times 
greater. For the geometrical parameters of the honeycomb 
cell, it can be observed that the changes of d/l and inclined 
angle of core cell increase the maximum dynamic deflection 
about 34% and 17%, respectively.

Figure 12 depicts the effect of boundary conditions on the 
dynamic deflection of the sandwich structure. Three types of 
boundary conditions are considered in this figure. It can be 
observed that the dynamic deflection of the structure sub-
jected to blast load will be decreased 58% and 34% for the 
plate with CCCC boundary condition with respect to the 

SCSC and SSSS boundary conditions, respectively. It is due 
to this fact that the sandwich plate with CCCC boundary 
condition has more bending rigidity with respect to other 
boundary conditions.

The effect of viscoelastic medium coefficients on the 
dynamic deflection of the sandwich plate is shown in 
Figs. 13, 14 and 15, respectively, for spring, shear and 
damper constants of the foundation. It can be concluded that 
with increasing the spring, shear and damper constants of 
the viscoelastic medium, the dynamic deflection decreases. 
However, it can be found that the existence of viscoelastic 
medium leads to more strength of the sandwich structure 
across the blast load.
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Fig. 13   The effect of the spring constant of viscoelastic medium on 
the dynamic deflection of the structure
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the dynamic deflection of the structure
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Figure 16 shows the effect of the parameter of duration 
for the blast pulse (Ts) on the dynamic deflection of the sand-
wich structure. It can be concluded that with increasing the 
Ts, the dynamic deflection increases while the phase of the 
dynamic response does not change.

Figure 17 presents the effect of dimensionless magnetic 
field ( H

X
= �H2

x
∕Ec ) on the dynamic response of the sand-

wich plates. It can be concluded that applying magnetic field 
to the facesheets decreases the dynamic deflection of the 
sandwich structure about 42%. It is physically due to this 
fact that applying magnetic field to the facesheets improves 
the stiffness of the structure. This considerable effect shows 
that the magnetic field can be used as an effective control-
ling parameter for the reduction of the dynamic deflection 
in sandwich plates under blast load.

Figure 18 is plotted to show the effect of dimensionless 
structural damping ( G =

�
g
√
Ec∕�c

�
∕a ) on the dynamic 

deflection of the sandwich structure. As can be observed, 
considering the structural damping decreases the dynamic 
deflection due to increase in the energy absorbing. In other 
words, considering G = 0.2 decreases the maximum dynamic 
deflection about 34%. However, it can be concluded that for 
realistic modeling of the present structure, considering struc-
tural damping is essential.

10 � Conclusions

Dynamic response of sandwich plates resting on orthotropic 
viscoelastic medium subjected to blast load was presented 
in this article. Considering auxetic honeycomb core, mul-
tiphase nanocomposite facesheets, structural damping, 
hygrothermal environment, 2D magnetic field, RZT and 

novel numerical method of DC were the main contributions 
of this work. The Halpin–Tsai and Kelvin–Voigt theories 
were used for calculating the effective material properties 
of facesheets and considering viscoelastic property of the 
structure, respectively. The motion equations were derived 
by RZT, energy method and Hamilton’s principle. Based 
on DC and Newmark methods, the dynamic deflection of 
the sandwich structure was obtained so that the effects of 
various parameters such as blast load, viscoelastic founda-
tion, structural damping, magnetic field, volume fraction 
of CNTs, temperature and moisture changes, geometrical 
parameters of honeycomb layer and sandwich plate were 
shown. The most findings of this work were:

•	 By reinforcing the facesheets with 2% CNTs, the maxi-
mum dynamic deflection reduces about 54%.

•	 Consider ing the hygrothermal  environment 
( ΔT = 400 K, ΔC = 2%, ), the maximum dynamic 
deflection decreases about 24%.

•	 With enhancing the length to total thickness ratio of the 
sandwich plate from 10 to 30, the maximum dynamic 
deflection becomes 3.5 times greater.

•	 The changes of d/l and inclined angle of core cell increase 
the maximum dynamic deflection about 34% and 17%, 
respectively.

•	 The dynamic deflection of the structure subjected to blast 
load will be decreased 58% and 34% for the plate with 
CCCC boundary condition with respect to the SCSC and 
SSSS boundary conditions, respectively.

•	 It can be concluded that with increasing the parameter 
of duration for the blast pulse, the dynamic deflection 
increases while the phase of the dynamic response does 
not change.
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Fig. 17   The effect of the dimensionless magnetic field on the 
dynamic deflection of the structure
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•	 The magnetic field can be used as an effective controlling 
parameter for the reduction of the dynamic deflection in 
CNT-reinforced sandwich plates under blast load.

•	 As can be observed, considering the structural damping 
decreases the dynamic deflection due to increase in the 
energy absorbing.
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